GWD-I

dfdl-wg@ogf.org

Category: INFORMATIONAL

OGF Data Format Description Language Working Group
2007-03-27
GWD-I

Category: Informational

OGF Data Format Description Language Working Group
2007-03-27

Data Format Description Language (DFDL) v1.0

Core Specification
(Internal Committee Working Document)

Status of This Document

This memo provides information to the Grid community regarding the specification of a Data Format Description Language. The specification is currently a working group internal draft. It does not define any standards or technical recommendations. Distribution is unlimited.

Copyright Notice

Copyright © Global Grid Forum 2004, 2005,,2006. All Rights Reserved.

Copyright © Open Grid Forum,2006, 2007. All Rights Reserved.

Abstract

This document provides a definition of a standard Data Format Description Language (DFDL). This language allows description of dense binary and legacy data formats in a vendor-neutral declarative manner. DFDL is an extension to the XML Schema Description language (XSD).

Revision History

	Latest entry at the top please

	Version
	Author/Contributor
	History
	Date(yyyy-mm-dd)

	014
	Mike Beckerle
	Reorganization of sections into better order.

Put in some changes requested during earlier review cycle.

Handled Unordered Groups by way of source-to-source transformation and a data postprocessing step. This is far better than complicating the semantics to deal with unordered stuff.

Filled in Choice parse rule.

Added 'Nested Delimited Constructs' section.

Added a bunch of topics about regexp delimiting, end-of-data delimiting, length protocols and such. These are "tossed into" the parse strategy section, which is currently very disorganized, but at least the notions are captured.
	2007-03-25

	013
	Mike Beckerle
	Incorporated comments on v12 by S. Hanson.

Prepared for reordering grammar section to after parse-strategies section.
	2007-03-25

	012
	Mike Beckerle
	GGF->OGF throughout.

Integrated Tom Sugden’s rewrite to the scoping section, and mods to the Syntax section (which is still not only about syntax)

Put basic arrays material into the properties description section for the occurrences properties.

Much other editing. Removed these to parking lot: Variables Usage Scenarios, Extensibility, Schematron appendix, defineStream and stream changing, conversions search example.
Got rid of DPath. It’s now XPath, albeit with some semantic restrictions (since our model is simpler than the full XML model – e.g., no attributes to address with XPaths)

Merged in and reorganized the Length Protocols material.

Introduced Parse Strategies concept. incorporated "conversions" into parse strategies.
	2007-03-18

	011
	Mike Beckerle
	update to validation error definition. Minor changes elsewhere.
	2007-02-14

	010
	Geoff Judd
	Update Default and Nulls section
	2007-01-24

	009
	Geoff Judd
	Moved some of the Uncertainty material back to the Core document. Specifcially DFDL assertions and unresolvable points of uncertainty.
	2006-09-20

	008
	Geoff Judd
	Removed most of Uncertainty material (including properties) except for a brief summary.
	2006-08-23

	007
	Mike Beckerle
	Applied simplifications as discussed in DFDL WG call on 2006-08-03
	2006-08-10

	006
	Mike Beckerle
	Improved examples in uncertainty section based on feedback from Suman, Steve H. Integrated user-defined properties and Variables material.
	2006-07-21

	005
	Mike Beckerle
	Many, many, (MANY) changes as a result of big full-pass read through.

	2006-07-17

	004
	Mike Beckerle
	integrated material about uncertainty. Point of departure was the document: "Support of Uncertainty in DFDL-007.doc", by Geoff Judd.
Also integrated material about null/default/optional handlings. Point of departure is "Support of Default and Null Values in DFDL-008.doc" by Geoff Judd
	2006-07-14

	003
	Mike Beckerle
	added properties list, and layering material
	2006-07-13

	002
	Robert E. McGrath
	Text from notes on arrays. Section 12 and 17.
	2006-07-07

	001
	Mike Beckerle
	Created this new framework document to combine all the sub-team documents into a combined spec. Started over from version 001 since this is being put together from pieces from all over.
	2006-06-23

TBD: TODO List
· Organize parse strategies topic. must accommodate nulls/defaults/optional topic

· Consider factoring it based on a UML/Mixin model of all the properties (which is how the properties detail section is organized now to some degree.)

· Syntax section – should this really be just syntax or syntax and basic semantics as the dfdl:format and dfdl:defineFormat are currently?

· Variables – revise in terms of 'variable memory' instead of "context" in general.
· Parse strategies:

· define for binary stored/fixed length, no delimiters – scalars, arrays (sequences is done)
· define for non-initiated delimited formats – scalars, arrays, and sequences

· var-length and optional data

· Uncertainty + nulls/optional/default (split into basic + advanced supplement?)

· section for choice
· section for xs:any – just rewrite schema in terms of choice
· section for optionals/nulls/default values.
· initiator-based format properties
Throughout: To eliminate ambiguity, is it worth always qualifying a DFDL property with dfdl: ? Or maybe by using underbar in anticipation of making them hyperlinks? For example, it gets difficult sometimes to know whether the word 'separator' refers to the property or to the concept.

These are TBDs in the document that it would be great to address before OGF 20:

5. What is DFDL, including a sub-section giving scope of DFDL 1.0.

8.1. A schema for DFDL would be great but not sure if Suman will have the time to do this.

Random Note: On possible extensibility mechanism:

· source-to-source schema declaration rewrite specified with XSLT.

· data post-processing rewrite via XQuery or XSLT to match the original logical model.

This would allow new keywords to be given meaning by end users. Example is the way 'initiatorSeparator' is defined for Any Element Wildcards in unordered groups.

Contents

1Data Format Description Language (DFDL) v1.0

1Abstract

2Revision History

4TBD: TODO List

5Contents

11TBD: Hints to Authors and Editors

121
Introduction

131.1
Why is DFDL Needed?

132
Notational and Definitional Conventions

132.1
Failure Types

142.2
Schema Definition Error

142.3
Processing Errors: Parse Error, Unparse Error

142.4
Validation Errors

153
Glossary

164
Outline of the Specification

165
What is DFDL?

165.1
What is DFDL Version 1.0?

176
DFDL Information Model

186.1
DFDL Subset of XML Schema

197
Syntax Basics

197.1
Namespaces

197.2
The DFDL Annotation Elements

207.2.1
Additional Specialized Annotation Elements

217.3
String Literals in DFDL

217.3.1
Hex Escape for String Literals

228
Syntax and Basic Usage of DFDL Annotation Elements

228.1
dfdl:format: Putting Formats to Use

228.1.1
Attributes of dfdl:format

228.1.2
Representation Property Binding Syntax: Attribute Form

238.1.3
Representation Property Binding Syntax: Element Form

238.1.4
Short Form Syntax for Format Annotations

248.1.5
Empty Bindings

248.2
dfdl:defineFormat - Reusable Data Format Definitions

258.2.1
Inheritance for dfdl:defineFormat

258.2.2
Using/Referencing a Named Format Definition

258.3
The dfdl:assert Annotation Element

258.4
The dfdl:escapeScheme Annotation Element

258.5
The dfdl:hidden Annotation Element

268.6
The dfdl:numberScheme Annotation Element

268.7
The dfdl:defineVariable Annotation Element

268.8
The dfdl:setVariable Annotation Element

269
Scoping Rules

269.1
Annotation Positioning

279.2
Annotation Overloading

289.3
Annotation Overriding

299.4
Scoping of Type References

299.5
Scoping of Element and Group References

309.6
Scoping of Type Derivations

319.7
Scope Resolution Rules for Format Properties

3410
Semantics

3410.1
DFDL Parser and Unparser

3410.2
Unparsing Must be Unambiguous

3410.3
Parser Specification Overview

3510.4
DFDL Logical Parse Function

3610.4.1
Context

3710.4.2
Variable Memory

3910.4.3
Position and Length

3910.4.3.1
Value and Element Start Position, Length, and End Position

3910.4.3.2
Dynamic Extent

3911
Parsing Rules

3911.1
Element Declaration

4011.2
Parse Strategy Selection Algorithm

4011.3
General Element Pre-Processing and Post-Processing

4011.4
Element Content Processing

4111.5
Element content processing – Simple Types (S)

4111.6
Element content processing – Ordered Sequence Groups (G)

4211.7
Element content processing – Choice (C)

4311.8
Element content processing – Array (A)

4311.9
Element content processing – Unordered Groups

4411.10
Any Element Wildcard

4411.10.1
Any-Element Wildcard in Ordered Group

4411.10.2
Any Element Wildcard in Unordered Group

4511.11
Element Reference

4511.12
Group Reference

4512
Parse Strategies

4512.1
General Topics within Parse Strategies

4512.1.1
Length Protocol

4612.1.2
Alignment

4612.1.3
Position by Offset

4612.1.4
Character Width

4712.1.5
Length in Bytes of a String Payload

4712.1.6
String Length Given in Bytes

4812.1.7
Specified Length and End-of-Data Delimiter

4812.1.8
Regexp Length and End-of-Data Delimiter

4812.1.9
End-of-Data Termination

4812.1.10
Scanability

4912.1.10.1
Nests of Specified Length within Delimited Constructs

4912.1.11
Delimited Length

4912.1.11.1
Lexical Analysis and Escape Schemes

5012.1.11.2
Nested Delimited Constructs

5012.1.12
Delimited Length: Terminators

5112.1.13
Delimited Position: Static Initiators

5112.2
Parsing an Optional Element of a Group

5112.3
Simple Type Strategies

5112.3.1
Properties Affecting Length of Simple Types

5112.3.2
Length Methods for Scalar Simple Types

5212.3.3
Conversions

5212.3.3.1
Registered conversions

5212.3.3.2
Conversion Search Algorithm

5312.3.3.3
Conversions and the Position and Length of Representation Data

5312.3.3.4
Simple Types with repType="text", and the Underlying String

5412.4
Sequence Group Parse Strategies

5412.5
Grammar of DFDL-described data

5512.5.1
Delimited Position: Discriminating Initiators

5512.5.1.1
Position by Initiator

5512.5.2
Base Parse Strategy – binary sequence group

5612.5.3
Base Parse Strategy – delimited text ordered-sequence group (G)

5812.6
Array Parse Strategies

5812.6.1
Length Methods for Arrays/Vectors

5912.7
Choice Parse Strategies

5913
Expressions and Dynamic Representation Properties

5913.1
Expression language

5913.2
Expression Language Data Model

5913.3
Location Paths

6013.4
Predicates

6013.5
True and False

6013.6
Property-Valued Expressions

6013.7
Variable-Valued Expressions

6013.8
Regular Expression Matching

6014
Value Calculation, Representation Calculation

6015
Hidden Elements

6116
Variables

6116.1
Variable Definition Syntax

6116.2
Variable Scoping

6116.3
Variable Assignment

6216.3.1
Short Form Syntax for Variable Assignment

6216.4
Reference to Variables

6217
External Control of the DFDL Processor

6318
Completeness and Default-values for Representation Properties

6319
Core Properties Detail

6419.1
Properties that describe physical representation

6419.1.1
Properties common to many physical representations

6619.1.2
Properties specific to physical representation ‘text’

6719.1.2.1
Properties Specific to ‘text’ String Logical Types Only

6719.1.2.2
Properties specific to ‘text’ number logical types only

6819.1.2.3
Properties specific to ‘text’ boolean logical types only

6819.1.3
Properties specific to physical representation ‘binaryInteger’

6919.1.4
Properties specific to physical representation ‘binaryFloat’

6919.1.5
Properties specific to physical representation ‘binaryStream’

6919.1.6
Properties specific to physical representation ‘xml’

6919.1.7
Number Scheme properties

7119.2
Properties independent of physical representation

7119.2.1
General properties

7219.2.2
Properties for text markup

7319.2.3
Properties for aligned data

7419.2.4
Properties for repeating data

7519.2.5
Properties for null and default value handling

7719.2.6
Escape Scheme properties

7920
Detailed Semantics

7920.1
Clarifying Examples - Opaque and HexBinary

7920.1.1
String Type

7920.1.2
HexBinary Type

8020.1.3
Opaque

8121
Support of Uncertainty (Choice and Optional Items)

8121.1
Definitions

8121.2
Speculative Parsing

8321.3
Assertions

8321.3.1
Properties for Assertions

8421.4
Unresolvable points of uncertainty

8421.5
Uncertainty Resolution and Validation

8421.6
Examples of Resolving Uncertainty

8421.6.1
Resolving choices using a discriminating DFDL assertion on the root of the branch

8421.6.1.1
Location Path Example

8521.6.1.2
Variable example

8721.6.2
Resolving choices using a discriminating DFDL assertion on a sub-element

8821.6.3
Parsing an un-resolvable choice

8921.6.4
Resolving a choice using the data type

9021.6.5
Resolving a choice using the data type of a sub-element

9121.6.6
Terminating speculative parsing using a “dummy” dfdl assertion

9222
Default Value, Null Values, and Optional Data

9222.1
Definitions

9322.2
Examples

9522.3
Defaults values on input and output

9622.4
Default Values on input without null values being considered

9822.5
Null Handling on input without default values being considered

10022.6
Using both Default Values and Null Handling on input

10022.7
Default Values on output without null values being considered

10122.8
Null Handling on output without default values being considered

10122.9
Flowcharts for Null and Default Behaviour

10222.9.1
Input flowcharts

10522.9.2
Output Flowcharts

10822.10
Interaction of Properties

10923
Built-in Specifications

10924
Properties Supported by Specialized Annotation Elements

11025
Security Considerations

11026
Contributors

11027
Intellectual Property Statement

11128
Disclaimer

11129
Full Copyright Notice

11130
References

11231
Appendix: About UTF-16 and Unicode Character Codes above 0xFFFF

TBD: Hints to Authors and Editors

· Write in the present tense. We are describing how DFDL IS defined, not how it "Will be" defined someday. Many more people will see this document once DFDL is complete than while it is in formulation.

· Please put in lots of TBDs and/or comments about things unresolved or unclear.
· Please put the letters "TBD" in notes to the authors/editors, not "TODO" or other markers.

· Move discussion of design alternatives and rationale for why things were decided into separate sections which are put in the Appendices in the back matter. Eventually we'll move these out to a separate document for safekeeping.
· Standardize terminology: use 'element' instead of 'field', 'item', 'object etc. Use 'item' as the generalization from element to elements and other things such as model groups.
· Any property that can have empty string as its value must say so in the documentation of the property. E.g., separator.
List of Changes still needed throughout:

Code Examples:

· use style 'codeblock'

· indent 2 spaces per level

· use all spaces, not tabs

· colorize per our standard color scheme to emphasize the important bits. (are we happy with the colorization in the scoping part? I'd propose that as a standard)
· no outline frames around them.

Change discussions of boolean true like "non-null node not equal to FALSE" to just say 'true'. since we have a central discussion of what true and false are for expressions now.

Change all the "Is an error and DFDL Processors must fail" to specify just 'is a schema definition error', or "is a processing error".
1 Introduction

Data interchange is critically important for Grid computing. Grid computing is about getting distributed software and hardware resources to work together. Inevitably these resources read and write data in different formats. General tools for data interchange are essential to solving such problems. Grid computing is also at least partly about high-performance including high-performance data handling. DFDL enables powerful data interchange as well as very high-performance data handling for the Grid.
We envisage 3 dominant kinds of data in the future:

· Textual XML data.

· Binary data in standard formats.

· Data with DFDL descriptors

Textual XML data is the most successful data interchange standard to date. All such data is by definition new, by which we mean created in the XML era. In addition it is usually small data because of the large overhead that XML tagging imposes and the high-cost of compression and decompression. Standardized binary data is also relatively new, and is more reasonable for larger data because of the reduced costs of encoding and more compact size. Examples standard binary formats are data described by modern versions of ASN.1, or the use of XDR. These techniques lack the self-describing nature of XML-data. Scientific formats such as NetCDF and HDF are used in some communities provide self-describing binary data. In the future there may be binary-encoded XML data as there is a w3c working group that has been formed on this subject.
It is an important observation that both XML format and standardized binary formats are prescriptive in that they specify or prescribe a representation of the data. To use them your applications must be written to conform to their encodings and mechanisms of expression.

DFDL suggests an entirely different scheme. The approach is descriptive in that one chooses an appropriate data representation for an application based on its needs and one then describes the format using DFDL so that multiple programs can directly interchange the described data. DFDL descriptions can be provided by the creator of the format, or developed as needed by third parties intending to use the format. That is, DFDL is not a format for data; it is a way of describing any data format. DFDL is intended for data commonly found in all kinds of calculations including scientific and numeric computations as well as the record-oriented representations found in commercial data processing.
DFDL can be used to describe legacy data files, to simplify transfer of data across domains without requiring global standard formats, or to allow third-party tools to easily access multiple formats. DFDL can also be a powerful tool for supporting backward compatibility as formats evolve.

DFDL is designed to provide this flexibility but to admit implementations to achieve very high levels of performance. DFDL descriptions are separable and native applications do not need to use DFDL libraries to parse their data formats. DFDL parsers can also be highly efficient. The DFDL language is designed to admit implementations that use lazy evaluation of formats and to support seekable, random access to data. The following goals are achievable by DFDL implementations:

Density: fewest bytes to represent information content (without resorting to compression). Fastest possible I/O.

Optimized I/O. Applications can write data aligned to byte, word, or even page boundaries and to use memory-mapped I/O to insure access to data content with the smallest number of machine cycles for common use cases without sacrificing general access.

DFDL can describe the same kinds of abstract data that other binary or textual data formats can describe, but can go further and describe almost any possible representation scheme for them, For example, DFDL can provide multiple representations for the same logical data but that are optimized for specific uses. It is the spirit of DFDL to support canonical data descriptions that correspond closely to the original in-memory representation of the data, and also to provide sufficient information to write as well as to read the given format.

1.1 Why is DFDL Needed?

Many people ask why DFDL is needed in an era where there are so many standard data formats available. There are a number of social phenomena in the way software is developed which have lead to the current situation where DFDL is needed to standardize description of diverse data formats.
First, programs are very often written speculatively, that is, without any advance understanding of how important they will become. Appropriately given this situation, little effort is expended on data formats since it remains easier to program the I/O in the most straightforward way possible given the programming tools in use. Even something as simple as using an XML-based data format is harder than simply using the native I/O libraries of a programming language.

At some point however, it is realized that the program is important because either lots of people are using it, or it has become important for business or organizational needs to start using it in larger scale deployments. At that point it is often too late to go back and change the data formats. For example, there may be real or perceived business costs to delaying a deployment of a program for a rewrite just to change the data formats, particularly if such rewriting will reduce performance of the program and increase costs of deployment. (It takes longer to program, but at least it's slower when you are done()

Additionally, the need for data format standardization for interchange with other software may not even be clear at the point where a program first becomes 'important'. Eventually, however, the need for data interchange with the program becomes apparent.
The above phenomena are not something that is going away any time soon. There are of course efforts to much more smoothly integrate standardized data format handling into programming languages. Nevertheless we see a critical role for DFDL since it allows after-the-fact description of a data format.
2 Notational and Definitional Conventions
The key words must, must not, required, shall, shall not, should, should not, recommended, may, and optional in this Working Draft are to be interpreted as described in [RFC 2119]. Note that for reasons of style, these words are not capitalized in this document.

2.1 Failure Types
Herein where the phrase "must be consistent with" is used, it is assumed that a conforming DFDL implementation must check for the consistency and issue appropriate diagnostic messages and fail when an inconsistency is discovered.
There are several kinds of failures that can occur when a DFDL processor is handling data and/or a DFDL schema.

2.2 Schema Definition Error

When the DFDL schema itself contains an error, it implies that the DFDL processor cannot process data because the DFDL schema itself is not meaningful. It may be ambiguous, or contain conflicting definitions. Equivalently, we can say that there is no possible data that conforms to the schema; hence, the schema cannot be meaningful. All conforming DFDL processors must detect all schema definition errors, and must fail and will typically issue some kind of appropriate diagnostic message. The DFDL schema cannot mask or otherwise continue after a schema definition error is detected.
It is desirable, though not required by the DFDL standard, that Schema definition errors be able to be detected given only the schema. That is, these should be statically determined given the content of the schema only.
2.3 Processing Errors: Parse Error, Unparse Error
If a DFDL schema contains no schema definition errors, then there is the additional possibility that when processing data using a DFDL schema, the data itself does not conform to the format described by the schema. In the input direction this is known as a parse error. In the output direction an unparse error.
In addition, using the expression language of DFDL, it is possible to have runtime errors (for example, mathematical underflow or division by zero). These are also processing errors, and can be classified as parse or unparse errors depending on the action of the DFDL processor at the time of the error.

Parse errors can be suppressed by certain uses of the choice construct. See section (TBD: xref to choice). We will use the phrase suppressed parse error to describe this situation. A parse error that is not suppressed in this way is an effective parse error. DFDL does not describe the behavior of parsers when effective parse errors occur.
It is expected that DFDL implementations will provide a variety of mechanisms for dealing with effective parse errors such as means of specifying retry points or means of skipping some data so as to recover from the error in some way.
Note that neither schema definition errors nor validation errors can ever be suppressed in this manner.

DFDL assertions used to discriminate a choice or other point of uncertainty will cause parse errors if any error occurs during their evaluation.

2.4 Validation Errors

Logical validation errors are constraints expressed in XSD and they apply to the logical content of the model.

DFDL processors may provide both validating and non-validating behaviors on either or both of parse and unparse. (A DFDL implementation could support validate on parse, but not support it on unparse and still be considered conforming.)
This implies that validation errors cannot affect the ability of a DFDL processor to successfully parse or unparse data.

The behavior of a DFDL processor when a validation error occurs is not specified by the DFDL language.

An unparse validation error is defined in terms of a parse validation error. Specifically, an unparse validation error occurs when the physical representation being output would generate a validation error on parsing using the same DFDL schema.

Unlike parse errors, the DFDL choice construct can not be used to suppress validation errors.

The following DFDL schema constructs are checked for validation:

· DFDL Assertions (non-discriminating – see note below)
· XSD pattern facet

· XSD minOccurs, maxOccurs for variable-length data, and for fixed length data when the number of occurrences can be determined from markup in the representation.
· XSD minLength, maxLength (note: length should be used for fixed length case)

· XSD minInclusive, minExclusive, maxInclusive, maxExclusive

· XSD enumeration

When a DFDL assertion is used to discriminate a choice or other point of uncertainty when parsing, that assertion, which is called a discriminator, is essential to parsing and it is evaluated irrespective of whether validation is enabled or disabled. It is a processing error, specifically a parse error if any error occurs when evaluating a discriminator during parsing.
3 Glossary

DFDL – Data Format Description Language

Data Item, or Item - Used to describe part of the data described by part of the schema. Can be an element, or can be a part of the data described by the other schema constructs.

Data Element, or Element - Used to describe part of the data described by an element declaration in the schema. We avoid confusion with the schema constructs for describing elements by describing the schema constructs as element declarations.

Byte - The term “byte” herein refers to an 8-bit octet.
DFDL Processor - A program that uses DFDL descriptors in order to process data described by them.

DFDL Schema - an XML Schema containing DFDL annotations to describe data format.

Array - An XML element whose XSD element declaration specifies the potential for it to have more than one occurrence. An optional element (maxOccurs=1, minOccurs=0) is not considered to be an array as described in this document. An array has either minOccurs and maxOccurs both > 1, or has minOccurs=0, and maxOccurs > 1. Of course any given array instance can have any number of elements, including zero elements or exactly 1 element.

Optional Element - this term refers to an element with maxOccurs=1, and minOccurs=0.

Implied XML Schema - The XML Schema that results from erasing all DFDL annotations in an DFDL Schema. An obvious application of DFDL technology is to convert data back and forth between a DFDL-described format and XML data described by the corresponding implied XML schema.

“Rep. Prop.” Or “Rep property” – an abbreviation of “representation property”.
Physical layer – A DFDL Schema adds format annotations onto a XSD language schema. The annotations describe the physical representation or physical layer of the data.

Logical layer - A DFDL Schema with all the DFDL annotations erased is an ordinary XSD language schema. The logical structure described by this XSD is called the DFDL logical layer.

Format Annotations - the syntactic elements by which format information is decorated onto XML Schemas

Format Properties - the attributes on format annotations which specify characteristics of data format. These are distinguished from the control attributes on format annotations which control whether the annotations are to be used as a whole, or the scoping of those annotations over what parts of the XML Schema.

Full Schema - The set of all declarations and definitions in the schema, including all included and imported schemas taken together. This includes both the XSD declarations and definitions, and the DFDL definitions provided in the top-level DFDL annotations.

· Contiguous - An element has a contiguous representation if all parts of its representation are adjacent in the input/output stream. Most simple types have contiguous representations naturally. Groups containing elements that are themselves contiguous are also considered to have contiguous representations irrespective of alignment fill or padding of any kind that exists within the group. Similarly, arrays containing elements that are themselves contiguous are also contiguous.

· Adjacent - Two parts of the input/output stream are adjacent if they are at consecutive addresses.

· Addressable Unit, or Unit - This is the unit of storage that makes up the input or output stream holding the representation of the data. Commonly the units are bits, bytes, or characters.
4 Outline of the Specification

This document is organized as follows:

Introduction section

· What is DFDL?

· Model

Language basics

· syntax

· scoping and context

· expressions

· variables

· layering

Detailed semantics

· properties and conversions

Built-in specifications

5 What is DFDL?

TBD: quick description and very small motivating examples that introduce that a DFDL schema is an XML document, that it is an annotated XSD, and a property or two including 'encoding' since we need that very early in the discussion of DFDL syntax.
5.1 What is DFDL Version 1.0?

Version 1.0 of DFDL is a language capable of expressing a wide array of binary and text-based data formats.

DFDL is capable of describing binary data as found in the data structures of Cobol, C, PL1, Fortran, etc. In particular, it is able to describe repeating sub-arrays where the length of an array is stored in another location of the structure.
DFDL is capable of describing a wide variety of textual data formats. These include TBD:list of examples.
TBD: mixtures. Composition properties. I.e., two formats can be nested, concatenated, etc.
The following topics have been deferred to future versions of the standard:

· Extensibility: There are real examples of proprietary data format description languages that we use as our base of experience from which to derive standard DFDL. However, there are no examples of extensible format description languages; hence, while extensibility is desirable in DFDL, there is not yet a base of experience with extensibility from which to derive a standard.
· Layering: Some formats require data to be described in multiple layers. That is, where one element's contents becomes the representation of another element. DFDL V1.0 allows description of only one layer.
TBD: a sub-section giving scope of DFDL 1.0.

6 DFDL Information Model

When using DFDL, the format of data in a data stream, file, buffer or other is described by means of a DFDL Schema. Data described by DFDL schemas obeys the DFDL Information Model.
The DFDL Information Model is shown in conceptual UML below.
[image: image1.emf]

These types are defined as they are in XML Schema, with exceptions for:
String – In DFDL a string can contain any character codes. None are reserved. (Including particularly, the character with character code 0, which is not allowed in XML documents.)
HexBinary – In DFDL the HexBinary type is used for opaque binary "blob" types. In the DFDL information model, this type is used to represent opaque binary data.

We express the DFDL Information Model for data using a subset of the XML Schema Description Language (XSD). XSD provides a standardized schema language suitable for capturing hierarchical data models such as the DFDL Information Model.
A DFDL Schema is an XML Schema containing only a restricted subset of the constructs available in full W3C XML Schema Description Language. Within this XML Schema, special DFDL annotations are distributed which carry the information about the data format or representation.

A DFDL Schema is a valid XML Schema. However, the converse is not true since the DFDL Information Model does not include many concepts that appear in XML Schema.
6.1 DFDL Subset of XML Schema

The DFDL subset of XSD is a general model for hierarchically-nested data. It lacks the XSD features used to describe the peculiarities of XML as a syntactic textual representation of data.

The following lists detail the similarities and differences between general XSD and this subset.

DFDL Schemas consist of:

· standard XSD namespace management

· standard XSD import and include management for multiple file schemas

· local element declarations with optional dimensionality via maxOccurs and minOccurs.

· global element declarations

· complexType definitions

· DFDL appinfo annotations describing the data format

· These simple types: string, float, double, decimal, integer, long, int, short, byte, unsignedLong, unsignedInt, unsignedShort, unsignedByte, boolean, date, time, dateTime, duration, hexBinary
· 'sequence' groups
· 'choice' groups

· simple type derivations
· Reusable Groups: named model groups

· Element references with optional dimensionality via maxOccurs and minOccurs.
· Group references without dimensionality
· xs:any element wildcards
 (Note that the id attribute optional in XSD is required in DFDL)
The following constructs from XML Schema are not used as part of the DFDL Information Model of DFDL v1.0 schemas; however, they are all reserved for future use since the data model may be extended to use them in future versions of DFDL. By reserved we mean that conforming DFDL v1.0 implementations MAY NOT assign semantics to them.
(TBD: need means for an implementation to indicate it is using non-standard extensions?)
· Attribute declarations (local or global)
· Attribute references
· Attribute groups
· complexType derivations

· Union and list simple types
· These atomic simple types: normalizedString, token, Name, NCName, QName, language, positiveInteger, nonPositiveInteger, negativeInteger, nonNegativeInteger, gYear, gYearMonth, gMonth, gMonthDay, gDay, ID, IDREF, IDREFS, ENTITIES, NMTOKEN, NMTOKENS, NOTATION, anyURI

· maxOccurs and minOccurs on non-elements (that is, model groups)

· Identity Constraints
· Substitution Groups

· 'all' groups

· Redefine - This version of DFDL does not support xsd:redefine. DFDL schemas may not contain xsd:redefine directly or indirectly in schemas they import or include.

7 Syntax Basics
Using DFDL, a data format is described by placing special annotations at various positions within an XML schema. This XML schema conveys the basic structure of the data format, while the annotations fill in the detail. Annotations are used to describe aspects such as the file encoding and byte ordering, as well as declaring variables for reference elsewhere, and specifying properties that govern the capabilities of the DFDL processor. A DFDL processor requires these annotations, along with the structural information of the enclosing XML schema, to make sense of the logical data model.

7.1 Namespaces

To distinguish DFDL annotations from other annotations the xs:appinfo source URI http://dataformat.org/
 is used.

The element and attribute names in the DFDL syntax are in a namespace defined by the URI http://dataformat.org/dfdl-1.0. All symbols in this namespace are reserved. DFDL implementations may not provide extensions to the DFDL standard using names in this namespace. The standard and recommended namespace prefix for DFDL is “dfdl” and this will be used throughout this standard to refer to the namespace http://dataformat.org/dfdl-1.0.
The content of the DFDL annotations, that is, the attributes and sub-elements of the DFDL annotation elements, are specified by an XML schema which is described in this document, and available for validation from http://dataformat.org/dfdl-1.0/dfdl.xsd

TBD: someday it will be available there.

TBD: best to make it available for download from a web site, but not actually put it on the web at that location or everyone's processors will be actually probing that web address to try to get it live.

A DFDL Schema contains XML Schema annotation elements which define and assign names to parts of the format specification. These names are defined in the target namespace of the schema where they reside. (They may NOT be qualified to put them in a different namespace than the target namespace.)

A DFDL schema can include or import another schema, and namespaces work in the usual manner for XML schemas. The full schema is the schema including all additional schemas referenced through import and include.
7.2 The DFDL Annotation Elements
DFDL annotations may be positioned wherever annotations are allowed within an XML Schema document. These positions are known as annotation points. When an annotation is positioned at an annotation point, it binds some additional information to the schema element that encloses it. For instance, an annotation could be used to bind a UTF-8 encoding to a userName element. The description of a data format is achieved by correctly binding annotations to the structural elements of the XML schema.

DFDL specifies a collection of annotations for different purposes. These are described in Table 1.

Table 1 - DFDL Annotation Elements

	Annotation Element
	Description

	assert
	Defines an assertion to use for predicate testing to resolve uncertainties such as choice branches.

	defineFormat
	Defines a reusable data format by collecting together other annotations and associating them with a name that can be referenced from elsewhere.

	defineVariable
	Defines a variable that can be referenced elsewhere. This can be used to communicate a parameter from an earlier part of a schema to a later part.

	escapeScheme
	Defines the scheme by which quotation marks and escape characters can be specified. This is for use with delimited text formats.

	format
	Defines the data format properties that apply to part of the logical data models. This includes aspects such as the encodings, field separator, and many more.

	hidden
	Defines a hidden element that appears in the schema for use by the DFDL processor, but is not part of the logical data model described by the schema.

	numberScheme

	Defines the format (scheme?) used for expressing numbers in the logical data model. This includes aspects such as radix, field separators, digit grouping separators, leading or trailing signs, etc.

	property
	Used in the syntax of dfdl:format annotations. See section 8.1.3.

	setVariable
	Sets the value of a variable that has been defined earlier in the schema.

7.2.1 Additional Specialized Annotation Elements

Given the large number of properties, it is useful to have some specialized annotation elements that are variants of dfdl:format but which do not accept all possible representation properties. Instead these accept only the subset of the representation elements that are suitable for the matching annotated XSD construct. DFDL provides these additional specialized annotation elements:

· dfdl:sequence

· dfdl:choice

· dfdl:element

· dfdl:any
These are equivalent to writing a dfdl:format annotation containing the same representation property bindings. See Section 25 for a list of the properties accepted by these annotation elements.
7.3 String Literals in DFDL

A literal string in a DFDL Schema is written in the character set encoding specified by the XML directive that begins all XML documents:

<?xml version="1.0" encoding="UTF-8" ?>

This line must be at the top of the DFDL schema. In this example, the DFDL schema is written in UTF-8, so any literal strings contained in it, and particularly string literals found in its representation property bindings in the format annotations, are expressed in UTF-8.

However, these strings are being used to describe features of text data that are commonly in other character sets. E.g., we may have EBCDIC data which is comma separated. A comma in EBCDIC does not have the same character code as a Unicode comma. However, when we indicate that an item is "," (comma) separated and we specify this using a string literal along with specifying the 'encoding' property to be 'ebcdic-cp-us' then this means that the data is separated by EBCDIC commas regardless of what character set encoding is used to write the DFDL Schema.

<?xml version="1.0" encoding="UTF-8" ?>

....

....

....<dfdl:format encoding='ebcdic-cp-us' separator=","/>

.....

When a DFDL processor uses the separator expressed in this manner, the string literal "," is translated into the character set encoding of the data it is separating as specified by the encoding representation property. Hence, in this case we would be searching the data for a character with codepoint 0x6B (the EBCDIC comma), not a utf-8 or Unicode (0x2C) comma which is what exists in the DFDL schema file.

7.3.1 Hex Escape for String Literals

It is sometimes more convenient to avoid character set translation and just provide the string literal required in hex form so that one can avoid having to figure out what the corresponding character is in the DFDL schema's own encoding to the character code point of interest in the encoding of the data being processed.

This is particularly important for the non-printing characters where the mapping to/from the character set of the DFDL schema may be non-obvious. There is also the potential of the DFDL schema document being in a character set such as US-Ascii that simply can’t represent a character which is in the data. Using hex to describe the actual code point of the character in the data allows DFDL to conveniently get around these limitations.

To support hex embedding, all string literals in DFDL schemas will support this escape sequence:

· %HH ("H" denotes a hex digit). Inserts a single byte directly into the string literal bypassing any character set translation. Both hex digits must be present.

· %% - Inserts a single literal "%" into the string literal. This "%" is subject to character set translation as is any other character.

Using these escape sequences one can create string literals which are a mix of text and hex-specified data.

8 Syntax and Basic Usage of DFDL Annotation Elements

This section describes the syntax of each of the DFDL annotation elements along with discussion of their basic meanings.
8.1 dfdl:format: Putting Formats to Use

A data format can be 'used' or put into effect for a part of the schema by use of the dfdl:format annotation element.

The dfdl:format annotation element is not allowed at the top level of a schema, that is as an annotation on the xs:schema element. However, it can appear as an annotation on any declaration or definition of the schema (element, type, or group) local or global. Here is an example:
<xs:schema ...>

...

 <element name="foo">

 <complexType>

 <xs:annotation>

 <xs:appinfo source=”http://dataformat.org/”>

 <dfdl:format applies="toScope"

 ref=”aBaseConfig”

 repType="text"

 encoding="UTF-8"/>
 </xs:appinfo>

 </xs:annotation>

...everything here will have the specified representation properties ...

</element>

...

</xs:schema>
8.1.1 Attributes of dfdl:format
The dfdl:format annotation element has these special attributes:

'applies' with values 'hereOnly' or 'toScope' - used for scope control. See section 10.5.
'ref' used to reference named formats. See Section 8.2.
All other attributes on dfdl:format annotation elements are representation property bindings. The concept of scoping described in this document in section 10.5 applies only to representation property bindings and to representation properties inherited via the 'ref' attribute (see Section 8.2.1).

8.1.2 Representation Property Binding Syntax: Attribute Form
Within the dfdl:format annotation elements are bindings for representation properties of the form:

 Property="Value"
For example:

repType="text"

 separator=","
The Property is the name of the representation property. The Value is an XML string literal corresponding to a value of the appropriate type.

8.1.3 Representation Property Binding Syntax: Element Form

The representation properties can sometimes have complex syntax, so an element form for representation property bindings is provided as element content within the dfdl:format element. This is provided to ease syntactic expression difficulties:

Element form looks like this:

<xs:schema ...>

 <xs:annotation>

 <xs:appinfo source=”http://dataformat.org/”>

 <dfdl:defineFormat name=”myConfig”>

 <dfdl:format ref=”someOtherConfig”>

 <dfdl:property name='encoding'>utf-8</dfdl:property>

 <dfdl:property name='separator'>\n</dfdl:property>

 </dfdl:format>

 </dfdl:defineFormat>

 </xs:appinfo>

</xs:annotation>

...

</xs:schema>

All representation properties can have their bindings expressed in attribute form or element form. Element form is mostly used for properties that themselves contain the quotation mark characters and escape characters so that they can be expressed without concerns about confusion with the XSD syntax use of these same characters.

It is a schema definition error if the same property is expressed both as an attribute and using a ‘dfdl:property’ sub-element of a format annotation.

There are also some representation 'properties' which always need element-based syntax. For example, see Section 20.2.6 Escape Scheme properties.

The dfdl:format 'applies' and 'ref' attributes, must be expressed as attributes since they are not representation properties.

8.1.4 Short Form Syntax for Format Annotations
To save textual clutter, a short-form syntax for format annotations is also allowed. Non-native attributes are examined by the DFDL processor. Those which correspond to the QNames of built-in (tbd: or user-declared) DFDL properties are assumed to be equivalent to specific DFDL long-form annotations.

For example the two forms below are equivalent. The first is a short-form of the second:

<xs:element name="foo">

 <xs:complexType>

 <xs:sequence dfdl:separator="\t" >

 ...

 </xs:sequence>

 </xs:complexType>

</xs:element>

<xs:element name="foo">

 <xs:complexType>

 <xs:sequence>

 <xs:annotation><xs:appinfo source=”http://dataformat.org/”>

 <dfdl:format separator="\t" />

 </xs:appinfo></xs:annotation>

 ...

 </xs:sequence>

 </xs:complexType>

</xs:element>

Another example:.

<xs:element name="foo" type="xs:int" maxOccurs="unbounded"

 dfdl:repType="text"

 dfdl:occursSeparator=","/>

<xs:element name="foo" type="xs:int" maxOccurs="unbounded">

 <xs:annotation><xs:appinfo source=”http://dataformat.org/”>
 <dfdl:format repType="text" occursSeparator=","/>

 </xs:appinfo></xs:annotation>

</xs:element>

Note that short form syntax can be used not only for representation property bindings, but also for the ‘applies’ and ‘ref’ special attributes.

8.1.5 Empty Bindings

Setting a representation property's value to the empty string doesn't remove the setting, but sets it to the empty string value. If a property is found in the context and the empty string is the value, that halts the search for the value and the returned value of the binding is the empty string value.

This is only legal for some string-valued properties. For example, in delimited text representations, it is sensible for the separator to be defined to be the empty string. This turns off use of separator delimiters. For other string-valued properties, it is a schema definition error to assign them the empty string value. For example the character set encoding property cannot be set to the empty string.
8.2 dfdl:defineFormat - Reusable Data Format Definitions

One or more dfdl:defineFormat annotation elements can appear within the annotation children of the xsd:schema element. The dfdl:defineFormat elements may only appear as annotation children of the xs:schema element.
The order of their appearance does not matter, nor does their position relative to other non-annotation children of the xsd:schema element.
Each dfdl:defineFormat has a required name attribute and an optional baseFormat attribute.
The construct creates a named data format definition. The value of the name attribute is of XML type NCName. The format name will become a member of the schema’s target namespace. These names must be unique within the namespace. Top level defined formats are added to the DFDL
 processor context using their namespace-qualified names (QNames) as the identifiers.

If multiple format definitions have the same 'name' attribute, in the same namespace, then it is a schema definition error.
Each dfdl:defineFormat annotation element contains other format annotation elements as detailed below.

Here is an example of a format definition:

<xs:schema ...>

 <xs:annotation>

 <xs:appinfo source=”http://dataformat.org/”>

 <dfdl:defineFormat name=”myConfig”

 baseFormat="someOtherFormat">

 <dfdl:format encoding="utf-8"

 separator="\n" />

 </xs:appinfo>

</xs:annotation>

...

</xs:schema>
Besides the dfdl:format annotation element, a dfdl:defineFormat annotation can also contain any of the other DFDL annotation elements for purposes of giving a reusable name to a collected consistent set of definitions.
A dfdl:defineFormat serves only to supply a named definition for a format for reuse from other places. It does not cause any use of the representation properties it contains to describe any actual data.

The contents of the defineFormat element use restricted forms of the dfdl:format annotation elements which provide representation properties. The restrictions prohibit use of the 'ref' attribute and the 'applies' attribute.
8.2.1 Inheritance for dfdl:defineFormat

A dfdl:defineFormat declaration can inherit from another named format definition by use of the 'baseFormat' attribute. This allows a single-inheritance hierarchy which reuses definitions. When one definition extends another in this way, any property definitions contained in its direct elements override those in any inherited definition.

Conceptually, the baseFormat inheritance chain can be flattened and removed by copying all inherited property bindings and then superseding those for which there is a local binding. Throughout this document we will assume baseFormat inheritance is fully flattened. That is, all baseFormat inheritance is first removed by flattening before any other examination of properties occurs.
8.2.2 Using/Referencing a Named Format Definition

A named, reusable, format definition is used by referring to its name from a dfdl:format annotation using the 'ref' attribute. For example:

<dfdl:format applies="hereOnly" ref=”reusableDef" encoding="ebcdic-cp-us" />

The behavior of this format definition is as if all representation properties defined by the named format definition were instead written directly on this dfdl:format annotation; however, these are superceded by any representation properties that are defined here such as the encoding property in the example above. The scope control ‘applies’ attribute controls the scoping of the combined set of property definitions.
8.3 The dfdl:assert Annotation Element

TBD.

8.4 The dfdl:escapeScheme Annotation Element

TBD.

Note that the name attribute is a NCName (uses target namespace of the schema).

The ref attribute is a QName.

8.5 The dfdl:hidden Annotation Element

TBD.

8.6 The dfdl:numberScheme Annotation Element

TBD. can these be named and reused? If so the usual NCName and target namespace for name and QName for ref apply.
8.7 The dfdl:defineVariable Annotation Element
TBD.

Note the name attribute is a NCName. (Uses target namespace of schema.)
8.8 The dfdl:setVariable Annotation Element

TBD.

Note the name attribute is a QName.

9 Scoping Rules

This section describes the rules that govern the scope over which DFDL annotations apply. The aim is to summarize these rules concisely, while more detailed examples are provided in the supplementary document, [Examples of the DFDL Scoping Rules].

The scope over which a DFDL annotation applies is defined using the applies attribute of a DFDL annotation element. The example below shows the scope being defined for a dfdl:format annotation:

<xs:annotation>
 <xs:appinfo source=”http://dataformat.org/”>
 <dfdl:format applies="toScope" separator=";" />
 </xs:appinfo>
</xs:annotation>

The applies attribute can take one of two values:

· hereOnly - the annotation applies to the annotated construct but not to any contained or referenced constructs.

· toScope - the annotation applies to the annotated construct and to any contained or referenced constructs.

9.1 Annotation Positioning

As described in Section 7, DFDL annotations are positioned at annotation points within a DFDL schema. The table below shows the validity of each annotation point for annotations that apply hereOnly and toScope.

	Annotation Point
	Applies

	
	hereOnly
	toScope

	Schema declaration
	(Invalid
	(Invalid

Only top level defining forms (e.g., dfdl:defineFormat) can appear at top level of the schema.

	Element declaration
	(Valid
	(Valid

	Element reference
	(Valid
	(Valid

	Complex type declaration
	(Invalid
	(Valid

	Sequence declaration
	(Valid
	(Valid

	Choice declaration
	(Valid
	(Valid

	Group reference
	(Valid
	(Valid

Since an annotation that applies toScope is inherited by any contained or referenced constructs, the same meaning can often be expressed using various annotation points. The example below shows three equivalent annotation points for a toScope annotation. In each case, the annotation applies to both contained constructs: title and pages.

<xs:lement name=”book”>
 <!-- Point A -->
 <xs:complexType>
 <!-- Point B -->
 <xs:sequence>
 <!-- Point C -->
 <xs:element name="title” type=”xs:string”/>
 <xs:element name=”pages” type=”xs:int”/>
 </xs:sequence>
 </xs:complexType>
</xs:element>
In contrast to this, the meaning of an annotation that applies hereOnly is always altered if the annotation point is changed. Such an annotation is invalid for annotation points A and B from the previous example, because there are no local constructs for the annotation to apply to. Point C, on the other hand, is valid for defining annotations that are relevant to the surrounding sequence.

The example below shows two further annotation points. Positioning an annotation that applies hereOnly at point D would mean that it applied to the title element only, while positioning at point E would mean it applied only to the pages element.

<xs:element name=”book”>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="title” type=”xs:string”>
 <!-- Point D -->
 </xs:element>
 <xs:element name=”pages” type=”xs:int”>
 <!-- Point E -->
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:element>
9.2 Annotation Overloading

Annotation overloading takes place when multiple DFDL annotations properties are positioned at the same annotation point. When this occurs, annotations that apply hereOnly take precedence over those that apply toScope. When multiple DFDL annotation properties occur at the same annotation point, those that apply toScope and those that apply hereOnly are combined separately to form two groups. There must not be duplicate properties within either of these groups, and there can be only one use of the ref attribute within each group
. Duplicate properties and multiple ref attributes must result in a DFDL schema definition error.

The example below demonstrates annotation overloading. The format separator annotation property is overloaded on the annotation point for the outer sequence. In this case, the ":" separator value which applies toScope will take precedence and apply to the outer sequence, while the "," separator will be inherited by the inner sequence.

<xs:element name=”book”>
 <xs:complexType>
 <!-- outer sequence -->
 <xs:sequence>
 <xs:annotation>
 <xs:appinfo source=”http://dataformat.org/”>
 <dfdl:format applies="hereOnly" separator=":" />
 <dfdl:format applies="toScope" separator="," />
 </xs:appinfo>
 </xs:annotation>
 <xs:element name="cover” type=”xs:string”>
 <xs:complexType>
 <!-- inner sequence -->
 <xs:sequence>
 <xs:element name=”title” type=”xs:string”>
 <xs:element name=”caption” type=”xs:string”>
 <xs:element name=”author” type=”xs:string”>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name=”pages” type=”xs:int”/>
 </xs:sequence>
 </xs:complexType>
</xs:element>
9.3 Annotation Overriding

Annotation overriding takes place when multiple DFDL annotations for the same property occur at different annotation points. Overriding can only occur between annotations that apply toScope. The general rule is that the most local annotation property takes precedence over any inherited annotation properties. However, there is an important exception to this which is discussed in the Scoping of Element and Group References section.

The example below demonstrates the general case through the overriding of a format encoding annotation property. The ascii format encoding is inherited by the title element, but then it is overridden by the utf-8 format encoding, which takes precedence.

<xs:element name=”book”>
 <xs:complexType>
 <xs:sequence>
 <xs:annotation>
 <xs:appinfo source=”http://dataformat.org/”>
 <dfdl:format applies="toScope" encoding="ascii" />
 </xs:appinfo>
 </xs:annotation>
 <xs:element name=”title” type=”xs:string”>
 <xs:annotation>
 <xs:appinfo source=”http://dataformat.org/”>
 <dfdl:format applies="toScope" encoding="utf-8" />
 </xs:appinfo>
 </xs:annotation>
 </xs:element>
 <xs:element name=”pages” type=”xs:int”/>
 </xs:sequence>
 </xs:complexType>
</xs:element>
9.4 Scoping of Type References

DFDL scoping rules are consistent with the principal of referential transparency, whereby a type reference can be replaced with an in-line copy of the referenced type without altering the meaning. Hence, if an annotation that applies hereOnly is positioned on an element that references a complex type, the annotation does not apply to the referenced type; and conversely, an annotation that applies toScope would also apply to the referenced complex type.

The table below summarizes the rules for the application of annotations to referenced types:

	Referenced Type
	Applies

	
	toScope
	hereOnly

	Simple Type
	(Does apply
	(Does apply

	Complex Type
	(Does apply
	(Does not apply

9.5 Scoping of Element and Group References

The exception to the general case concerns annotations positioned on element references and group references. When this occurs, the annotations on the reference will take precedence over any top-level annotations on the referenced element or group. Consider the mechanism of substituting an element reference declaration with the referenced elements. If annotations are present on both the element reference declaration and the referenced element, they will need to be combined in some way. The rules of DFDL dictate that those on the element reference take precedence over those on the referenced element.

In the example below, the annotation on the element reference specifying a format encoding of ascii takes precedence over the utf-8 format encoding of the referenced element.

<xs:element name=”title” ref="name">

 <xs:annotation>

 <xs:appinfo source=”http://dataformat.org/”>

 <dfdl:format applies="toScope" encoding="ascii" />

 </xs:appinfo>

 </xs:annotation>

</xs:element>

<xs:element name=”name” type="xs:string">

 <xs:annotation>

 <xs:appinfo source=”http://dataformat.org/”>

 <dfdl:format applies="toScope" encoding="utf-8" />

 </xs:appinfo>

 </xs:annotation>

This mechanism provides a way to establish default properties for an element declaration but provide optional overrides to them at the point of use.

9.6 Scoping of Type Derivations
When visiting a derived type (only simple type derivations are allowed in DFDL v1.0) the parser will visit any annotations in the root of the type definition first.

Consider Example 1 below. The comments describe the order in which the annotations are visited. In evaluating testElement1 the property alignment will have the value 16 because this is the last thing to be added to the local context before the type is evaluated. In evaluating testElement2 the property alignment will have the value 64.

<xs:simpleType name="otherNewType">

<xs:annotation>

<!-- Visit this annotation sixth -->

<xs:appinfo>

<dfdl:property name="alignment" value="64"/>

</xs:appinfo>

</xs:annotation>

<xs:restriction base="newType">

<xs:maxInclusive value="5"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="newType">

<xs:annotation>

<xs:appinfo>

<!-- Visit this annotation third and fifth-->

<dfdl:property name="alignment" value="16"/>

</xs:appinfo>

</xs:annotation>

<xs:restriction base="xs:integer">

<xs:maxInclusive value="10"/>

</xs:restriction>

</xs:simpleType>

<xs:element name="root">

<xs:complexType>

<xs:annotation>

<xs:appinfo>

<!-- Visit this annotation first -->

<dfdl:property name="alignment" value="1"/>

</xs:appinfo>

</xs:annotation>

<xs:sequence>

<xs:element name="testElement1" type="newType">

 <xs:annotation>

 <xs:appinfo>

<!-- Visit this annotation second -->

<dfdl:property name="alignment" value="8"/>

 </xs:appinfo>

 </xs:annotation>

</xs:element>

<xs:element name="testElement2" type="otherNewType">

 <xs:annotation>

 <xs:appinfo>

<!-- Visit this annotation fourth -->

 <dfdl:property name="alignment" value="32"/>

 </xs:appinfo>

 </xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>
9.7 Scope Resolution Rules for Format Properties

As a DFDL processor walks the DFDL schema, it maintains the current information about what representation properties are in effect and what values they have by way of the context. The global context contains named sets of property bindings created by the dfdl:defineFormat annotations. A local context contains individual property bindings created by dfdl:format. In processing DFDL we will often need more than one local context with slightly different content in them due to the scoping behavior of the language.
The top level element of the schema and its format annotation are either explicit in the schema, or implicit as described below in section 18.

At this point we have a schema where there is conceptually a distinguished top-level element declaration, and we have a global context, and a dfdl:format annotation which is actually or conceptually on the top level element.

The DFDL processor begins at the top level element and descends over its structure.

At annotation locations, there can be one or multiple DFDL annotations, some with applies="hereOnly", and others with applies="toScope". Hence, each time the DFDL processor encounters a DFDL annotation, it creates two new local contexts associated with the annotated construct.

A local context is created first for all the applies="toScope" annotations. This is called the default local context.

Another local context is created for all the applies="hereOnly" annotations. This is called the specific local context, and it is 'inside' the default local context, that is, it refers to the default local context as a predecessor.

If there is only a single annotation at this annotation location, then only one or the other of the default and specific local contexts will contain property bindings depending on the 'applies' attribute setting. The other local context conceptually exists, but contains no property bindings.

When the annotated schema item is an element declaration with simple type, or a model-group (sequence, all, choice), then the specific local context is used first to obtain representation property values. The new default local contexts are pushed onto a stack in the usual manner as the schema is traversed, each new default local context's property bindings supersede those of the preceding default local contexts.

A property value is determined by looking for it in the default and specific contexts as just described. If a binding for it is found, then that value is used. If not then we move down the stack of default local contexts to the predecessor and look for the binding there, repeating until a value is found.

Note that the global context does not contain individual property bindings, (rather, only named sets of bindings referenced by the 'ref' attributes of dfdl:format annotation elements) so it is not searched.
If no value is found for a property it is a Schema Definition Error.

When the annotated schema item is an element declaration with complex type, then the specific local context (if it exists) is used for the occurrence and other immediate properties of the item. Only the stack of default local contexts is used for the contents inside the complex type.

When the annotated schema item is an element or group reference, then the annotations at the reference and those of the declaration are combined as in section (TBD: Xref element references in scoping section), and then the element reference is treated as if it were an equivalent element declaration.

Consider this example. We'll refer to the lines by number below.

1 <xs:complexType name="ty" dfdl:applies="toScope"

 dfdl:separator=";"

 dfdl:terminator="$" >

2
<xs:sequence dfdl:applies="hereOnly"

 dfdl:separator="!"

 dfdl:terminator="" > <!-- empty string -->
3

<xs:element "a" type="xs:int">

3.5

4

<xs:element "b" type="xs:int">

4.5

5

<xs:sequence dfdl:applies="toScope" terminator="*" >

6

<xs:element name="x" type="xs:string"/>

6.5

7

<xs:element name="y" type="xs:string"/>

8

</xs:sequence>

8.5

9

<xs:element name="c" type="xs:int">

9.5

10
</xs:sequence>

10.5

11 </xs:complexType>

Some data matching the above description might be:

3$!4$!line6data*;line7data**!9$

In the above, let's examine what property bindings are in the specific local context and default local context as we process each element.

	line number
	default local context
	specific local context
	discussion
	data from above example data

	1
	((separator = ";"

terminator="$"))
	nothing
	applies="toScope" means we push a new default local context
	

	2
	((separator = ";"

terminator="$"))
	separator="!"

terminator=""
	applies="hereOnly" so we create a specific local context. When processing the sequence itself, we will use this specific local context.
	

	3
	((separator = ";"

terminator="$"))
	nothing
	element "a" is terminated by "$" because we find terminator in the context.
	3$

	3.5
	((separator = ";"

terminator="$"))
	separator="!"

terminator=""
	we're now between elements of the sequence. This sequence has a specific local context. In that there is a separator, so we use it. In other words, we expect to see "!"
	!

	4
	((separator = ";"

terminator="$"))
	nothing
	element "b" is terminated by "$" like element "a" was.
	4$

	4.5
	((separator = ";"

terminator="$"))
	separator="!"

terminator=""
	Like line 3.5, we expect to see "!"
	!

	5
	new default local context extended with new binding

((terminator="*")

(separator = ";"

terminator="$"))
	nothing
	notice there is no specific local context. So this sequence's separator will come from the default local context. and the default terminator for elements will now be "*"
	

	6
	same

((terminator="*")

(separator = ";"

terminator="$"))
	nothing
	after element "x" we expect its terminator which is "*". This is found in the default local context as the specific local context is empty as we process the element.
	line6data*

	6.5
	same

((terminator="*")

(separator = ";"

terminator="$"))
	nothing
	After the element we expect this sub-sequence's separator which is ";" coming from the default local context.
	;

	7
	same

((terminator="*")

(separator = ";"

terminator="$"))
	nothing
	similarly for element "y" we expect its terminator from the default local context, and then the sequence separator from the sequence's specific local context.
	line7data*

	8
	same

((terminator="*")

(separator = ";"

terminator="$"))
	nothing
	The terminator "*" is in scope for this sequence, so we'll get an additional "*" for termination of the sequence.
	*

	8.5
	pop stack back to

((separator = ";"

terminator="$"))
	separator="!"

terminator=""
	after this sub-sequence we get the separator for the enclosing sequence, which is "!" since at line 2 which is the beginning of the sequence we had a specific local context.
	!

	9
	same

((separator = ";"

terminator="$"))
	nothing
	element "c" is followed by its terminator "$"
	9$

	9.5
	same

((separator = ";"

terminator="$"))
	separator="!"

terminator=""
	no separator since we're at the end of the sequence,
	

	10
	same

((separator = ";"

terminator="$"))
	separator="!"

terminator=""
	terminators is empty string in the specific local context so we don't get another "$" here at the termination of the sequence.

Contrast this with line 8.
	

	11
	nothing
	nothing
	back to whatever context this type was being used in.
	

10 Semantics

We describe the semantics of DFDL in terms of a logical description of how a DFDL parser might proceed to operate on data. Any implementation that provides operations with consistent behavior is valid.

For example, a parser might well use a lazy strategy, and evaluate only the parts of a large source needed by the application. A parser or unparser may also support random access to parts of the data for certain data formats, whereas this specification defines a full parsing of the data.

Also, there are many ways that the processor might be implemented, using efficient data structures, caching, and so on. These details are left to implementations.
A major area left to implementations is error behavior. That is, when an unsuppressed processing error occurs, implementations are free to implement a variety of diagnostic capabilities, and/or recovery strategies which could allow processing to proceed after some special handling of the error situation.
10.1 DFDL Parser and Unparser
A DFDL Parser is an application or code library which can take as input:

· A DFDL Schema

· A data source
It is able to use the DFDL description to interpret the data sources and realize the DFDL Information Model. This logical data model could then be written out (for example it could be realized as an XML text string) or it could be accessed by an application through an API (for example, a DOM-like tree could be created in memory for access by applications).

Symmetrically, there is a notion of a DFDL Unparser. The unparser works from an instance of the DFDL Information Model, a DFDL annotated schema and writes out to a target stream in the appropriate representation formats.

Often both parser and unparser would be implemented in the same piece of code and so we do not always distinguish them. Collectively they may be called the DFDL Processor. The parser and unparser may, of course, be different pieces of code.

10.2 Unparsing Must be Unambiguous

Usually, the behavior of the unparser is symmetric to the behavior of the parser; however, there are cases where the DFDL schema will accept several equivalent representations for the same logical data. In this case it would be ambiguous which of these equivalent representations should be produced by the unparser. The DFDL standard contains representation properties which are used to eliminate this ambiguity. It is a schema definition error if a DFDL schema is being used to unparse data and there is any ambiguity about the representation.
10.3 Parser Specification Overview

The DFDL logical parser is a recursive-descent parser (TBD: citation needed) with guided, but potentially unbounded look ahead that is used to resolve points of uncertainty. (see TBD: xref to section on uncertainty, i.e., choice, and any wildcards) The unbounded look ahead means that there are situations where the parser must speculatively attempt to parse data where the occurrence of a parse error causes the parser to suppress the error, back out and make another attempt.

Implementations of DFDL may provide control mechanisms for limiting the speculative search behavior of DFDL parsers. The nature of these mechanisms is beyond the scope of the DFDL specification which defines the behavior of conforming parsers only on correct data. That is, data that can be parsed without any effective parse errors.
The logical parser recursively descends the DFDL schema beginning with the element declaration of the distinguished root node of the schema. Depending on the kind of schema construct encountered and the DFDL annotations on it, and the pre-existing content of the context, the parser performs specific parsing operations on the data stream. These parsing operations typically recognize and consume data from the stream and construct values in the logical model. For values of complex types, these logical model values may incorporate values created by recursive parsing.

The parser will generally augment the context with information from the schema’s DFDL annotations as it recursively descends. This is done in a manner consistent with the scoping of properties and variables described in Section (TBD: Xref Scoping) 10.5.

When the parser reaches a simple type it updates its context with respect to the local annotation and then attempts to populate the data model with a value of the appropriate type.

10.4 DFDL Logical Parse Function
The logical DFDL parser can be described in terms of a function of several arguments which produces several results. Description of the logical parser in this way, rather than as the more traditional state-machine, facilitates explaining the behavior of the parser when speculating to resolve uncertainty.
We will refer to the logical parser function as P. The signature of P can be written as:

pos1
, val, mem1, rval1
= P(decl, src, pos, ctxt, mem, path, rval)

The arguments to this function are:

· decl: a DFDL Element declaration (from the DFDL schema).

· src: Input stream or source. This is a pre-existing vector of bits..
· pos: Position in the stream (non-negative integer). Units are in bits.
· ctxt: Context. Described below in detail.
· mem: Variable memory. This is allocated when dfdl:defineVariable is encountered, and modified by dfdl:setVariable annotations. Described below in detail.
· path: This is a XPath expression that gives the location within the root value approximation for which the logical value is being parsed.
· rval: Root Value approximation. Abbreviated rval. This is a logical value instance in our data model; however, we augment the data model with a special distinguished marker “unknown” meaning we do not yet know the value. We start parsing with an unknown root value approximation, we end a successful parse returning a complete value instance, i.e., the approximation is exact in that there are no “unknown” markers in it. During parsing some parts of the rval will have been filled in, while others will have the “unknown” placeholder value marking where logical values will appear once subsequent parsing corresponding to those parts is completed. Since the value is partly known and partly marked "unknown" we refer to it as an approximation of the root value. Any sub-tree within the root value approximation can be marked "unknown" even if some parts within it are known. This allows relative paths to work within subtrees that are themselves inside uncertain constructs such as choice groups.
The root value approximation is used to explain the parser behavior when the DFDL expression language is encountered and XPath expressions must be evaluated which refer to other parts of the logical value being created by the parser using relative or absolute XPath expressions. Such expressions may address any element that is reachable via path steps that do not traverse downward past any node that is marked as "unknown". Path steps may move upward past "unknowns", just not downward.
If a downward path step crosses an "unknown" value node, then it is a processing error.

The results produced by the parser function are:
· pos1: Updated position in the input stream.
· mem1: Updated variable memory
· val: Logical value of the element.
· rval1: Updated root value approximation.
From this we see that what we have that is analogous to the “state” of the parser is the variable memory, position in the input stream, and the root value approximation.
The context and path are also “state”, but they are augmented during recursive descent by the parser and those augmentations are always needed only during this downward recursion. They are not needed subsequently once the parser returns upward; hence, they are not returned by the logical parser function.
10.4.1 Context

The context of the logical DFDL parser is a logical store of values with these kinds of content:

· global format definitions – these are the named data formats created by the dfdl:defineFormat annotation. When parsing begins, all the global format definitions are present in this part of the context.
· local context. This contains representation property bindings and variable bindings

· Representation property bindings are added to the local context as dfdl:format annotations are encountered in a manner consistent with the scoping rules given in Section 10.5.
· Variable bindings are added to the context as dfdl:defineVariable annotations are encountered. These map a variable name to a numbered location in the variable memory.

As the parser visits an annotation in a part of the DFDL schema, the annotations can extend the local context.
The local contexts are treated like a stack that follows the DFDL schema tree. When the parser enters a node, N, of the XML Schema tree a local context, c(N), is created for that branch. That local context builds on the local context from N’s parent. Any children of N will construct local contexts built on c(N). When all the children of N have been parsed and the parser leaves node N, then c(N) is destroyed.

Given this stack-like behavior of a context, note that it is possible to examine the local context for the most recent representation property binding for a given property name, where by "most recent" we mean closest to the top of the stack. This is the usual model where more recent representation property bindings take precedence over those deeper in the stack.

However, it is also possible to inquire for the list of all property bindings held in the context for a given property name or even for a set of property names. For example, we might want an ordered list of all the representation property values for the terminator and separator properties.
10.4.2 Variable Memory

The variable memory exists to support description of the dfdl:defineVariable and dfdl:setVariable annotations. A variable is a name that is associated by the local context's variable bindings with a storage tuple in the variable memory.
Specifically, the variable memory contains:

· a counter used to generate locations for new tuples. Initial value is 1.

· an ordered list of locations. Each location contains a tuple of values:

· has-been-set flag. This Boolean is originally false. dfdl:setVariable changes this flag to true.

· has-been-referenced flag. This Boolean is originally false. Evaluation of XPath expression which use the variable value changes the value to true.
· has-value flag. This Boolean is originally true if the dfdl:defineVariable annotation has a default value specified. Otherwise it is false, but is set to true if a dfdl:setVariable annotation is processed.

· typeID. This string is a type identifier taken from the type specified in the dfdl:defineVariable annotation.
· value. This is a typed value, or the distinguished value "unknown". The type of the value must correspond to the typeID. The value is optionally specified in dfdl:defineVariable annotations in which case we refer to it as the default value for the variable.
Each time a dfdl:defineVariable annotation is encountered, the parser captures the current value of the counter from the variable memory. It then creates a new variable memory where the location counter's value is one greater, and where the list of locations has been augmented with a new tuple at the location given by the prior value of the location counter. The tuple is initialized based on the specifics of the dfdl:defineVariable annotation.

In addition, a new local context is created containing a new variable binding which associates the variable's name with the location counter value, thereby associating that variable name with this new tuple in the new variable memory.
Note that the above algorithm insures that each time a dfdl:defineVariable is encountered, a fresh location is initialized for it, and once the local context containing that variable binding goes out of scope, the prior tuple for the variable can no longer be reached.
The flags in the variable memory tuples are interpreted and modified as follows:
	
	before
	after

	
	has-been-set
	has-been-referenced
	has-value
	has-been-set
	has-been-referenced
	has-value

	defineVariable (without default value)
	tuple doesn't exist
	false
	false
	false

	defineVariable (with default value)
	tuple doesn't exist
	false
	false
	true

	setVariable
	false
	false
	false
	true
	false
	true

	
	false
	false
	true
	true
	false
	true (also value changed to new value)

	
	false
	true
	false
	impossible state. The flags cannot get into this configuration.

	
	false
	true
	true
	processing error – set after reference not allowed.

	
	true
	false
	false
	impossible state. The flags cannot get into this configuration.

	
	true
	false
	true
	processing error – double set not allowed

	
	true
	true
	false
	impossible state. The flags cannot get into this configuration.

	
	true
	true
	true
	processing error – double set not allowed

	reference variable (from XPath expression)
	false
	false
	false
	processing error – undefined variable

	
	false
	false
	true
	false
	true (value is returned)
	true

	
	false
	true
	false
	impossible state. The flags cannot get into this configuration.

	
	false
	true
	true
	false
	true (value is returned)
	true

	
	true
	false
	false
	impossible state. The flags cannot get into this configuration.

	
	true
	false
	true
	true
	true (value is returned)
	true

	
	true
	true
	false
	impossible state. The flags cannot get into this configuration.

	
	true
	true
	true
	true
	true (value is returned)
	true

The above table describes a set of rules which might be abbreviated as:

· write once

· no write after the value has been referenced

It is a schema definition error if setVariable or a variable reference occurs and there is no variable binding in the local context.

It is a schema definition error if setVariable provides a value of incorrect type which does not correspond to the type specified by the defineVariable.

It is a schema definition error if a variable reference in an XPath expression is able to return a value of incorrect type for the evaluation of that expression. That is, DFDL including the expressions contained in it, is a statically type-checkable language.
10.4.3 Position and Length

In order to parse data or to write it out, we must be able to determine the position of the data within the data stream, and we must be able to determine its length so that we can extract the representation and convert it into a value or write out the proper representation.

10.4.3.1
Value and Element Start Position, Length, and End Position

Every element declaration of a DFDL schema describing a data value having contiguous representation in the data stream has a representation which can be located within the input or output stream using these quantities:
· element start position

· content start position - always equal to or greater than the element start position.

· content length – content start position minus content end position.

· content end position - always equal to or greater than the content start position.

· element end position – always equal to or greater than the content end position

· element length – element end position minus element start position

The element start position of an element's representation is equal to the end position of the preceding element's representation except when explicit offsets (offset and offsetFrom properties – see Section TBD: Xref to offset/offsetFrom) are used.

10.4.3.2 Dynamic Extent

The dynamic extent of an element is the set of bits in the source found between the element start position and the element end position.

The dynamic scope of an element declaration is the collection of elements and their type definitions which describe the representation data found in the dynamic extent of an element having that declaration.
11 Parsing Rules

We now give the semantics of DFDL in terms of a set of definitions for our logical parse function, P, introduced above.
pos1, val, mem1, rval1 = P(decl, src, pos, ctxt, mem, path, rval)

11.1 Element Declaration

When processing an element declaration P performs these general sub calculations:

· Validates that any annotations are well formed. (Schema Definition Error if they are not.)
· Calculates ctxt1
, and mem1: Extends ctxt with new variable bindings based on any dfdl:defineVariable annotations. mem1 is the new variable memory with a new location tuple corresponding to this variable definition.
· Calculates Sctxt: Extends ctxt1 with new applies='toScope' representation property bindings as described in Section 11.2.

· Calculates Lctxt: Extends ctxt1 with new applies='hereOnly' representation property bindings as described in Section 11.2.

Given the Sctxt and Lctxt, a parse strategy is then selected. A parse strategy consists of a matched set of these items:
· Element Preprocessing rule

· Element Content Processing rule (and optionally sub-rules)
· Element Postprocessing rule

These rules are selected according to the parse strategy selection algorithm described below. Given these rules, the processing then continues with these calculations:
· Calculates pos1, mem2: Performs element general pre-processing. (Handles initiators, alignment, and anything else that affects the position of the representation which is independent of the type of the element.)

· Calculates pos2, val, mem2, rval1: Processes the element content to produce the value and enhance the root value approximation. This processing depends on the type of the element and is described in specific sections below. The Lctxt, Sctxt, pos1, and mem2 from the preceding calculations are available to the element content processing.
· Calculates pos3, mem3: Performs element general post-processing. (Handles terminators, trailing fill bytes, and anything else that affects the end position of the element representation which is independent of the type of the element.)

The parsing of the element declaration completes returning the values pos3, val, mem3, rval1 from the above listed calculations.
11.2 Parse Strategy
Selection Algorithm

A parse strategy is selected by searching for one in the parse strategy list. This is an ordered list of tuples containing:

· A type indicator:

· S – simple type

· G – complex sequence group type (ordered only. See Section TBD: Xref Unordered group rule, for unordered groups)
· C – complex choice group type

· A – Array (maxOccurs > 1 or minOccurs = 0, maxOccurs = 1)

· A guard: this is a Boolean valued expression referring to only the representation property bindings of the Lctxt.

· The parse strategy definition (tuple of pre-processing rule, content processing rule (which can include sub-rules), and post-processing rule)
The search first discriminates on the type indicator which is determined from the element declaration's type. Then the guard is evaluated with representation property values given by the Lctxt. If the guard evaluates to true then the parse strategy in the tuple is selected and used.
If no parse strategy can be found it is a schema definition error.
11.3 General Element Pre-Processing and Post-Processing

The role of pre and post processing is to handle those aspects of processing which do not influence the value, but only the position of the representation, that is, where it begins and ends in the source stream.

11.4 Element Content Processing
In general element content processing involves a logical parsing function named S, G, C, or A.

The signatures of these functions are:

pos1, val, mem1, rval1 = S(def, src, pos, Lctxt, mem, path, rval)

pos1, val, mem1, rval1 = G(def, src, pos, Lctxt, Sctxt, mem, path, rval)

pos1, val, mem1, rval1 = C(def, src, pos, Lctxt, Sctxt, mem, path, rval)

pos1, val, mem1, rval1 = A(def, src, pos, Lctxt, Sctxt, mem, path, rval)

where def is the type's definition or type name in the case of a built-in type. note how the signatures of G, C, and A are identical because they provide for both Lctxt and Sctxt, whereas S provides only Lctxt.
When the element content processing is invoked within the element declaration processing above, the sub calculated Lctxt, Sctxt, pos1, and mem2, and original arguments are available. The element content processing is invoked passing these values as follows, using G as an example:

pos2, val, mem2, rval1 = G(def, src, pos1, Lctxt, Sctxt, mem1, path, rval)

That is, notice that pos1 and mem1 which resulted from element pre-processing, are what is provided to the element content processing.

The details of how each variant of element content processing are performed are given below:
11.5 Element content processing – Simple Types (S)

TBD: lots here, including the whole conversion search thing (reference that section?) and length protocols for the basic types.
TBD: how context is created by combining annotations on a nest of simple type derivations.

TBD: how a conversion is selected.

TBD: how termination works for delimited parsing. I.e., item within a sequence we need to look for the terminator of the item, or if optional, the separator of the group (if we're a middle), or the postfix separator, or the terminator of the group, or if optional, the terminators/separators due to enclosing arrays/sequences.
11.6 Element content processing – Ordered Sequence Groups (G)

When processing an ordered sequence group these general sub calculations are performed:

· Validates that any annotations are well formed. (Schema Definition Error if they are not.)
· Calculates Lctxt1
, Sctxt1, and mem1: Extends Lctxt and Sctxt with new variable bindings based on any dfdl:defineVariable annotations. mem1 is the new variable memory with a new location tuple corresponding to this variable definition. Note that both Lctxt1 and Sctxt1 have the same variable binding.
· Calculates Sctxt2: Extends Sctxt1 with new applies='toScope' representation property bindings as described in Section 11.2.

· Calculates Lctxt2: Extends Lctxt1 with new applies='hereOnly' representation property bindings as described in Section 11.2.

At this point the sub-rules of the element content processing rule are used. In the case of a sequence group there are these sub-rules:
· PRE: sequence pre-processing rule – invoked at the beginning of the sequence processing
· SEP: sequence between-child-elements processing rule – invoked between elements of the sequence
· POST: sequence post-processing rule – invoked after the last child element.
· FIRST: sequence first child rule – recursively parses the first child element.
· MIDDLE: sequence middle child rule – recursively parses middle child elements.
· LAST: sequence last child rule – recursively parses last child elements.
The discussion below assumes exactly 3 children in the sequence. In this case the 6 sub-rules above will be invoked in the sequence PRE, F, SEP, M, SEP, L, POST.

The 6 sub-rules are applied depending on the specific number of children for a specific sequence. The strategy always contains all 6 sub-rules, but a given sequence using that strategy will use the sub-rules it actually needs depending on the number of children present

(TBD: put in the variations for zero, 1 or 2 children, or determine we don't need to. Figure out how to express the loop over all the middle elements for greater than 3.)

Processing then performs the following:
1. Calculates pos1, mem1 = PRE(src, pos, Lctxt2, mem
) (Handles initiators, alignment, and anything else that affects the position of the representation which is independent of the contents of the sequence)

2. Calculates rvalB = rval with the unknown for the current element value replaced by the logical value approximation (unknown, unknown, unknown). The "B" suffix stands for "Before". Note that the unknown for this element value is located within rval at the given path.
3. Calculates pos2, val1, mem2, rval1 = FIRST(decl1, src, pos1, Sctxt2, mem1, path
, rvalB) where decl1 is the element declaration of the first child element.
4. Calculates rval1F = rval1 with the placeholder for the first unknown at the given path location replaced by val1.
5. Calculates pos2F, mem2F = SEP(src, pos2, Lctxt2, mem2). Note how this uses Lctxt2, not Sctxt2. Hence, it has visibility to the applies="hereOnly" annotations.
6. Calculates pos3, val2, mem3, rval2 = MIDDLE(decl2, src, pos2F, Sctxt2, mem2F, path, rval1F) where decl2 is the element declaration of the second child element.

7. Calculates rval2M = rval2 with the placeholder for the second unknown at the given path location replaced by val2.

8. Calculates pos3M, mem3M = SEP(src, pos3, Lctxt2, mem3)

9. Calculates pos4, val3, mem4, rval3 = LAST(decl3, src, pos3M, Sctxt2, mem3M, path, rval2M) where decl3 is the element declaration of the third child element.

10. Calculates rval3L = rval3 with the placeholder for the third unknown at the given path location replaced by val3.

11. Calculates pos4L, mem4L = POST(src, pos4, Lctxt2, mem4) (Handles terminators, trailing padding, and anything else that affects the end position of the representation which is independent of the contents of the sequence)

The result value, val, is created by constructing the value tuple (val1, val2, val3) which is the same as the tuple found in rval3L at the location given by path.
The result returned is then: pos4L, val, mem4L, rval3L.
In summary, the sub-rules of the sequence group strategy for the element are evaluated each seeing the output data from the prior sub-rules.
11.7 Element content processing – Choice (C)
When processing a chocie group these general sub calculations are performed:

· Validates that any annotations are well formed. (Schema Definition Error if they are not.)

· Validates any contained path expressions. If a path expression contained inside a choice alternative refers to any other alternative of the choice, then it is a schema definition error. Note that this rule handles nested choices also. A path that navigates outward from an inner choice to another alternative of an outer choice is violating this rule with respect to the outer choice.
· Calculates Lctxt1
, Sctxt1, and mem1: Extends Lctxt and Sctxt with new variable bindings based on any dfdl:defineVariable annotations. mem1 is the new variable memory with a new location tuple corresponding to this variable definition. Note that both Lctxt1 and Sctxt1 have the same variable binding.

· Calculates Sctxt2: Extends Sctxt1 with new applies='toScope' representation property bindings as described in Section 11.2.

· Calculates Lctxt2: Extends Lctxt1 with new applies='hereOnly' representation property bindings as described in Section 11.2.

At this point the sub-rules of the element content processing rule are used. In the case of a choice group there are these sub-rules:

· ATTEMPT
· CONTENT

Processing works as follows:

1. Calculates res = ATTEMPT(decl1, src, pos, Sctxt, mem, path, rval) where decl1 is the element declaration of the first child element.

2. If res equals true then returns:

a. pos1, val,, mem1, rval1 = CONTENT
(decl1, src, pos, Sctxt, mem, path, rval)

3. If res equals false, then we repeat from step 1 for the next child element declaration.

Notice that because we start from the original mem,, pos, path, rval each time in step 1, it is not possible for variable settings to be communicated from the attempt to evaluate an alternative to any other parsing situation. The ATTEMPT effort is completely isolated. Whether it succeeds or fails, neither the position, nor anything in the variable memory or root value approximation is affected.
11.8 Element content processing – Array (A)

TBD – should we split out optional from array with possibly 2 or more elements.

TBD: discussion here is very similar to ordered sequence group. We have a PRE, FIRST, SEP, MIDDLE, SEP, LAST, POST structure.

11.9 Element content processing – Unordered Groups

The semantics of unordered groups (xs:sequence with dfdl:unordered="true" property) are expressed by way of a source-to-source transformation of the declaration, and by a data transformation on the resulting value.

The source to source transformation turns the declaration of an unordered group into an array element which contains a choice. Each element of the unordered group becomes an alternative element within the choice. The unordered group's separator and terminator become the occursSeparator and occursTerminator of the array. The dfdl:unordered property is dropped.
Schema definition errors are then detected as for choice group types.

Processing then constructs this array by parsing the data.
The post processing then transforms this array of choice type back into the original sequence of non-choice elements. The unordered DFDL property is no longer present. Logically, the value is a sequence. The transformation here is the obvious one where all array elements having the first choice alternative as their value are accumulated into the first child element of the sequence. If there is either no such value or more than one such value, then the first child element must be an array declaration (appropriate minOccurs and maxOccurs) so that it can accommodate the number of values found. The dimensionality of the first element must accommodate the number of values actually found. It is a processing error if it cannot. This algorithm repeats for the array elements having the 2nd choice alternative as their value, and so on until all the choice alternative values have been moved into their corresponding elements/arrays in the sequence group.
11.10 Any Element Wildcard

The "any" element wildcard has different semantics depending on the group context where it is found and the processContents attribute value in the declaration.
The attribute 'id' is required for DFDL.
	context
	processContents value
	

	Ordered Group
	strict (or not specified)
	See section (TBD: xref any element wildcard in ordered group)

	Unordered Group
	skip (or not specified)
	See section (TBD: xref any element wildcard in unordered group)

Any other combinations of context and processContents are not allowed in DFDL 1.0 and are a schema definition error.
11.10.1 Any-Element Wildcard in Ordered Group
Element wildcards occurring in ordered groups are processed by replacing their declarations with equivalent new declarations and then processing these new declarations. The replacement is as follows:
· A new element declaration is created. The name of the element is taken from the 'id' attribute value of the xs:any declaration.
· The type of the new element is a choice.

· The dimensionality of the element is maxOccurs="unbounded"

· The alternatives within the choice are each element references. There is one element reference for each global element declaration in the full schema being processed.

· Any format annotations on the original xs:any declaration are moved onto the new element declaration.

Parsing then proceeds as for the new element declaration the type of which is a choice.

11.10.2 Any Element Wildcard in Unordered Group

In unordered groups, any element wildcards must have the dfdl:initiatorSeparator property specified. They are transformed source-to-source as follows:
· A new element declaration is created. The name of the element is taken from the 'id' attribute value of the xs:any declaration.

· The type of the new element is dfdl:unorderedAnyElementWildcardType
· The dimensionality of the new element is maxOccurs="unbounded"
The definition of dfdl:unorderedAnyElementWildcardType is:

<complexType name="unorderedAnyElementWildcardType">

 <sequence

 dfdl:separator="{ dfdl:property('initiatorSeparator') }"
 dfdl:applies="hereOnly" >

 <element name="initiator" type="string"/>
 <element name="contents" type="string"/>

 </sequence>

 </complexType>

This definition is provided by all DFDL implementations in the standard include/import. This ordered sequence models the syntax of an initiator-tagged element but where the initiator is not known to the schema.
If there is no definition for the dfdl:initiatorSeparator property it is a schema definition error.

The expression language used to obtain the value for the dfdl:separator property is described in section (TBD: xref to expression language).

11.11 Element Reference

An element reference is rewritten into an element declaration while combining any DFDL format annotation elements associated with it as given in Section 9.5. (TBD: xref right?) Parsing then proceeds as for an element declaration.
11.12 Group Reference

A group reference is substituted inline for its declaration while combining any DFDL format annotation elements associated with it as given in Section 9.5. (TBD: xref right?) Parsing then proceeds as for an inline group declaration.
12 Parse Strategies

Specific parse strategies are defined by way of an inheritance hierarchy. Base parse strategies are extended to create more specific parse strategies. The leaves of this inheritance hierarchy are the actual parse strategies which go into the parse strategy search list. Each parse strategy, base or leaf, is named. The list is described by giving the names in list order. (TBD: xref to where in spec the list is.)
An individual parse strategy is for a specific kind of construct, simple type, sequence group, array, or choice. Parse strategies naturally group into families of related parse strategies.

12.1 General Topics within Parse Strategies

12.1.1 Length Protocol
For any element we can determine its length protocol. This cannot be determined from the context of the element alone, but requires analysis of the element's dynamic scope in the schema.

It is a schema definition error if the length protocol of an element cannot be determined.

· The length protocol is typically 'fixed' for binary data primitives
· The length protocol is 'specified' if there is a bounding stored or calculated length which is computed from elements outside the element, or elements which are all at fixed positions inside the element.

· The length protocol is 'regexp' for regular expressions

For all the above we determine the dynamic extent of the element and create a sub-source containing only those bits. Parsing then works against this sub-source.

· A length protocol of 'recurse' means we must parse sub-elements contained within this element one by one to recursively determine its length.

For the above case we parse directly on the provided source bits and determine the dynamic extent by parsing sub-elements.
12.1.2 Alignment

Alignment requirements determine where an element's representation starts in the input/output stream. There are two properties which control the data alignment:

· alignment - an integer 1 or greater and which is a power of 2

· alignmentUnits - bits or bytes

An element's representation is aligned to N units if the address of the first unit of the representation is divisble by N. Address 0 is considered to satisfy all alignment requirements.

For example, if alignment=4, and alignmentUnits='bytes', then the element's representation must begin at 0 or a multiple of a 4 byte address. I.e., 0, 4, 8, 12, 16 and so on.

Optional elements cannot have alignment properties different from the elements that follow them. It is a schema definition error if an optional element has an alignment property different from that of the element following it.

12.1.3 Position by Offset

The properties offset and offsetFrom are used to specify a different element than the previous element from which the element start position is determined.

It is a schema definition error if the DFDL schema does not specify non-overlapping
locations for the elements of the schema. (This implies fixed or fixed-maximum-size elements.)

When offset and offsetFrom properties are used, the offsetFrom property names another element in the schema which we'll call the base element. The element start position of the element having the offset is the element end position of the base element plus the offset.

TBD: offsetUnits = same as lengthUnits?

12.1.4 Character Width

The width of a character
 is the size of its representation in bytes. The calculation of the width of a character uses these properties:

· encoding

· textCharacterSize

· textDBCSonly

Character encodings are themselves either intrinsically fixed or variable width, but this is modified by additional properties.

This table gives the means to calculate the width when the value is fixed.
	encoding charset's width

	fixed, 1 byte (e.g., ASCII)
	fixed, 2 byte (e.g., UTF-16)
	fixed, 4 byte (e.g., UTF-32)
	variable (e.g., UTF-8 or Shift_JIS)

	textCharacterSize
	
	
	textDBCSOnly

	1
	2
	
	
	FALSE
	TRUE

	1
	2
	2
	4
	variable. Min = 1, Max = encoding dependent
	2

We define the term fixed width encoding to mean an encoding and associated other representation properties where the value in the above table is a fixed integer.

The term variable width encoding is the opposite. In a variable width encoding, the characters have a minimum and a maximum size. The maximum depends on the encoding, but is typically either 3 (Shift-JIS), or 4 (UTF-8).
12.1.5 Length in Bytes of a String Payload

For specified-length methods, the payload of a string is the characters making up the value of the string. This excludes any other information needed to determine the length such as the number of bytes taken up by a prefix stored length element.

The table below indicates how to determine the length in bytes for a specified-length string:
	
	Number of Bytes

	encoding, lengthUnits = "characters"
	fixed, 1 byte (e.g., ASCII)
	textCharacterSize
	1
	1 * N

	
	
	
	2
	2 * N

	
	fixed 2-byte (e.g., UTF-16)
	2 * N

	
	
	

	
	
	

	
	
	

	
	fixed 4-byte (e.g., UTF-32)
	4 * N

	
	
	

	
	
	

	
	
	

	
	variable (e.g., UTF-8 or Shift_JIS)
	textDBCSOnly
	TRUE
	2 * N

	
	
	
	FALSE
	Variable

The above table can be summarized into 2 options:

· formula - the length in bytes can be computed from the number of characters by a fixed formula.

· variable-width encoding - the data must be parsed and the bytes and characters counted to determine the length in bytes.
12.1.6 String Length Given in Bytes

When the lengthUnits property is 'bytes', then the specified length of the representation in bytes is obvious, but the number of characters in the string, and the values of those characters must be determined differently. In this case when the above table specifies "formula", there is a formula, given the number of bytes, for determining the number of characters. When the table above indicates a variable-width encoding, then the number of characters can only be determined by parsing the actual data into characters, and counting them. Moreover, this must be done only up until the number of bytes indicated as the length.

When the length in bytes is not a multiple of the fixed character width, then the extra bytes at the end are ignored on input and filled with the byte given by the fillByte property on output.

When the length in bytes includes one or more bytes making up a final fragment of a character in a variable-width character set. Then these additional bytes are ignored on input, and are filled with the character given by the padChar property on output.

12.1.7 Specified Length and End-of-Data Delimiter
When the length of an element is specified (fixed, stored, or calculated) and is in fixed size units, then given the length value and length units we can calculate the subset of the bits from the source which make up the dynamic extent of the element.
In this case we create a sub-source, which contains exactly those bits, and parsing proceeds with respect to that sub source.
This enables the contents of such an element to contain delimited arrays or groups which have optional terminators. That is, they are terminated by end-of-data.
If the length of an element is specified, but is in variable sized units,
(e.g., length in characters, but character encoding is UTF-8 or other non-fixed-width character set), then the dynamic extent must be determined by scanning the data converting it to characters of that encoding, while counting the number of characters. Once the dynamic extent is determined then the sub-source works as described above to enable end-of-data delimiting.
If an element is an array, and the length is specified in 'elements', then parsing does not construct a sub-source. Rather, the array is parsed normally, element by element.
12.1.8 Regexp Length and End-of-Data Delimiter

When the length method of an element is regexp, then a scan is performed to find the match of the regular expression. The usual longest-possible match rule applies. Once this matching data has been determined, then the dynamic extent corresponding to the match is made into a sub-source containing exactly those bits, and then the parsing of the element is done with respect to this sub-source.
This enables the contents of such an element to contain delimited arrays or groups which have optional terminators. That is, they are terminated by end-of-data.
12.1.9 End-of-Data Termination

When there is no final terminator, or it is optional, then delimited data can also be terminated by end-of-data.

If parsing finishes and there is data left-over before end-of-data on the source, it is not an error. This excess wasted data is generally due to alignment (binary) or padding (text) considerations. This excess data is ignored when parsing. Note that when unparsing, the contents of any excess representation bits must be specified by the fillByte and/or padCharacter properties.
12.1.10 Scanability

For regexp length methods, the DFDL schema must describe data which exhibits a property known as scanability.

In this situation, if an element has complex type, then all sub-elements contained in that complex type must be properly specified so that the regexp scanning of their enclosing elements will parse properly.

Scanability places a restriction on all contained structures inside the contiguous representation or dynamic extent of an element of complex type. Specifically:

· encoding doesn't vary - this includes not only the encoding property itself, but also the other properties which modify the encoding (byteOrder for UTF-16 and UTF-32, textDBCSOnly, textCharacterSize)

When representation properties for an element declaration specify a regexp length method, the DFDL processor must check for the scanability property restrictions in the entire dynamic scope of the element's declaration. It is a schema-definition error if the scanability property doesn't hold.

12.1.10.1 Nests of Specified Length within Delimited Constructs

When something has specified length (fixed, or calculated/stored length), we need to count as we parse and in the case where it is also delimited we must also search for the delimiters. The count and the position of the delimiters must be consistent or it is a processing error.

When an element has only a specified length (not delimited), but the element is enclosed within delimited constructs, then delimiter scanning is suspended for the duration of the processing of the specified-length element.

This allows formats to be parsed which are not scanable. (TBD: xref. Scanability). However, this also implies that formats which require scanability cannot nest elements with specified length. This is a limitation on DFDL schema composition. Elements having formats incompatible with scanability cannot be nested inside constructs where scanability is required.

Scanability is required unless the entire dynamic extent of an element can be determined without reference to any delimiter of the enclosing group or array. It is a schema definition error otherwise.
Scanability is required for the entire dynamic extent of any construct where the length is determined by a regular expression match.

When scanability is required, all the alternatives of a choice must be scanable for the choice to be considered scanable.
12.1.11 Delimited Length

12.1.11.1 Lexical Analysis and Escape Schemes

The context contains escape schemes which can be associated with a specific construct's delimiters, or can be inherited generally from higher in the context.
When we search the context to determine the set of delimiters we must scan for when parsing, we also retrieve the associated escape schemes if any.

Lexical analysis (a.k.a., the 'lexer') uses the complete set of delimiters with associated escape schemes to find data and the delimiters which separate it into lexical data between the delimiters.

There are different lexers for different parse strategies.

· lexer that takes length in bytes/bits

· lexer that takes length in characters/charcodes

· lexer that looks for delimiters, taking escape schemes into account
· lexer that looks for a regexp match
12.1.11.2 Nested Delimited Constructs
Nested Delimited Constructs

There are two kinds of terminating delimiters:

· postfix separators (TBD: currently only on arrays)

· terminators

Both of these can be optional. (TBD: can postfix separators be optional? I believe there is no finalSeparatorCanBeMissing though there is a terminatorCanBeMissing property)

This means the parser can encounter a separating or terminating delimiter from an enclosing array or group to indicate the termination of a nested array or group.

The behavior of parsing when it encounters one of these delimiters, that is, one that is defined on an enclosing construct, is to indicate that it found a delimiter of some sort, but to not consume that delimiter when computing the new pos result. That is, the parse function succeeds and returns a new pos, value, etc., but the pos reflects the position where the delimiter begins.

The invariant that this insures is that a parser for any construct consumes its own delimiters and only its own delimiiters.

For example, the parse function for a sequence group which has separators specified will recursively parse the elements it contains; however, if one of those elements' representation is terminated by finding the enclosing sequence group's separator, then that separator will not be consumed, and when the recursive parse unwinds back to the parse function of the enclosing sequence group, the separator will then be consumed by the sequence group's parse function which is prepared to recognize it and advance past it.

This principle works regardless of how deeply nested the constructs are.

Parsing must, however, take into account the complete set of delimiters that it might encounter, along with the escape/quoting schemes that can be specified for them which allow them to appear as content rather than as delimiters.

12.1.12 Delimited Length: Terminators

There are two properties associated with terminators:

· terminator

· terminatorCanBeMissing - Boolean

When an element has a terminator specified, then the terminator defines a pattern that must be found to delimit the length of the element's representation.

On output, the terminator defines a pattern which is written out after the element's value's representation data.

When the terminatorCanBeMissing property is true, then when an element is the last element in a data stream, then on input, it is not a parse error if the final terminator is not found but end-of-data is encountered instead.

For example, if the data is in a file, and the format specifies lines terminated by the newline character (typically LF or CRLF), then if the last line is missing its newline, then this would normally be an error, but if finalTerminatorCanBeMissing is true, then this is not a parse error.

On output the final terminator is always written out.

When an element is optional, then if the element is missing from the data then the terminator will also be missing.

12.1.13 Delimited Position: Static Initiators

Initiators can simply be inter-element matter found before the representation of an element's value. An example of this would be an element which has an initiator of "[", and a terminator of "]". These are called static initiators.

Initiators have a more powerful interpretation when used on elements that are the children of an unordered sequence. These discriminating initiators are described in Section (TBD: xref to discriminating initiators)

12.2 Parsing an Optional Element of a Group

If an initiator is not found, or an enclosing delimiter is found, then the element is not present.

In this case we either produce a value (based on default value, or if nullable, when nullWhenMissing property is present), or we return from the parse with no value. (That is, we return a distinguished special value indicating no value for the element. If the element is not present, then the pos does not advance.
12.3 Simple Type Strategies

12.3.1 Properties Affecting Length of Simple Types

Several DFDL representation properties are used to determine the length of an element of simple type:

· repType

· lengthKind

· length

· lengthUnits

· encoding

· textCharacterSize

· storedLengthIncludesPrefix

· lengthOfPrefix

· initiator (and TBD: initiator tag separator)

· terminator

Depending on the values of these properties, one of a number of means of determining the length of an element's representation can be determined.

12.3.2 Length Methods for Scalar Simple Types

There are several fundamentally different methods by which the length of an element of simple type is determined:

· specified: This category includes fixed, stored, and computed length - the length is specified using the logical value of other data in the representation, or is found directly in the Schema as an integer.

· delimited - the length is determined by scanning the representation) for a non-data pattern.

· regexp - The length is determined by scanning the data and using all data that matches a pattern.

In specified-length methods, we are able to determine an integer value which gives the number of units in the length of the element. The property lengthUnits tells us whether the integer gives the number of bits, bytes, or characters (note that lengthUnits='elements' is for arrays only).

In delimited methods we must look at the data for indications of the end of the element. A simple comma separating the elements of a sequence is an example of a delimiter for a simple type element that is within that sequence.

In regexp we consume data matching a regular expression to determine the length. The usual longest-possible match rule applies.

12.3.3 Conversions
Conversions form the core of scalar type strategies. A chain of conversions is found by the parser to convert the representation into the scalar type needed.

For example, converting from bytes to floats is a conversion. The definition of a conversion provides the following information:

· A name (e.g. bytesToInt)

· An input type (e.g. byte)

· An output type (e.g. int)

· A guard expression – the conversion may be chosen by the parser for use in the conversion chain being assembled if and only if this evaluates to true. (TBD: Note: call outs to black-box functions should be possible). The guard CAN ONLY refer to data independent elements in the context. This is to ensure that any search required to calculate which conversions apply at any point in the document can be done once in advance of any data being processed i.e. these choices can be handled at “compile” time.

· A list of the named properties that the conversion will use from the context.

12.3.3.1 Registered conversions

The context logically holds an ordered list of registered conversions. For example:

<bytesToInt input=”xs:byte” output=”xs:int” guard=“$repType=’binary’” uses="byteOrder"/>

<bytesToString input=”xs:byte” output=”xs:string” guard=“$repType=’binary’" uses="encoding"/>

12.3.3.2 Conversion Search Algorithm

In this section we look at how the parser normally selects a conversion. Note that the algorithm given is intended to describe the logical behavior of the DFDL parser. A real implementation is at liberty to choose any implementation that is consistent with these semantics.

If no conversion can be found it is a schema definition error. (Note: This is not a processing error, since the DFDL processor is in principle able to prove that the error cannot occur just by examining the DFDL schema, without processing any data.)

When searching for a conversion the parser will (logically) examine all the registered conversions in the order they appear in the conversions list. It will select the first element that can output its target type and for which the guard XPath is satisfied. If the conversion will accept the current source stream type it is applied and the search ends.

If the chosen conversion will not accept the current source stream type then the input type it requires is made the new target type and the parser begins the search from the top.

In this way the parser builds up a sequence of conversions (byte to String followed by String- to Integer) that match end to end like dominoes.

[image: image2.emf]

Integer String (tokens)

String (tokens) String (1 - char)

String (1 - char) Byte

input stream

populate document

The parser MAY NOT apply the same conversion twice in the same sequence of conversions (i.e. the search may not loop).

TBD: limiting the length of the conversion chain: If the parser builds a sequence of conversions longer than $MAX_CONVERSION_LENGTH (a settable parameter in the context) then it is a schema definition error.

12.3.3.3 Conversions and the Position and Length of Representation Data

Conversions share a set of behaviors for determining the position and length of the representation of an element within a stream.

TBD: What this is about is a inheritance hierarchy that we need to show for the behavior of the various conversions. I.e., that a big set of conversions are binary and they use alignment, but not charset, etc. This is also where everything about any/choice and defaults/optionals/nulls goes. These are all uniform behaviors that apply over many logical types to cover many representations with uniform behavior.

12.3.3.4 Simple Types with repType="text", and the Underlying String

For any simple type, when the repType is text, DFDL defines first the underlying string, as a conversion from the lower-level representation to a string. A second conversion describes the conversion from string to value. (For output the process is reversed. A conversion describes how to convert from value to string, and a second conversion converts the string to that string's representation.)

In the case of simple type 'string', the value and the underlying string are one and the same. That is, there is only a single conversion.

12.4 Sequence Group Parse Strategies

12.5 Grammar of DFDL-described data

Data that is described by a DFDL schema has a representation which can be described by this quasi-grammar.

· BSTR: A String (ultimately of bits) - Specified based on character set encoding property. Specified as a string in the schema which can be literal or calculated via an expression.

· BITS: Binary Bits - given without respect to character set encoding. Not specified as a string in the schema.

· INIT = BSTR | BSTR ITS : Initiator - value is given by the initiator representation property, encoding, repType, and optionally ITS definition

· ITS = BSTR: Initiator Separator - value given by the initiatorSeparator property, encoding, repType

· TERM = BSTR: Terminator - value given by the terminator property, encoding, repType

· SV = BITS: Simple value - value depends on type and properties for controlling the representation of that type (lots of properties here. Everything from repType to zoned decimal stuff.)

· AP = BITS: Alignment Padding - value given by the alignment and alignmentUnits properties along with the current unaligned starting position. On unparse, the AP is filled with data from the value of the fillByte property.

· SKB = BITS: Skip bytes before – value given by the leadingSkipBytes property

· SKA = BITS: Skip bytes after – value given by the trailingSkipBytes property

Any Element

· E = AP SKB INIT V TERM SKA

Any Value

· V = SV | GV | ARV

Sequence Group Value where [] means optional
and '*' means zero or more repetitions.

· GV = AP SKB GI [SB F [SI [[M SI]* L]] SA] [GT SKA]

· F = E: First Group child

· M = E: Middle Group Child

· L = E: Last Group Child

· GI = BSTR: Group Initiator – given by initiator property

· GT = BSTR: Group Terminator - given by terminator representation property and whether GT is required or optional is controlled by finalTerminatorCanBeMissing property

· SB = BSTR: Separator Before - if separatorKind='prefix' then the value of the separator property, otherwise zero length.

· SI = BSTR: Separator Inside - the value of the separator property

· SA = BSTR: Separator After - if separatorKind='postfix' then the value of the separator property, otherwise zero length.

Array Value

· ARV = [E [OSI E]]

· OSI = BSTR: Occurs Separator Inside - value of the occursSeparator property

In any given data, depending on the representation, many of the above grammar terminals will be of size zero. For example, in binary data where lengths are either fixed or for variable-length items lengths are stored in the data, then one would expect that INIT, ITS, TERM, SI, SB, SA, GI, GT, OSI in the above productions would all be size zero. I.e., they do not contain any bits. However, since binary data often makes use of alignment and also sometimes skips unused bytes, one would expect that AP, SKB, and SKA might be non-zero in size. In contrast to this, for a delimited text data format, one would normally expect AP, SKB, and SKA to be of size zero. (Note: for multi-byte character encodings AP might not be empty in all cases.)
TBD: note that alignment of optional elements is constrained. The element following an optional element must have the same alignment as the optional element. This is true regardless of whether the following element is a peer within a sequence or not.

12.5.1 Delimited Position: Discriminating Initiators

Initiators can simply be inter-element matter found before the representation of an element's value. An example of this would be an element which has an initiator of "[", and a terminator of "]". These are called static initiators.

Initiators have a more powerful interpretation when used on elements that are the children of an unordered sequence. (That is, a sequence with representation property unordered="true"). In this case the initiators are called discriminating initiators. All children of an unordered sequence must have initiators specified. The initiators of all the children elements must be distinct. It is a schema-definition error if these conditions are not met. The position of an element is determined by examining the representation data stream for an initiator. Once an initiator is found the corresponding child element is parsed, which consumes any child-element terminator and any separator specified for the sequence itself. The element start position of the child element begins immediately after the initiator, and any specified initiatorSeparator. It is a parse error if no initiator data matching the initiator for a child element of the sequence is found.

This implies that the child elements of an unordered sequence can repeat, thereby building up arrays of the elements.

12.5.1.1 Position by Initiator

Elements which are the direct children of unordered sequences have their positions determined using a delimiter called an initiator. In this case the element does not have a simple relationship between its start position and the position of another peer element within the sequence. Rather, the position of the initiator must first be determined and the position of the element is derived from that.

12.5.2 Base Parse Strategy – binary sequence group
This strategy is for sequences of binary data.

Type category = G.

Guard: repType==binary, lengthKind==‘fixed’, ‘schemaFacet’, ‘xpath’, or ‘prefixed’
Sub-Rules:

PRE: The PRE sub-rule is responsible for AP SKB GI and SB.
· GI, SB are zero size. The initiator property and separator property are ignored if present. (TBD: Some DFDL implementations may want to issue warning diagnostics whenever lengthKind is not 'delimited', but the delimiter properties like initiator, terminator, separator are defined.)
· AP is computed from the alignment and alignmentUnits properties in the ctxt and the pos. The mem parameter is used if expressions are evaluated since alignment property can be an Xpath
that can refer to variables.

If alignment or alignmentUnits are undefined or not well formed it is a schema definition error.

Any error in evaluation of an expression causes a parse error.
· SKB
 is computed from the leadingSkipBytes property in the ctxt. Zero size if property is undefined.
· The return pos1 is length of AP plus length of SKB plus the original pos.
· The return mem1 = mem.

SEP:
· The SI is zero size.
· The return mem1 = mem

· The return pos1 = pos

POST: The post-processing is responsible for SA, GT, and SKA
· SA, GT are zero size. (see note on PRE about warnings).
· SKA
 is computed from the trailingSkipBytes property in the ctxt. Zero size if trailingSkipBytes is undefined.
· The return pos1 is length of SKA plus the original pos.

· The return mem1 = mem.

F: recursively calls the logical parser P on same arguments
. Returns its results.
M: recursively calls the logical parser P on same arguments. Returns its results.
L: recursively calls the logical parser P on same arguments. Returns its results.
12.5.3 Base Parse Strategy – delimited text ordered-sequence group (G)
This strategy is for ordered sequences of text data that is delimited.

Type category = G.

Guard: repType==text, lengthKind==‘delimited'

Sub-Rules:

PRE: The PRE sub-rule is responsible for AP SKB GI and SB.

· SKB is zero size. The leadingSkipBytes property is ignored if present.

· GI: If initiator is not defined then GI is zero size. If the initiator property is defined, its value is converted to bits
by use of the encoding property.

· If the encoding property is not defined it is a schema definition error.
· If any expression evaluation error occurs it is a parse error.

· SB: if separatorKind is defined and equal to 'prefix', then SB's value is the value of the separator property converted to bits by use of the encoding property.

· Same error checking.

· AP is computed depending on a number of properties (See Section (TBD: xref to Character Width). AP can be of length up to 31 bits. When the character set encoding is fixed width, and the alignment property (and alignmentUnits property) specify 1 byte, 2 byte, or 4 byte alignment then AP can be non-zero size depending on the incoming pos. If the character set encoding is variable width then AP is of length up to 7 bits, as variable width characters can only be 1-byte aligned.
· The source stream is inspected for a GI match beginning at pos + AP. If the match is not found it is a parse error.
· The source stream is inspected for a SB match beginning at pos + AP + length(GI). If the match is not found it is a parse error.

· The return pos1 is length of AP plus the length of GI plus the length of SB.

· The return mem1 = mem.

SEP:

· The SI value is the value of the separator property converted to bits by use of the encoding property.
· The source stream is inspected for a SI match beginning at pos. If the match is not found it is a parse error.

· The return mem1 = mem

· The return pos1 = pos

POST: The post-processing is responsible for SA, GT, and SKA
· GT: If terminator is not defined then GT is zero size. If the terminator property is defined, its value is converted to bits
by use of the encoding property.

· If the encoding property is not defined it is a schema definition error.

· If any expression evaluation error occurs it is a parse error.

· SA: : if separatorKind is defined and equal to 'postfix', then SA's value is the value of the separator property converted to bits by use of the encoding property.

· Same error checking.
· SKA
 is zero size. The trailingSkipBytes property is ignored.
· The source stream is inspected for a SA match beginning at pos. If the match is not found it is a parse error.

· The source stream is inspected for a GT match beginning at pos + length(SA). If the match is not found it is a parse error.

· The return pos1 is length of GT plus the length of SA.

· The return mem1 = mem.
F: Processes the first child element of the sequence group.
· TBD: parse while scanning for delimiters. This sequence group contributes the SI separator to the list of delimiters which might be found to end the contained element. If we find the SI separator, we do not consume it. (That happens in the SEP sub-rule). If we delimit the end of the element using its own terminator, then we do consume that terminator. We could also determine the end of the element using another length scheme (stored length, or fixed length or regexp). However, note that scannability must hold. Also note that our scanning for delimiters must take the escape schemes into account. Note that if we encounter, say, an unescaped separator, not of this group, but of an enclosing group or array, then it is a parse error.
M: TBD
L: TBD
12.6 Array Parse Strategies

TBD

12.6.1 Length Methods for Arrays/Vectors

The length of an array/vector can be determined by several methods.

· specified: This category includes fixed, stored, and computed length - the length is specified using the logical value of other data in the representation, or is found directly in the Schema as an integer.

· delimited - the length is determined by scanning the representation) for a non-data pattern.

· regexp - The length is determined by scanning the data and using all data that matches a pattern.

· value delimited - the length is determined by examining the logical data for a logical value pattern that indicates the end of the logical data.

In specified-length methods, we are able to determine an integer value which gives the number of units in the length of the array. The property lengthUnits tells us whether the integer gives the number of bits, bytes, characters, or elements. Note that the length of an array can be given in bits, bytes, or characters, in which case the number of elements must be determined by calculating the number of elements that fit in that much representation data.

In delimited methods we must look at the data for indications of the end of the array. A simple semi-colon character terminating the array is an example.

In value-delimited methods, we must first parse data from representation to logical value, and then examine the logical value for the appropriate markers. A negative number value to mark the end of an array of numbers is an example.

In regexp we consume data matching a regular expression to determine the length. The usual longest-possible match rule applies.

The length of an array optionally uses these additional properties:

· occursSeparator
If an element describes an array, that is, it has multiple occurances, then there is no notion of the array itself independent of its contained elements. Hence, it cannot have its own initiator, terminator, or alignment.
12.7 Choice Parse Strategies

TBD
TBD: note that alignment of different alternatives can only be different if the discriminator is based on data outside of the choice, i.e., prior elements. Otherwise all must have same alignment.

13 Expressions and Dynamic Representation Properties

It is possible for a representation property to be determined at runtime from the data. For example, in some data formats, the delimiter to be used to separate elements is stored as a value of an element of a header record. This allows the delimiter to vary from one data set to another so as not to interfere with characters used in the data.

Reference from DFDL annotations into the data is done through an expression language. Expressions in this language appear as the values of representation property bindings using a syntax which encapsulates the expressions in curly brace characters ‘{“ and ‘}’.

· Single braces are interpreted as surrounding an expression which will be evaluated to obtain the property value. Single braces should be matched.

· Double braces are used to insert literal braces and do not have to be matched.

The expression language is used for specifying paths to other element values and parts of the data as well as to compute values.
Some representation properties, such as inputValueCalc are defined to always have an expression as their value. In this case the single-braces are optional.

TBD: is this a good idea or not. They can certainly be optional for expressions that are literal constants, e.g., allowing you to write "5" instead of "{5}", but should we allow omission of the curly braces in general for expression-valued properties?

13.1 Expression language
The DFDL expression language is XPath 2.0. The full XPath 2.0 language has more expressive power than we need in DFDL. Specifically, since DFDL uses only a subset of XML Schema and has a simpler information model, only some XPath expressions will be meaningful in DFDL Schemas.
13.2 Expression Language Data Model

XPath can handle seven different types of nodes, however, in DFDL our XPath expressions only handles one type of node: the Element node. This obviates the need for Path Steps based on the type of node. The expression /a/child::text() is not meaningful in a DFDL schema. The only node test supported is the node() test, which matches any node type in XPath.

The processing-instruction(), comment(), and text() node tests are not valid in DFDL.
13.3 Location Paths

Location Paths are the most frequently used XPath construct. Location Paths are used to select a set of nodes from the DFDL document.

Location Paths consist of one or more Path Steps separated by the ‘/’ character. They may be absolute or relative.

TBD: In DFDL the node sets returned by an XPath expression must be either empty, or must return exactly 1 node. (?? Are there cases where we need multiple return nodes. ?? Efficiency considerations are what drive the issue) .

13.4 Predicates

Path Steps are allowed to have Predicates. DFDL also supports the predicates syntax on Path Steps, but these are used (TBD: only?) to index arrays. A parser error will be reported if a Path Step with a Predicate does not evaluate to an array element. This means that numeric access to the children of sequences is not allowed in DFDL Schemas.
13.5 True and False

An expression is true if the expression evaluates to a non-Null value that is not FALSE. The expression is false if it evaluates to an empty node list or to FALSE.

13.6 Property-Valued Expressions

A special XPath function dfdl:property() can be called from XPath to obtain the value of a DFDL property binding.

TBD: If a property has an expression containing this call, and it is defined higher up in the scope, when is the expression evaluated? Once at time of definition? Each time the value of the property is requested? What is the current position in the schema of the parser at the time of this expression’s evaluation.

TBD: XPath function dfdl:allProperties(listOfPropertyNames) that can be called to obtain a list of all values for all the properties provided on the listOfPropertyNames argument. Needed for termination in delimited group/array semantics.
13.7 Variable-Valued Expressions

A special XPath function dfdl:variable() can be called from XPath to obtain the value of a DFDL variable. See Section 17 for more details on variables.

13.8 Regular Expression Matching
A special XPath function dfdl:regexp() can be called from XPath to return a value which is the content which matches a regular expression.

TBD: arguments? Obviously one is a string which is the regexp. Is there a second “path” argument as well?

TBD: semantics here of where we start searching, and in what stream/source, and how that location in the source is determined.

14 Value Calculation, Representation Calculation

TBD: inputValueCalc and outputValueCalc properties and their use of expressions.
15 Hidden Elements

We can remove an element from the logical data model of the data by simply placing an annotation around it:

<xs:element name="root">

 <xs:complexType>

 <xs:sequence>

 <xs:annotation><xs:appinfo source=http://dataformat.org/" />

 <dfdl:hidden>
 <xs:element name="repeats" type="xs:integer"/>

 </dfdl:hidden>

 </xs:appinfo></xs:annotation>

 <xs:element name="testElement" type="xs:integer "

 minOccurs="0" maxOccurs="unbounded"

 dfdl:repeatCount="../repeats"/>

 </xs:complexType>

</xs:element>
We can refer to the element from inside a DFDL annotation using the same XPath expression that we would have if it were not hidden.

Hidden elements can (typically will) contain the regular DFDL annotations. They are processed using the same behavior as non-hidden elements.

Hidden elements can only appear in the document in places where the element would be legal if it appeared outside the annotation. (This ensures that all XPath references to hidden elements are well defined.)

Hidden elements may appear within the structure of hidden elements.
16 Variables

Variables provide a means for communication within a DFDL schema. A variable is defined in one place of the schema, then set somewhere within the scope of that definition, and referenced elsewhere in the scope.
16.1 Variable Definition Syntax

A new variable is introduced using dfdl:defineVariable:

<dfdl:defineVariable name="EDIFACT_DS" type="xs:string"
 defaultValue="," />
The name of a newly defined variable is placed into the target namespace of the schema. The defaultValue attribute is optional. If not provided then the variable has no default value.

16.2 Variable Scoping

Variables can be defined at any annotation point of the schema except top level. They define the property or variable name over the scope implied by the position of the variable definition.

The definition defines the scope of both the name and the value of the variable. If the variable has a default value, or has been assigned (see setVariable below), then that default value or assigned value can be referenced from anywhere within the scope of the definition.
Variable definitions may be included inside dfdl:defineFormat annotations. In this case the definitions are put into use by the 'ref' attribute of the dfdl:format (or equivalent) annotation.

Normally variable definitions are introduced at a scope covering a sequence group. This is due to the single-assignment rule for variables which is described further below.
16.3 Variable Assignment

Variables differ from properties in that variables get their values either by default, or by assignment using the dfdl:setVariable annotation. For example:

<element name="ds" type="string">

 <annotation><appinfo ...>

 <dfdl:setVariable name="ibmEDI:EDIFACT_DS" value="{ $(.) }" />

 </appinfo></annotation>

</element>
In the above, the element named "ds" contains the string to be used as the ibmEDI:EDIFACT_DS delimiter at other places in the data, so the above defines the value of the ibmEDI:EDIFACT_DS variable to take on the value of this element.

The above dfdl:setVariable annotation changes the definition of ibmEDI:EDIFACT_DS as if it had been defined to have this value as its default value at its point of definition.

The name of a variable is defined in the target namespace of the schema containing the definition.

A variable instance obeys a single-assignment rule. This means:

· A new variable instance extends the local context when the DFDL processor encounters a dfdl:defineVariable annotation.

· A variable instance may only be set once. A second set is a processing error and DFDL processors must detect this error.

· If a variable instance is referenced, and it has not yet been set, and it does not have a default value, then it is a processing error.

· If a variable is referenced and the default value is returned, and subsequently the variable is set, then it is a processing error
.

The single assignment rule implies that dfdl:setVariable must occur before any reference to the variable in schema processing order.

The declaration of a variable must be in scope at the point of the assignment, and at the point of reference.

16.3.1 Short Form Syntax for Variable Assignment

There is a short form syntax for variable assignments which uses non-native attributes.

<xs:element name="ds" type="string"

 dfdl:length="1"

 dfdl:setVariableName="ibmEDI:EDIFACT_DS"

 dfdl:setVariableValue="{ $(.) }" />
Notice that two annotation non-native attributes are required. One to give the name of the variable to be set, the other to give the value. This syntax can set only one variable per XSD construct. To set more than one annotation from the same construct one must use the long form annotations.

16.4 Reference to Variables

From an expression a variable is referenced by preceding its name with a ‘$’.
 The name can be a QName. Variables are indistinguishable from properties at their point of reference.

It is a runtime error to reference a variable that has not been assigned, and which does not have a default value.

It is a schema definition error to reference a variable from outside the scope of its definition.
17 External Control of the DFDL Processor
A DFDL Schema can contain more than one format definition. For example, both a binary and a text format definition can be provided so that the same logical data can be described both ways within the same DFDL schema.

To allow one to associate a format definition with a top-level element declaration at run time DFDL allows the top-level element declarations to omit a dfdl:format annotation. DFDL processors can provide means to specify:

1. the data to be processed

2. the DFDL schema to be used

3. the top-level global element declaration to be used (specifying both name of element and namespace of that name)

4. When that top-level element (in 3 above) does not have a dfdl:format annotation, the format name (and namespace) of a format definition to be used.

The behavior of the DFDL processor must then be as if the top-level element declaration were written having a dfdl:format annotation on it containing:

<dfdl:format ref="formatName"/>

where the 'formatName' is the specified format from point 4 above.
Notice also that like any XML Schema a DFDL schema can have multiple top-level element declarations, so point 3 above is necessary to indicate which of these top-level element declarations is to be the starting point for processing data. The information in point 3 above may be omitted if the DFDL schema contains only one top-level element declaration.

The mechanism by which a DFDL processor is controlled to specify points 1 through 4 above is not specified by this standard. For example, command line DFDL processors may use command line options, but DFDL processors embedded in other kinds of software systems may need other mechanisms.

18 Completeness and Default-values for Representation Properties

It is a schema definition error when a DFDL schema does not contain a definition for a representation property that is needed to interpret the data. For example, a DFDL schema containing any textual data must provide a definition of the character set 'encoding' property for that textual data, and if it is not part of the format properties context for that data, then the DFDL schema is not well defined.
Furthermore, no default values are provided for representation properties as built-in definitions by any DFDL processor. This requires DFDL schemas to be explicit about the representation properties of the data they describe, and avoids any possibility of DFDL schemas that are meaningful for some DFDL processors but not others.

For convenience, a standard set of named DFDL format definitions are provided with all DFDL processors. These built-in format definitions must be imported by DFDL schema authors. The namespace URIs which identify these standard format definitions contain version identification so that future versions of this standard can provide updates to these definitions which define more properties. These built-in format definitions are complete in that they provide a consistent definition for all representation properties. Their intended use is as a base for extension. By extending from one of these provided definitions a DFDL schema author can be assured that there are no properties for which there is no definition provided.

The built-in format definitions are specified in Section 24 Built-in Specifications.
19 Core Properties Detail

This section lists and specifies the core set of DFDL v1.0 properties that may be used in DFDL annotations in DFDL Schema to describe non-XML data formats.

The core set of properties is supplemented by additional sets of properties described in separate specification documents. For example, there is a supplement "Advanced Decimal Format Properties" which describes properties for expressing zoned, packed, and BCD formats.
The properties are divided into two broad categories:

1. Properties that describe physical representation of data.

2. Properties that are independent of physical representation.
Note that property default values are not specified, because in DFDL there is no concept of DFDL-defined defaults. Instead the user must supply a value for all properties that will be used by the DFDL system, typically by use of a dfdl:defineFormat annotation. For this to be usable in practice, the DFDL standard provides several DFDL Schemas that define such dfdl:defineFormat annotations, suitable for business, scientific and casual use. (see Section 24 Built-in Specifications)
Where properties are specific to a physical representation, the property name may choose to reflect this. Where properties are related to a specific logical type ‘group’ (defined below), the property name may choose to reflect this.

TBD: Need some words to cover use of XPATH expressions as property values, including the case where the result must evaluate to a Boolean.
19.1 Properties that describe physical representation

The repType property identifies the physical representation of the element. The DFDL logical types are grouped to illustrate which physical representations apply to each logical type. The allowable physical representations for each logical type grouping are also shown, where the logical type groupings are defined as:

Number: xs:double, xs:float, xs:decimal (and restrictions: xs:int, etc)
String: xs:string
Calendar: xs:dateTime, xs:date, xs:time, xs:duration

Binary: xs:hexBinary, xs:base64Binary

Boolean: xs:Boolean

Opaque: xs:anySimpleType

	Property Name
	Description

	repType
	String

Valid values are dependent on logical type, and can be extended by supplemental specifications..

Number: ‘text, ‘binaryInteger’, ‘binaryFloat’
String: ‘text, ‘xml’

Calendar: ‘text, ‘binaryInteger’
Binary: ‘text’, ‘binaryStream’

Boolean: ‘text, ‘binaryInteger’

Opaque: ‘text’, ‘binaryStream’

Annotation: dfdl:element (all simple types)

19.1.1 Properties common to many physical representations
	Property Name
	Description

	byteOrder
	Enum

Valid values ‘bigEndian’, ‘littleEndian’.
Note that there is, intentionally, no such thing as 'native' endian
.
This also applies to character data for fixed-width multi-byte character sets when the encoding is not specific. E.g., UTF-16 and UTF-32.
Annotation: dfdl:element (all simple types)

	encoding
	Enum.

Values are IANA charsets or CCSID

s

Note that there is, deliberately, no concept of 'native' encoding
.
Conforming DFDL v1.0 processors must accept at least 'utf-8'', 'utf-16BE', 'utf-16LE', 'ascii', and 'iso-8859-1'
as encoding names.
Annotation: dfdl:element, (all simple types)

	byteOrderMarkRequired

	Enum

Valid values ‘always’, ‘never’, ‘onInput’, ‘onOutput’

Policy for handling byte order mark when encoding is Unicode

Annotation: dfdl:element (all simple types)

	lengthKind
	Enum

Controls how the associated length, lengthUnits, justification and paddingCharacter properties are interpreted.

Valid values are ‘fixed’, ‘schemaFacet’, ‘xpath’, ‘regularExpression’, ‘prefixed’, ‘nullTerminated’, ‘delimited’, ‘endOfData’.
If ‘schemaFacet’ then any xsd:length or xsd:maxLength facet is used.

If ‘nullTerminated’ then any terminator is ignored as this is just a convenience for terminator="%00".
[Includes OMG/CAM properties]

TBD: explain all other enums here.

Annotation: dfdl:element (all simple types)

	length
	String.

Only used when lengthKind is ‘fixed’, ‘xpath’
or ‘regularExpression’.
Specifies the length of this element using either a fixed number, an expression to refer to an element earlier in the data, or a regular expression.

Annotation: dfdl:element (all simple types)

‘fullUnicodeCharacters’ is needed with UTF-16 to indicate that surrogate pairs count as one fullUnicodeCharacter, that is one length unit, not two. (See Section 32

	Appendix: About UTF-16 and Unicode Character Codes above 0xFFFF
)
Not all enum values are applicable to all physical types.

[Subsumes OMG/CAM property attributeInBit]

TBD: define all enum values, e.g., prefixed1? prefixed2?

Annotation: dfdl:element (all simple types)
	

	storedLengthIncludesPrefix

	Boolean

Whether the length given by an expression or a prefix includes the size of the data that specified the length.

Annotation: dfdl:element (all simple types)

	lengthOfPrefix
	Integer

Length of prefix in bytes. Used for prefixed lengths only.

TBD: valid values are? 1, 2, 4, 8 ?

[OMG/CAM property prefixLength]

Annotation: dfdl:element (all simple types)

	offset
	Integer
Offset from the element identified by the offsetFrom property.
[OMG/CAM property offset]

Annotation: dfdl:element

	offsetFrom
	Expression
Specifies an expression which gives the path to the element from which the offset is measured. Only certain elements
may be used to base offsets.
Annotation: dfdl:element

19.1.2 Properties specific to physical representation ‘text’

	Property Name
	Description

	textCharacterSize
	Integer. Value must be 1 or 2.
Sometimes the character size can not be deduced from the encoding alone. For example, the memory image from a C program where the characters are ascii encoding, but the C data type being used is wchar, which uses 2 bytes for each.
[OMG/CAM property characterSize]

Annotation: dfdl:element (all simple types)

	textDBCSOnly
	Boolean.

Sometimes a text item will always occupy double bytes even when the encoding implies mixed bytes.

[OMG/CAM property DBCSOnly]

Annotation: dfdl:element (all simple types)

	textPadCharacter
	String.

The padding character used as the default for justification of text elements..

May be character or hex or Unicode.

In variable width character sets, this character must be a minimum-width character.
[OMG/CAM property paddingCharacter]
Annotation: dfdl:element (simple type ‘string’)

	textTrimKind
	Enum

Valid values ‘none’, ‘padChar’, ‘leadingWhitespace’, ‘trailingWhitespace’, ‘bothWhitespace’

Indicates whether to trim data on input.

Normally only white space may be trimmed in this manner, but if lengthKind is ‘fixed’ then the padding character can be trimmed instead, as controlled by textStringJustification.

Annotation: dfdl:element (simple type ‘string’)

19.1.2.1 Properties Specific to ‘text’ String Logical Types Only

	Property Name
	Description

	textStringJustification

	Enum

Valid values ‘left’, ‘right”, ‘none’

Controls what happens on output when the actual length of a text string is different from the specified length.

If ‘none’ the string is expected to match the length.

Otherwise:

- If lengthKind is ‘fixed’: If shorter than the specified length it is padded with the pad character. If longer than the specified length it is truncated.

- If lengthKind is ‘lengthPrefixed’: If the string is longer than any specified maximum length it is truncated.

 [OMG/CAM property justification]

Annotation: dfdl:element (simple type ‘string’)

19.1.2.2 Properties specific to ‘text’ number logical types only

	Property Name
	Description

	textNumberJustification

	Enum

Valid values ‘left’, ‘right”, ‘none’

Controls what happens on output when the actual length of a text number is different from the specified length.

Behaviour as for textStringJustification.

Annotation: dfdl:element (simple type ‘number’)

	textNumberScheme
	Qname

Indicates that text numbers are described by a kind of a pattern string called a number scheme. These are named parts of a format definition.
An anonymous number scheme can also be specified as a child element of the annotation element.
See Section 20.1.7 Number Scheme properties.
Annotation: dfdl:element (simple type ‘number’)

19.1.2.3 Properties specific to ‘text’ boolean logical types only

	Property Name
	Description

	textBooleanTrueRep
	String

Representation value to be used for ‘true’

Annotation: dfdl:element (simple type ‘boolean’)

	textBooleanFalseRep
	String

Representation value to be used for ‘false’

Annotation: dfdl:element (simple type ‘boolean’)

19.1.3 Properties specific to physical representation ‘binaryInteger’

Binary integers are considered to be a binary representation.
	Property Name
	Description

	integerSigned
	Boolean.

Indicates that the data is signed.
Note: This is independent of the logical type itself which may or may not be sign-capable.
Eg, an xsd:int can have as its physical representation an unsigned binary integer.

Eg, an xsd:unsignedInt can have as its representation a signed binary integer (this is equivalent to asserting that there will not be any negative values).

[OMG/CAM property signed]

Annotation: dfdl:element (simple type ‘number’, ‘boolean’, ‘calendar’)

	integerSignRep
	Enum

This property is used only if integerSigned is true.

Valid values are ‘twosComplement’, ‘onesComplement’, ‘signMagnitude’, ‘unsignedBinary’, and ‘unsignedDecimal’

[OMG/CAM Property signCoding]

Annotation: dfdl:element (simple type ‘number’, ‘boolean’, ‘calendar’)

	integerBooleanTrueRep
	Integer

Representation value to be used for ‘true’

Annotation: dfdl:element (simple type ‘boolean’)

	integerBooleanFalseRep
	Integer

Representation value to be used for ‘false’

Annotation: dfdl:element (simple type ‘boolean’)

19.1.4 Properties specific to physical representation ‘binaryFloat’

Floats are considered to be a binary representation.
	Property Name
	Description

	floatType
	Enum

This specifies the encoding method for the float.
Valid values are ‘unspecified’
, ‘ieeeExtendedIntel’, ‘ieeeExtendedAIX’, ‘ieeeExtendedOS390’, ‘ieeeExtendedAS400’, ‘ieeeNonExtended’, ‘ibm390Hex’, ‘ibm400Hex’

[OMG/CAM property floatType]
Annotation: dfdl:element (simple type ‘number’)

19.1.5 Properties specific to physical representation ‘binaryStream’

	Property Name
	Description

	binaryType
	Enum

This specifies the encoding method for the binary.
Valid values are ‘unspecified’, ‘hexBinary’, ‘base64Binary’, ‘uuencoded’

Annotation: dfdl:element (simple type ‘binary’, ‘opaque’)

19.1.6 Properties specific to physical representation ‘xml’

XML is considered to be a special variety of text representation.

TBD: Properties to be identified.

19.1.7 Number Scheme properties

A number scheme defines the properties that together describe how a number is to be interpreted. It contains a formatting pattern property plus properties that qualify the pattern.

It can be used when a number has a repType of ‘text’.

The scheme described below is derived from the ICU DecimalFormat class described here: http://icu.sourceforge.net/apiref/icu4c/classDecimalFormat.html#_details
We omit the padding, percentage and currency options. Padding is a function of length and percentage/currency symbols are typically modeled separately
.

Extensions are number base, allowing blank to be treated as zero, strict versus lenient checking, and allowing a virtual decimal point.

If the pattern uses digits/fractions then these must match any XML Schema facets. If not it is a schema definition error.
	Property Name
	Description

	numberPattern
	String.

Defines the ICU pattern that describes the format of the text number. The pattern defines where grouping separators, decimal separators, exponents, positive signs and negative signs appear. It permits definition by either digits/fractions or significant digits. Allows rounding.

The pattern comes in two parts separated by a semi-colon. The first is mandatory and applies to positive numbers, the second is optional and applies to negative numbers.

Examples. The first shows digits/fractions and positive/negative signs, the second shows exponent, the third shows significant digits.

+###,##0.00;(###,##0.00)

##0.##E0
#,#@#
The actual grouping separator, decimal separator and exponent characters are defined independently of the pattern.

The actual positive sign and negative sign are defined within the pattern itself.

Can be XPATH expression or literal as specified by decorated syntax.

Annotation: dfdl:numberScheme

	numberGroupingSeparator
	String.

Defines the actual character that will appear in the data as the grouping separator.

Can be empty string indicating no grouping separator.

Can be XPATH expression or literal as specified by decorated syntax.
Annotation: dfdl:numberScheme

	numberDecimalSeparator
	String.

Defines the actual character that will appear in the data as the decimal separator.

Can
 be XPATH expression or literal as specified by decorated syntax.

Annotation: dfdl:numberScheme

	numberExponentCharacter
	String.

Defines the actual character that will appear in the data as the exponent indicator.

Can be XPATH expression or literal as specified by decorated syntax.

Annotation: dfdl:numberScheme

	numberStrictChecking
	Boolean.

Indicates how lenient to be when parsing against the pattern.

If ‘false’ then grouping separators can be omitted, decimal separator can be either ‘.’ or ‘,’ (as long as this is unambiguous), exponent can be mixed case, leading positive sign can be omitted, and blank is treated as zero.

On output the pattern is always followed.

Annotation: dfdl:numberScheme

	numberInfinityRep
	Character

The value used to represent infinity.

Infinity is represented as a single character, typically \u221E, with the positive or negative prefixes and suffixes applied
Annotation: dfdl:numberScheme

	numberNaNRep
	Character

The value used to represent NaN.

NaN is represented as a single character, typically \uFFFD. This is the only value for which the prefixes and suffixes are not used
Annotation: dfdl:numberScheme

	numberBase
	Integer
Indicates the number base.
Annotation: dfdl:numberScheme

	numberImpliedPlaces

	Integer

Allowed if pattern does not specify a decimal separator. Gives the number of digits from the right where a decimal point is assumed to be.

Annotation: dfdl:numberScheme

	numberRoundingMode
	Enum

Valid values ‘roundCeiling’, ‘roundFloor’, ‘roundDown’, ‘roundUp’, ‘roundHalfEven’, ‘roundFloor’, ‘roundHalfDown’, ‘roundHalfUp
The rounding increment is specified as part of the pattern.

Annotation: dfdl:numberScheme

19.2 Properties independent of physical representation

The use of the following properties is independent of physical representation.
19.2.1 General properties

TBD: many of these are specialty properties for dealing with uncertainty. Move them to a special section and then eliminate redundant explanation in the detailed semantics section about these properties.
	Property Name
	Description

	inputValueCalc
	XPATH expression

An expression that performs some operation to derive the value of the current element.
An empty string is a valid expression for a string-typed element.

An element that specifies an inputValueCalc expression has no representation in the underlying data. It simply manipulates other elements’ values to derive its own value.
Annotation: dfdl:element (all simple types)

	outputValueCalc
	XPATH expression

An expression that performs the inverse of an element’s inputValueCalc expression.
An empty string is a valid expression for a string-typed element.
All elements that derive their value via an inputValueCalc expression will have no representation in the output. These elements need not specify an outputValueCalc. In many cases, however, the elements from which the value of the current element is derived are hidden. In these cases, the output representation will have to be calculated from the value of this or other elements using an outputValueCalc expression.
Annotation: dfdl:element (all simple types)

19.2.2 Properties for text markup
The following properties apply to all elements and groups that use text markup to initiate, terminate and/or separate elements. Text markup applies equally well to binary data, however it is called 'text' markup because it is much more comonly used for textual data formats..
	Property Name
	Description

	escapeScheme
	Indicates that this item is quoted/escaped by a named, previously defined escape scheme.

An anonymous escape scheme can be specified as a child element of the annotation element.
See Section 20.2.6 Escape Scheme properties.

Annotation: dfdl:element, dfdl:sequence, dfdl:choice

	initiator
	String.

Specifies a text string that marks the beginning of an element or group of elements.
Can be XPATH expression or literal as specified by decorated syntax. If literal, decorated syntax to allow hex versus text.

If set to empty string then no initiator is expected.

Annotation: dfdl:element, dfdl:sequence, dfdl:choice

	initiatorIgnoreCase
	Boolean

Whether mixed case data is accepted when matching initiator on input.

On output always use the initiator as specified.

Annotation: dfdl:element, dfdl:sequence, dfdl:choice

	initiatorSeparator
	String.

Used with initiator. This string is found after the initiator, but before the value.
Empty string is acceptable and means there is no initiatorSeparator.

Annotation: dfdl:element
 , dfdl:sequence, dfdl:choice, dfdl:any

	terminator
	String.
Specifies a text string that marks the end of an element or group of elements.
Can be XPATH expression or literal as specified by decorated syntax. If literal, decorated syntax to allow hex versus text.

If set to empty string then no terminator is expected.

Annotation: dfdl:element, dfdl:sequence, dfdl:choice

	terminatorIgnoreCase
	Boolean

Whether mixed case data is accepted when matching terminator on input.

On output always use the terminator as specified.

Annotation: dfdl:element, dfdl:sequence, dfdl:choice

	separator
	String.

Specifies a text string that appears between two elements in a group.

Can be XPATH expression or literal as specified by decorated syntax. If literal, decorated syntax to allow hex versus text.

If set to empty string then no separator is expected.

Annotation: dfdl:sequence

	separatorPolicyForMissingElements
	Enum

Valid values ‘keep’, ‘suppress’, ‘suppressAtEnd’

Specifies whether to expect a separator when an element is missing.

‘suppress’ would typically be used where elements have initiators.

‘keep’ or ‘suppressAtEnd’ would typically be used where elements do not have initiators.

Annotation: dfdl:sequence

19.2.3 Properties for aligned data
The following properties are used to define alignment rules.
	Property Name
	Description

	alignment
	Positive integer.

Gives the alignment required
for the beginning of the item.
Values are usually 1, 2, 4, 8, 16 to match memory word alignment boundaries, 8096 to match page alignment boundaries. However, any positive integer power of 2 is allowed.

Annotation: dfdl:element

	fillByte
	Byte.

Used on output to fill space between two aligned elements. This includes filling empty bits when fewer than a whole byte worth of bits is needed. In this case how the partial fillByte is aligned in the missing bits is unspecified.
Annotation: dfdl:element

	leadingSkipCount
	Positive integer

Number of bytes to skip before alignment applied
.
Annotation: dfdl:element

	trailingSkipCount

	Positive integer

Number of bytes to skip after the element, but before considering the alignment of the next element.
Annotation: dfdl:element

19.2.4 Properties for repeating data

These properties are additionally used when elements in the data are repeating, that is, the data is in the form of an array.

TBD: This set of properties will need revising to handle multi-dimensional arrays and sparse arrays.
	Property Name
	Description

	occursKind
	Enum

Valid values ‘fixed’, ‘xpath’, ‘markup’

Specifies how the actual number of occurrences is to be established.
fixed’ means use the value of schema property maxOccurs,
xpath’ means use the value of a named element earlier in the data,
‘markup’ means that separators and/or initiators dictate the number.

Annotation: dfdl:element

	occursPath
	Expression
A path expression referencing another element that provides the number of occurrences.

Annotation: dfdl:element,

	occursPathUnits
	Enum

Valid values ‘bytes’, ‘bits’, ‘items’

Specifies the units to be used when interpreting the number of occurrences given by occursPath. Typically this would be ‘items’ but sometimes the space is allocated as a block in which case the number of items is the number that fit in the block. In this case the occursPath gives the size of the block, and the number of items in it depends on the size of the items. For fixed size items it is the size of the block divided by the size of the items. For variable-size items there is no formula for directly computing how many items there are.
Annotation: dfdl:element

	occursSeparator

	String.

Specifies a text string that appears between two items in the array.

Can be XPATH expression or literal as specified by decorated syntax.
If set to empty string then no occurs separator is expected.

Annotation: dfdl:element

The above properties handle input and output for a logical one dimensional array of any type.
A DFDL Array is logically just an XML element with maxOccurs equal to the number of elements in the array. This element could be read from data in several forms. For example, the data might be a simple comma-delimited list in ASCII on one line, such as:

8.5,9.6,10.7,11.8,1.9,2.0,3.1,4.2,34.1,56.2,68.3,80.4,45.7,49.2,72.7
To read this array from comma delimited text, DFDL annotations would be added, as in:

<xs:element name="myArray" type="float" maxOccurs=”15”>
 <xs:annotation>

 <xs:appinfo>

 <dfdl:format repType=“text”

 encoding=“UTF-8”

 decimalSeparator=“.”

 occursSeparator=","

 terminator="\n"/>

</xs:appinfo>

</xs:annotation>

</xs:element>

19.2.5 Properties for null and default value handling
These properties are used to control when any XML Schema ‘default’ attribute is used, and, if the XML Schema ‘nillable’ attribute is set, when and how values are interpreted as having the logical meaning ‘null’.

	Property Name
	Description

	defaultWhenMissing
	Enum

Valid values ‘never’, ‘always’, ‘onInput’, ‘onOutput’

Controls when missing elements are defaulted on input and output. An element may only be defaulted on input if it is optional, and on output if it is mandatory.
The value 'onInput' means that elements missing from the input stream are substituted with their default value if specified. However if a element is missing on output the default value will not be substituted for the element in the output stream since it must be optional.

The value 'onOutput' means that a representation will be written using the default value, but no defaulting will take place on input since the item must be manditory.

Annotation: dfdl:element (all simple types)

	initiatedElementMissingWhen
	Enum

Valid values ‘absent’, ‘empty’, ‘absentOrEmpty’

Specifies when an element with an initiator is treated as missing, and therefore when default value processing can be applied.

If ‘absent’ then element is missing if the initiator is missing.

If ‘empty’ then element is missing if initiator is present but value is not.

If ‘absentOrEmpty’ then element is missing if either of the above apply.

Annotation: dfdl:element (all simple types)

	initiatedElementNull

	An enumeration

On input specifies when an initiated element with nullValueKind not set to “missing”, is treated as null

whenInitiatorAbsent
Just the null value is present, no initiator or terminator (if defined) is present.

whenInitiatorPresent
The initiator, null value and terminator (if defined) are present. (This is the normal case)

whenInitiatorAbsentOrPresent
If either of the above conditions apply.

On output specifies what is to be output when an initiated element is null.

whenInitiatorAbsent
Just output the null value itself with no initiator or terminator (if defined).

whenInitiatorPresent
Output the initiator, null value and terminator (if defined).

whenInitiatorAbsentOrPresent
Output the initiator, null value and terminator (if defined).

	nullValueKind
	Enum

Valid values ‘literalValue’, ‘logicalValue’, ‘literalCharacter’, ‘missing’

Specifies the nature of null processing. Only acted upon if nillable set to true

If ‘literalCharacter’ then nullValues must be any single character. On input the element value is null if all characters in the data match the nullValues character. On output if the element value is null the nullValues character is output to the required length. Only applicable to fixed length elements. Only applicable for fixed-width character sets.
If ‘literalValue’ then nullValues must be any string value that can fit in the element. On input the element value is null if the data matches nullValues literally without any conversion. On output if the element value is null nullValues is output.

If ‘logicalValue’ then nullValues must be any value that matches the simple type. On input the element value is null if the data, converted to its logical type, matches nullValues. On output if the element value is null, nullValues is converted to its physical representation and output.

If ‘missing’ nullValues is not used. On input the element value is null if it is not present in the data. On output if the element value is null, no data is output. For elements with an initiator the initiatedElementMissingWhen property is used to determine when the element is missing.

Annotation: dfdl:element (all simple types)

	nullValues
	String

The null value of the element.

For ‘literalValue’ and ‘logicalValue’ several null values may be specified in
this property. On output the first value in the list is used.

Annotation: dfdl:element (all simple types)

	nullIndicatorPath

	Expression
A path expression referencing another element that provides the logical value to compare with nullValues (nullValueKind must be ‘logicalValue’).

On input, the element value is null if the provided value matches nullValues.
When null, If the element is fixed size then it will be skipped on input, filled with (TBD: fillbyte?) on output..

When null If the element is variable size with minimum size > 0, then a minimum size item will be skipped over, or on output filled (TBD with fillbyte?).

When null If the element is variable size with minimum size 0, then a size zero object is expected on input, and a size 0 object will be generated on output.

If non-null then the element is parsed or output normally..

Annotation: dfdl:element (all simple types)

	nullIndicatorIndex
	Integer

The nullIndicatorIndex property is used in conjunction with the nullIndicatorPath property to reference an element that determines whether this element is null. This is done by taking the element referenced by the nullIndicatorPath as the base and using the value of the nullIndicator as a zero based
index from the base. The units of the index will be that of the element referenced by the nullIndicatorPath property. The nullIndicatorIndex property is only applicable when the nullIndicatorPath property is non-empty.

The output behavior is symmetric: the indicator location is calculated and its value set if the element is null or not null accordingly.
Annotation: dfdl:element (all simple types)

	useNullValueForDefault
	Boolean

If true then nullValues is used when an element is missing on output rather than the default value.

Annotation: dfdl:element (all simple types)

19.2.6 Escape Scheme properties

An escape scheme defines the properties that together describe the text escaping rules in force when text markup is present in the data. There are two variants on such schemes, the use of escape character(s) to switch off interpretation of a subsequent character, or the use of opening and closing quote character(s) to switch off interpretation of a contiguous group of characters. The variants can be used together, for example, MS Excel CSV use double quotes to surround data that includes a comma, and uses another double quote to escape a double quote in the data.

TBD: Nested quotes support needs to be added sufficient to handle single quotes nesting double quotes or double quotes nesting single quotes (as in XML - a popular scheme these days even for non-XML data formats).
	Property Name
	Description

	openQuote
	String

Specifies the characters that open the quoting.

If empty, quoting is not used.

If not empty, closeQuote must also be not empty.

Can be a path expression or literal as specified by decorated syntax.

Annotation: dfdl:escapeScheme

	closeQuote
	String

Specifies the characters that close the quoting.

If not empty, openQuote must also be not empty.

Can be a path expression or literal as specified by decorated syntax.

Annotation: dfdl:escapeScheme

	escape
	String

Specifies the characters that escape the subsequent character.

If empty, escape is not used.

If quoting is in use, escape is only active within quotes.

Can be a path expression or literal as specified by decorated syntax.

Annotation: dfdl:escapeScheme

	generateQuotes
	Enum

Valid values ‘always’, ‘whenNeeded’

When to quote on output.

If ‘whenNeeded’ the characters that cause quotes to be generated are any in-scope separator or terminator.

Annotation: dfdl:escapeScheme

	generateEscape
	Boolean

Whether to escape on output.

If quoting is in use, only the first character of openQuote and closeQuote are escaped.

If quoting is not in use, the first character of any in-scope separator, occursSeparator or terminator character is escaped.

Annotation: dfdl:escapeScheme

20 Detailed Semantics

TBD: introduction to this section.
20.1 Clarifying Examples - Opaque and HexBinary

TBD: where should this material go? We need a crisp definition of what ‘hexBinary’ means in DFDL, and this provides that clarification. Perhaps this goes back in the data model section?

TBD: convert these examples to use XPath expressions as the way to address the values. Will need a dfdl:byteAt() function to address into the binary corresponding to a hexBinary.
20.1.1 String Type

This string contains Japanese characters. "2003年08月27日"

In UTF-8 encoding, the bytes are these: 32 30 30 33 e5 b9 b4 30 38 e6 9c 88 32 37 e6 97 a5

Let us assume we have this collection of bytes in a file. The length is 11 characters.

In DFDL, we can describe this as:

<element name="d" type="string" dfdl:repType="text"

 dfdl:encoding="utf-8"

 dfdl:length="11"

 dfdl:lengthUnitKind="characters"/>

Now, in an API suppose I had an object representing this element held in variable named 'x'. Consider:

x.substring(0, 10); // substring starting at position 0 for 10 chars

It's pretty clear that this should return a 10 character string containing "2003年08月27", which is missing the final character of the string. The API on strings would support only access to the data as strings and characters.

I would suggest this API could also support:

int charCode = x.characterAt(4); // base 0 indexing

which would return the character code value 0x5e74 , which is the Unicode codepoint for the 4th (base 0) character which is the "年" or 'year' character.

20.1.2 HexBinary Type

Suppose we wanted to model this same data logically as a hexBinary 'blob'.

 <element name="d" type="hexBinary" dfdl:repType="text"

dfdl:encoding="utf-8"

dfdl:length="11"

dfdl:lengthUnitKind="characters"/>

Now, in an API suppose I had an object representing this element held in variable named 'x'.

x.substring(0, 10); // substring starting at position 0 for 10 chars.

This should return "32303033e5 ", that is, the first ten hex digits. This is consistent with the type being hexBinary, and not string.

This API could also support:

x.byteAt(4)
which would return the value 0xE5, or 229, which is the contents of the 4th (base 0 indexed) byte viewing the data not as hex encoding character string data, but as a binary array of bytes.

20.1.3 Opaque

Suppose we have the same data file, but wish to model it in DFDL via a wildcard.

<element name="d">

 <complexType>

 <sequence>

 <any dfdl:repType="text" dfdl:encoding="utf-8"

dfdl:length="11"

dfdl:lengthUnitKind="characters"/>

 </sequence>

 </complexType>

</element>

The above DFDL would allow a parser to skip over the contents of element 'd'. Now suppose we have an API where we have an object , x, providing access to this element 'd'. The following operation should be feasible in the API:

byte[] d_contents = x.copyBytes();

The content of the d_contents byte vector should be of size 17 and contain these bytes: 0x32 0x30 0x30 0x33 0xe5 0xb9 0xb4 0x30 0x38 0xe6 0x9c 0x88 0x32 0x37 0xe6 0x97 0xa5.

21 Support of Uncertainty
 (Choice and Optional Items
)

21.1 Definitions

	Modeled Uncertainty
	A point of Modeled Uncertainty is a point in the model where it is not certain what comes next. However it is known that whatever does come next has a definition somewhere in the model. Examples are

1. Choices(xsd:choice) where there are one or more options for what may occur next.

2. Optional elements where the element may or mat not be present.

3. Repearing elements where minOccurs is less than maxOccurs so the repeats > minOccurs and <= maxOccurs may or may not be present.

4. Element wildcards (xsd:any) where the processContents attribute has value ”strict”. The possible matches are global elements.
(See document supplement on Uncertainty for discussion of element wildcards)

	Unmodeled Uncertainty
	A point of Unmodeled Uncertainty is point in the model where it is not certain what comes next and it is not known whether what comes next in the input stream at this point has a definition in the model. Examples are element wildcards (xsd:any) where the processConents attribute has value “lax” or “skip”.

(Unmodeled Uncertainty is not supported in DFDL V1.0)

	Branch
	A branch is a possible option for the definition at a point of modeled uncertainty in the model.

	Root of the Branch
	Each branch has a single object at its root. That is a simple element, complex element or a model group. This object is known as the Root of the Branch.

	Nearest point of Uncertainty
	If the root of the branch is complex it is possible for there to be another inner point of uncertainty within the branch. During the parse of a branch of the inner point of uncertainty the inner point of uncertainty is said to be the nearest point of uncertainty.

21.2 Speculative Parsing
A parser that implements the DFDL V1.0 specification uses speculative parsing to resolve points of uncertainty. That is it when a point of uncertainy is encountered in the model the parser attempts to parse the input stream against the first branch in the model until it fails or is successful. If it fails to parse using the current branch the next branch is attempted and so on. If all branches are attempted without success it is interpretted that the point of uncertainty is not present in the input stream. A choice or element wildcard may have 1 or more branches but an optional element only has one branch.
Choice groups allow a user to declare that only one of a given number of children may occur in the instance document. The children may be elements, sequence groups, choice groups. In some contexts choices are referred to as unions. However, this should not be confused with XML Schema unions which are not part of the DFDL information model.

There are several ways in which a run time DFDL parser can resolve modeled uncertainty. The resolution of modeled uncertainty is dependent on the properties and data type of the branch(es). This includes properties and data types contained within these branches.
The only exception to this case is where the resolution of modeled uncertainty cannot be resolved from the model and data alone. This is indicated to the parser by the unresolvableWhenParsing boolean property. In this case the parser must be able to determine the length of the data and the data itself is parsed opaquely. There is more discussion of this scenario further on in the document.

The normal mode of modeled uncertainty resolution (unresolvableWhenParsing property set to false) is to use a speculative parsing algorithm. That is for a choice each branch is attempted in turn until a parsing error (and specifically not a schema definition error or validation error) occurs in which case the next branch is attempted and so on. The order that each branch is attempted is determined by the order of the branches within the choice group in the model. For optionality a match with the only item definition that can match will be speculatively attempted. If no match for an optional element is found the parser leaves the position in the data unchanged but moves its position on within the model.The speculative parsing algorithm includes the use of the following methods:
1. Using a discriminating DFDL assertion
2. Using the data types of the branches or their sub-elements.
3. Using a DFDL assertion

The general order of precedence of the methods used by the parser is the order given above. That is using a discriminator has the highest priority. These methods and their interactions are described in more detail below.

The discriminator method is used when a DFDL assertion with the discriminator property set to true (a discriminating DFDL assertion) is encountered on the root of the branch

or one of its sub-elements (see the section on DFDL assertions). If the assertion evaluates to true the branch is taken otherwise the next branch is attempted. So if it evaluates to true the speculative parsing stops and any further errors encountered during the parse of the branch does not cause the parser to attempt to parse the next branch.

If a discriminating DFDL assertion is encountered on the root of the branch it takes the highest priority for determining whether to take this branch. The timing property of the assertion must be set to “before” otherwise the complete branch is parsed before the assertion is executed.

If there is no discriminating initiator on the root of the branch to indicate whether to resolve to that branch the parser continues to speculatively parse the data using this branch until one of the following events occurs:

a. A parsing failure occurs in which case a match with the next branch is attempted.
b. An element with a discriminating DFDL assertion is encountered and the assertion is successful. The branch is taken and if an error is encountered further down in the parsing of the branch the next branch is not attempted.
c. An element with a DFDL assertion is encountered and the assertion is unsuccessful. The branch is not taken and a match with the next branch is attempted.
d. The entire branch is parsed successfully in which case the branch is taken.

If the user wants to stop speculative parsing after an element has been parsed but no assertion is required, a dummy discriminating DFDL assertion whose test always evaluates to true can be placed on the element with the timing attribute to set to “after”.

As discriminating DFDL assertions are used as part of the normal speculative parsing method it is not necessary for all branches to have a discriminating DFDL assertion. It is also not necessary for all branches to have the same structure up to the sub-element that has the discriminating DFDL assertion although in some cases they are the same.

Allowing a discriminating DFDL assertion on a sub-element is useful for modelling standards such as EDI where the identifier of a segment is contained within the segment itself.

Points of modeled uncertainty may be embedded within other points of modeled uncertainty. If a discriminating DFDL assertion is found on an element it applies to the nearest point of modeled uncertainty
t
hat is using the speculative parsing method of resolution.
The document supplement on Uncertainty describes additional properties that can be used to control the algorithm.

21.3 Assertions

DFDL assertions can be placed on elements and groups within a DFDL model. These assertions contain a test condition that is an expression that evaluates to true or false. The assertion is said to be successful if the test evaluates to true and unsuccessful if the test evaluates to false. The assertions are executed during a parse and are separate from logical validation.

The syntax of a DFDL assertion is a “dfdl:assert” element with a number of properties. The syntax is similar to that used by Schematron [TBD: citation needed] assertions. The value of the dfdl:assert element is text to be used as an error message. The DFDL specification does not specify how a DFDL parser uses this text.

An example of a dfdl:assert element is shown below :

<dfdl:assert test="test-condition"

 discriminator=”true”

 timing=”before”>Error message</dfdl:assert>
21.3.1 Properties for Assertions
These properties can be used to assert truths about a DFDL model when parsing the data. They are separate from validation rules. This distinction is needed to ensure that switching validation on/off does not affect the parsing of uncertainty (specifically, choices, and optionality, where it is not certain what comes next in the data).
	Property Name
	Description

	test
	Expression

An expression that evaluates to true or false

If true then the assertion holds.

Annotation: dfdl:assert

	timing
	Enum

Valid values ‘before’, ‘after’

Indicates when to evaluate the assertion, that is, whether to evaluate the assertion before or after this item has been parsed.

Annotation: dfdl:assert

	discriminator
	Boolean

If true and the assertion holds then speculative parsing of uncertainty will stop, and the current branch taken as the resolution of the uncertainty.

Annotation: dfdl:assert

21.4 Unresolvable points of uncertainty

The unresolvableWhenParsing boolean property indicates to the parser that a point of modeled uncertainty cannot be resolved using the model and data alone.This can occur when modelling COBOL structures that use REDEFINES clauses and C unions where the branch cannot be resolved using speculative parsing. The unresolvableWhenParsing property only has meaning on parse and not during write. The parser must be able to determine the length of the data in this scenario and the data is parsed opaquely.

The following table contains the unresolvableWhenParsing boolean property that can appear on a choice group.

	Property Name
	Description

	unresolvableWhenParsing
	Boolean.

If ‘true’ then it is not possible for the parser to reliably identify
the object from the DFDL model and the data.

Annotation: dfdl:choice

21.5 Uncertainty Resolution and Validation

It is necessary to keep XML Schema validation separate from the parsing so that a document can be successfully parsed without validation being enabled. Thus XML schema facets cannot be used in the parsing process. To allow additional conditions to be specified on elements during a parse a DFDL assert annotation element with similar syntax to a Schematron [TBD: Citation Needed] assert can be specified. If the assertion returns false it will be handled as a parsing failure. (see document supplement on Uncertainty.)

21.6 Examples of Resolving Uncertainty
21.6.1 Resolving choices using a discriminating DFDL assertion on the root of the branch

An example of using this method is in an industry standard where the inner payload message is identified by an element from the outer envelope message. Suppose that in the envelope message the discriminator value is held in the messageType element of the ‘metaData’ structure. The inner message occurs in the textBlock element after the ‘messageType’ element. The inner message is a choice of a number of elements each of which have a discriminating DFDL assertion. The examples use a variable to reference the value of the messageType element and an XPath location path to reference the value of the messageType element respectively.

The following DFDL examples illustrate these scenarios but are a simplification of the actual SWIFT structure:

21.6.1.1 Location Path Example

In this variant, the payload message types are discriminated by a path expression that refers to the messageType in the envelope surrounding them.
<!--

payload message element declarations could be in separate included schemas

-->

<xsd:element name="metaDataHeader">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="messageType" type="string" />

 other elements of the metadata.....

 </xsd:sequence>

 </xsd:complexType>

</xsd:element>

<xsd:element name="envelope">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref="metaDataHeader"/>

 <xsd:element name="payloadBlock">

 <xsd:complexType>

 <xsd:choice>

 <xsd:element ref="mess1">

 <xsd:annotation>
 <xsd:appinfo source="http://dataformat.org/">

 <dfdl:assert

 test="/envelope/metaDataHeader/messageType == 'id1'"

 discriminator="true"

 timing="before" >Message not id1</dfdl:assert>

 </xsd:appinfo>
 </xsd:annotation>

 </xsd:element>

 <xsd:element ref="mess2">

 <xsd:annotation>
 <xsd:appinfo source="http://dataformat.org/">

 <dfdl:assert

 test="/envelope/metaDataHeader/messageType == 'id2'"

 discriminator="true"

 timing="before" >Message not id2</dfdl:assert>

 </xsd:appinfo>
 </xsd:annotation>
 </xsd:element>
 <xsd:element ref="mess3">

 <xsd:annotation>
 <xsd:appinfo source="http://dataformat.org/">

 <dfdl:assert

 test="/envelope/metaDataHeader/messageType == 'id3'"

 discriminator="true"

 timing="before" >Message not id3</dfdl:assert>

 </xsd:appinfo>
 </annotation>
 </xsd:element>

 </xsd:choice>

 </xsd:complexType>

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

</xsd:element>
21.6.1.2 Variable example

This variant uses a variable to convey the information about the payload message format from the metadata header sub-element of the envelope to the choice discrimination. This is preferable to avoid repeating the path into the metadata header multiple times.
<!--

payload message element declarations could be in separate included schemas

-->

<xsd:element name="metaDataHeader">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="messageType" type="string"

 dfdl:setVariableName="MSG_ID"

 dfdl:setVariableValue="{ $(.) }"/>

 other elements of the metadata.....

 </xsd:sequence>

 </xsd:complexType>

</xsd:element>

<xsd:element name="envelope">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:annotation>
 <xsd:appinfo source="http://dataformat.org/">

 <dfdl:defineVariable name="MSG_ID" type="string"/>

 </xsd:appinfo>
 </xsd:annotation>

 <xsd:element ref="metaDataHeader"/>

 <xsd:element name="payloadBlock">

 <xsd:complexType>

 <xsd:choice>

 <xsd:element ref="mess1">

 <xsd:annotation>
 <xsd:appinfo source="http://dataformat.org/">
 <dfdl:assert test="$ibm:MSG_ID == 'id1'"

 discriminator="true"

 timing="before" >Message not id1</dfdl:assert>

 </xsd:appinfo>
 </xsd:annotation>

 </xsd:element>

 <xsd:element ref="mess2">

 <xsd:annotation>
 <xsd:appinfo source="http://dataformat.org/">

 <dfdl:assert test="$ibm:MSG_ID == 'id2'"

 discriminator="true"

 timing="before" >Message not id2</dfdl:assert>

 </xsd:appinfo>
 </xsd:annotation>
 </xsd:element>

 <xsd:element ref="mess3">

 <xsd:annotation>
 <xsd:appinfo source="http://dataformat.org/">

 <dfdl:assert test="$ibm:MSG_ID == 'id3'"

 discriminator="true"

 timing="before" >Message not id3</dfdl:assert>

 </xsd:appinfo>
 </xsd:annotation>
 </xsd:element>

 </xsd:choice>

 </xsd:complexType>

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

</xsd:element>
21.6.2 Resolving choices using a discriminating DFDL assertion on a sub-element

An example of using this method is in an industry standard where the inner segment is identified by element within the segment.The element in the segment that identifies the segment is called “id” and this element has a discriminating DFDL assertion that compares the value of the element with a constant value for that particular segment.

The following DFDL examples illustrate this scenario:

<xsd:element name=”envelope”>

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name=”metaData”>

 <xsd:complexType>

 <xsd:sequence>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name=”textBlock”>

 <xsd:complexType>

 <xsd:choice>

 <xsd:element ref=”mess1”/>

 <xsd:element ref=”mess2”/>

 <xsd:element ref=”mess3”/>

 </xsd:choice>

 </xsd:complexType>

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

</xsd:element>

<xsd:element name=”mess1”>

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name=”checksum” type=”xsd:string”/>

 <xsd:element name=”id” type=”xsd:string”>

 <xsd:annotation>

 <xsd:appinfo source=”http://dataformat.org/”>

 <dfdl:assert test=”. == ‘m1’"

 discriminator=”true”

 timing=”after”>Message not m1</dfdl:assert>

 </xsd:appinfo>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

</xsd:element>

<xsd:element name=”mess2”>

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name=”checksum” type=”xsd:string”/>

 <xsd:element name=”id” type=”xsd:string”>

 <xsd:annotation>

 <xsd:appinfo source=”http://dataformat.org/”>

 <dfdl:assert test=”. == ‘m2’"

 discriminator=”true”

 timing=”after”>Message not m2</dfdl:assert>

 </xsd:appinfo>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

</xsd:element>

<xsd:element name=”mess3”>

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name=”checksum” type=”xsd:string”/>

 <xsd:element name=”id” type=”xsd:string”>

 <xsd:annotation>

 <xsd:appinfo source=”http://dataformat.org/”>

 <dfdl:assert test=”. == ‘m3’"

 discriminator=”true”

 timing=”after”>Message not m3</dfdl:assert>

 </xsd:appinfo>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

</xsd:element>
21.6.3 Parsing an un-resolvable choice

An example of using this method is in COBOL where the REDEFINES clause is used to redefine sections of a structure. In these cases it is not always possible from examining the data to determine which of the REDEFINES clauses has the definition of the data in a particular document. So the choice can only be resolved by the user of the data explicitly specifying one of the choice branches (how this is done is outside of the scope of the DFDL specification)...

In the COBOL example below a simple element is redefined:

 01 MRM22B2B-GROUP01.

 05 MRM22B2B-GROUP01-E01 PIC 999.

 05 MRM22B2B-GROUP01-E02 REDEFINES

 MRM22B2B-GROUP01-E01 PIC XXX.

This could be modelled in DFDL as a choice as follows:

<xsd:element name=” MRM22B2B-GROUP01”>

 <xsd:complexType>

 <xsd:choice dfdl:unresolvableWhenParsing=”true”>

 <xsd:element name=”MRM22B2B-GROUP01-E01” type=”xsd:decimal”

 dfdl:length=”3”/>

 <xsd:element name=”MRM22B2B-GROUP01-E02” type=”xsd:string”

 dfdl:length=”3”/>
 </xsd:choice>

 </xsd:complexType>

</xsd:element>

In the COBOL example below a complex element is redefined:

 01 MRM22B2B-GROUP05.

 05 MRM22B2B-GROUP0501.

 10 MRM22B2B-GROUP05-E01 COMP-1 OCCURS 2.

 10 MRM22B2B-GROUP05-E02 COMP-2 OCCURS 3.

 05 MRM22B2B-GROUP0502 REDEFINES MRM22B2B-GROUP0501.

 10 MRM22B2B-GROUP05-E03 PIC s9(8) OCCURS 3.

 10 MRM22B2B-GROUP05-E04 PIC X(8).

In could be modelled in DFDL as a choice as follows:

<?xml version="1.0" encoding="UTF-8"?>

<xsd:element name=' MRM22B2B-GROUP01'>

 <xsd:complexType>

 <xsd:choice dfdl:unresolvableWhenParsing="true">

 <xsd:element name="MRM22B2B-GROUP0501">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name='MRM22B2B-GROUP05-E01'

 type="xsd:float"

 minOccurs="2"

 maxOccurs="2"

 dfdl:length="4"/>

 <xsd:element name="MRM22B2B-GROUP05-E02"

 type="xsd:float"

 minOccurs="3"

 maxOccurs="3"

 dfdl:length="4"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="MRM22B2B-GROUP0502">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="MRM22B2B-GROUP05-E03"

 type="xsd:decimal"

 minOccurs="3"

 maxOccurs="3"

 dfdl:length="4"/>

 <xsd:element name=" MRM22B2B-GROUP05-E04"

 type="xsd:string"

 dfdl:length="4"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 </xsd:choice>

 </xsd:complexType>

</xsd:element>

In both the above cases, since all the alternative branches of the choice are fixed length, a DFDL processor can parse the data by just using the length

of the longest branch as the length of the unresolvable choice.
21.6.4 Resolving a choice using the data type

In the case where the branches of a choice are of a simple type the data type can be used to resolve the branch of the choice. This is achieved using the normal speculative parsing resolution method which will attempt to match each branch in turn. However if the data could be resolved to more than one branch the choice will always be resolved to the first branch for which the data matches the type. For instance if in the simple type example used for un-resolvable resolution it was known that MRM22B2B-GROUP01-E01 always contained decimal data and MRM22B2B-GROUP01-E02 always contained alphabetic data. This could be modelled as follows:

<xsd:element name=” MRM22B2B-GROUP01”>

 <xsd:complexType>

 <xsd:choice>

 <xsd:element name=”MRM22B2B-GROUP01-E01” type=”xsd:decimal”/>

 <xsd:element name=”MRM22B2B-GROUP01-E02” type=”xsd:string”/>
 </xsd:choice>

 </xsd:complexType>

</xsd:element>

However if MRM22B2B-GROUP01-E02 could also contain decimal data this method could not be used because the choice would always resolve to the first choice for decimal data.

Also if the first branch was a string and the second a decimal this method could not be used because the choice would always resolve to the first branch, irrespective of the data.
21.6.5 Resolving a choice using the data type of a sub-element

In the case where the branches of a choice are of a complex type the data type of a sub-element can be used to resolve the branch of the choice. This is achieved using the normal speculative parsing resolution method which will attempt to match each branch in turn. If a parse error occurs during the parse of one of the sub-elements a parse of the next branch will be attempted and so on. However if the data could be resolved to more than one branch the choice will always be resolved to the first branch for which the data matches the type. For instance in the following example if it was known that MRM22B2B-GROUP01-E01-S02 always contained decimal data and MRM22B2B-GROUP01-E02-S02 always contained alphabetic data. This could be modelled as follows:

<xsd:element name=” MRM22B2B-GROUP01”>

 <xsd:complexType>

 <xsd:choice>

 <xsd:element name=”MRM22B2B-GROUP01-E01”>

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name=”MRM22B2B-GROUP01-E01-S01”

 type=”xsd:string”/>

 <xsd:element name=”MRM22B2B-GROUP01-E01-S02”

 type=”xsd:decimal”/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name=”MRM22B2B-GROUP01-E02”>

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name=”MRM22B2B-GROUP01-E02-S01”

 type=”xsd:string”/>

 <xsd:element name=”MRM22B2B-GROUP01-E02-S02”

 type=”xsd:string”/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 </xsd:choice>

 </xsd:complexType>

</xsd:element>
21.6.6 Terminating speculative parsing using a “dummy” dfdl assertion

This case is similar to the previous case except that after the second sub-element there are more sub-elements that are not to be used for speculative parsing. That is after the second sub-element is successfully parsed it indicates that the branch to be taken and if any subsequent parsing errors occur they are to be interpreted as parsing failures not as a signal to attempt to parse using the next branch.

This is achieved by putting a discriminating assertion on the second sub-element whose test attribute always resolves to true and whose timing attribute has value “after”.

<xsd:element name=” MRM22B2B-GROUP01”>

 <xsd:complexType>

 <xsd:choice>

 <xsd:element name=”MRM22B2B-GROUP01-E01”>

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name=”MRM22B2B-GROUP01-E01-S01”

 type=”xsd:string”/>

 <xsd:element name=”MRM22B2B-GROUP01-E01-S02”

 type=”xsd:decimal”>
 <xsd:annotation>

 <xsd:appinfo source=”http://dataformat.org/”>

 <dfdl:assert test=”true"

 discriminator=”true”

 timing=”after”>True</dfdl:assert>

 </xsd:appinfo>

 </xsd:annotation>
 </xsd:element>
 <xsd:element name=”MRM22B2B-GROUP01-E01-S03”

 type=”xsd:string”/>

 <xsd:element name=”MRM22B2B-GROUP01-E01-S04”

 type=”xsd:string”/>
 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name=”MRM22B2B-GROUP01-E02”>

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name=”MRM22B2B-GROUP01-E02-S01”

 type=”xsd:string”/>

 <xsd:element name=”MRM22B2B-GROUP01-E02-S02”

 type=”xsd:string”/>
 <xsd:annotation>

 <xsd:appinfo source=”http://dataformat.org/”>

 <dfdl:assert test=”true"

 discriminator=”true”

 timing=”after”>True</dfdl:assert>

 </xsd:appinfo>

 </xsd:annotation>
 </xsd:element>
 <xsd:element name=”MRM22B2B-GROUP01-E02-S03”

 type=”xsd:string”/>

 <xsd:element name=”MRM22B2B-GROUP01-E02-S04”

 type=”xsd:string”/>
 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 </xsd:choice>

 </xsd:complexType>

</xsd:element>
However if MRM22B2B-GROUP01-E02-S02 could also contain decimal data this method could not be used because the choice would always resolve to the first alternative for decimal data.
22 Default Value, Null Values, and Optional Data
TBD: below, the "nullIndicatorIndex" and "initiatedElementNull" properties are not contained in the properties list document.

The aim of this section is discussion of how default and null values are modelled by DFDL.

22.1 Definitions
There are several words used in describing Null and Default Handling that have specific meanings in this context. The following table clarifies the meanings attached to some words.
Table 2 Defintions of words used in this document

	Word
	Meaning

	Absent
	On input an element that is not present in any form within the input stream. That is no initiator, value or terminator. However there may be some markup that indicates that it is not present. For instance 2 consecutive separators may indicate that an element for which no initiator is defined is not present.

On output an element that is not passed to the un-parser to be written out. How the parser represents an absent element in the output stream is dependent on the properties described in this document.

	Missing
	On input a missing element is the same as an absent element for elements that have no initiator defined. However for an element with an initiator defined an empty or absent element may be handled as missing by the parser dependent on properties described in the document.

On output a missing element is one that is absent. That is an element that is not passed to un-parser to be written out.

	Empty
	On input an element whose initiator is present in the input stream but whose value is not present.

On output an element that is passed to the un-parser with an empty value. For instance an empty string (note that this different to a null value – see below).

	Null
	On input a special logical value given to an element to explicitly indicate that it has no value.

The null value is not in the value space of the element. How this is indicated within the input stream is dependent on the properties described in this document.

On output an element passed to the un-parser that has its value set to the same special logical value to explicitly indicate that it has no value. How the parser represents a null element in the output stream is dependent on the properties described in this document.

On input a guiding principal of default handling is that it should not make an invalid document valid. This is similar to the XML Schema attribute rule that a default value is not allowed if the attribute is “required”. Thus only optional elements will be defaulted on input because defaulting a mandatory element will make an invalid document valid. This also means that if there are less than minOccurs occurrences no additional values will be defaulted. The only exception is the case of tagged elements that have an initiator in the data but no value (See Default Values on input without null values being considered).

On output only missing mandatory elements will be defaulted unless the occursKind property indicates that a specific number of occurrences must appear in the output (See Default Values on output without null values being considered).

22.2 Examples

Most of the examples used in the document are based on the following logical model.
<xsd:element name="root">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="A" type="xsd:string" minOccurs="0"/>
 <xsd:element name="B" type="xsd:string" minOccurs="0"/>

 <xsd:element name="C" type="xsd:string" minOccurs="0"/>

 </xsd:sequence>

 </xsd:complexType>

</xsd:element>

The following 3 DFDL schemas model tagged, delimited and fixed length representations of the above logical model
Tagged

<xsd:element name="root">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:annotation>

 <xsd:appinfo source="http://dataformat.org/">

 <dfdl:sequence separator=","/>

 </xsd:appinfo>

 </xsd:annotation>

 <xsd:element name="A" type="xsd:string" minOccurs="0">

 <xsd:annotation>

 <xsd:appinfo source="http://dataformat.org/">

 <dfdl:element initiator="A:"/>

 </xsd:appinfo>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="B" type="xsd:string" minOccurs="0">

 <xsd:annotation>

 <xsd:appinfo source="http://dataformat.org/">

 <dfdl:element initiator="B:"/>

 </xsd:appinfo>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="C" type="xsd:string" minOccurs="0">

 <xsd:annotation>

 <xsd:appinfo source="http://dataformat.org/">

 <dfdl:element initiator="C:"/>

 </xsd:appinfo>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

</xsd:element>

Delimited
<xsd:element name="root">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:annotation>

 <xsd:appinfo source="http://dataformat.org/">

 <dfdl:sequence separator="," separatorType=”infix”/>

 </xsd:appinfo>

 </xsd:annotation>

 <xsd:element name="A" type="xsd:string" minOccurs="0"/>

 <xsd:element name="B" type="xsd:string" minOccurs="0"/>

 <xsd:element name="C" type="xsd:string" minOccurs="0"/>

 </xsd:sequence>

 </xsd:complexType>

</xsd:element>

Fixed Length
<xsd:element name="root">

 <xsd:complexType>

 <xsd:sequence>
 <xsd:element name="A" type="xsd:string" minOccurs="0">

 <xsd:annotation>

 <xsd:appinfo source="http://dataformat.org/">
 <dfdl:element length="3"/>

 </xsd:appinfo>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="B" type="xsd:string" minOccurs="0">

 <xsd:annotation>

 <xsd:appinfo source="http://dataformat.org/">

 <dfdl:element length="3"/>

 </xsd:appinfo>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="C" type="xsd:string" minOccurs="0">

 <xsd:annotation>

 <xsd:appinfo source="http://dataformat.org/">

 <dfdl:element length="3"/>

 </xsd:appinfo>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

</xsd:element>

Example input streams for each of the DFDL Schemas is

tagged – A:aaa,B:bbb,C:ccc
delimited – aaa,bbb,ccc
fixed – aaabbbccc
The representations produced from an input document and the representations used to produce an output document are shown as a tree for convenience. However the actual representation produced by a parser is outside the scope of the specification. The tree produced from the above input streams is:

[image: image3]
22.3 Defaults values on input and output

Doing the inverse of input on output is not normally what a user would intend when specifying default values on output. Instead there will be given a property “defaultWhenMissing” with 4 possible enumerations that will control defaulting on input and output:

1. never – Do not default values on input or output.

2. always - Use the default Value on input for missing elements and if an element is missing on output when it is serialised create the element in the output document with the value set to the default value.

3. onInput - Use the default Value on input for missing elements but do not default values on output.

4. onOutput – Do not default values on input but if an element is missing on output when it is serialised create the element in the output document with the value set to the default value.

For example if element “B” has a default value of “zzz” and has the “defaultWhenMissing” property set to “always” for selector “delimited”. On parse the input stream:

aaa,,ccc

will produce tree

[image: image4]
On serialisation the tree:

[image: image5]
will produce output stream

aaa,zzz,ccc

22.4 Default Values on input without null values being considered

An element in DFDL falls into one of 4 categories as far as delimiting is concerned:

a) Those that have an initiator and the data is not fixed length

b) Those that have an initiator and the data is fixed length

c) Those that have no initiator and are delimited by a separator

d) Those with no initiator or separator and the element has a fixed length

In category (a) it is possible to have an initiator with no value. When only an initiator is present in the input stream and the ‘XML Schema element’ method of defaulting values is followed the default value would be substituted for the element.
If the initiator was also not present no default value would be used in this scenario if following the ‘XML Schema element’ method. However the default value would be used if following the ‘XML Schema attribute’ method and the element or attribute was optional. I think both options should be open to the user to be flexible. Thus I think a property on tagged delimited position with 3 enumerations would be required:

1. absent - Use default value if initiator and value missing and the element is optional

2. empty - Use default value if initiator present but no value

3. absentOrEmpty - Both of the above

This is the initiatedElementMissingWhen property in table 4.

For example if element “B” has the initiatedElementMissingWhen property set to “empty” and default value “zzz” for selector “tagged”. On parsing the input stream:

A:aaa,B:,C:ccc would produce tree:

[image: image6]
However if element “B” has the initiatedElementMissingWhen property is set to “absent” and default value “zzz” for selector “tagged”. On parsing the input stream:

A:aaa,C:ccc would produce tree:

[image: image7]
For enumeration 2 where maxOccurs is greater than 1 it is less clear as to how many elements should be defaulted. If there are less than minOccurs elements defaulting any additional elements would violate the ‘not making an invalid document valid’ rule. If there are minOccurs or greater elements how many additional elements should be defaulted? This is dependent on the “occursKind” property. If the “occursKind” property is set to “fixed” and maxOccurs is not unbounded up to maxOccurs values will be defaulted. If maxOccurs is unbounded no extra values will be defaulted. If the “occursKind” property is set to “xpath” the value of the xpath expression will determine how many additional elements will be defaulted.

If the “occursKind” property is set to “stopValue” or “markup” no additional values will be defaulted because there is nothing in the data to indicate that there should be any additional repeats defaulted and the user has explicitly chosen not to use the maxOccurs to determine the number of repeats.

Another solution is to only default a value for each additional separator specified. This will only work where there is a separator between each repeat not when the data is fixed length and there is no separator. For example suppose that an element “A” is modified for selector “tagged” such that it has minOccurs 3 and maxOccurs unbounded. The repeating separator between each repeating element is “#” and has default value “zzz”. The updated DFDL Schema for element “A” would be

:

 <xsd:element name="A" type="xsd:string" minOccurs="3"
 maxOccurs=”unbounded”>

 <xsd:annotation>

 <xsd:appinfo source="http://dataformat.org/">

 <dfdl:element initiator="A:"/>

 </xsd:appinfo>

 </xsd:annotation>

 </xsd:element>

 The following cases show how many values would be defaulted:

A:aaa,B:bbb,C:ccc No values will be defaulted because there are no additional separators.

A:aaa#,B:bbb,C:ccc 1 value will be defaulted because there is 1 additional separator.

A:aaa##,B:bbb,C:ccc 2 values will be defaulted because there are 2 additional separators.

The third case would produce tree:

[image: image8]
For category (b) if there is no initiator present then it is known that the element is not present. The issues discussed in category (a) with regards to minOccurs and maxOccurs also apply in this scenario. If an initiator is present it must also be assumed that the value is also present in the input stream.

In category (c) the only option is to substitute a default value if the element is missing as there is no initiator. The same issues discussed in category (a) with regards to minOccurs and maxOccurs also apply in this scenario.

In category (d) it is not possible to determine whether an element is missing so it is not possible to substitute a default value. The only exception to this is if “occursKind” has been set to “fixed” or “xpath” and the end of the bitstream or identifiable point has been reached.

22.5 Null Handling on input without default values being considered

If an element is allowed to be null there are 4 possible methods of encoding a null value on input (These properties will also be used on output). If the nullIndicatorPath property is set and the nullValueKind is set to logicalValue these encoding methods will be applied to the calculated value (See0).

For a value that is handled as null in the input data a value is provided (whatever the representation) that explicitly indicates that its value is null. This will be a special value not in the normal range of allowed values for the element. Until a decision is made on complex elements these properties only apply to simple elements or complex elements with simple content.

When “missing” is specified the same issues with minOccurs and maxOccurs discussed for default values also apply here.

For example if element “B” has nullValueKind set to literalValue and a single nullValues value of “xxx” for selector “delimited”. On parsing the input stream:

aaa,xxx,ccc will produce tree

[image: image9]
and serialisation of the above the tree will produce the same output stream.

For elements that have an initiator an element may be indicated as being null in the input stream by the initiator followed by the null value or by the null value alone. The property initiatedElementNull will indicate to the parser how to determine whether an element is null. The property takes the following enumerations:

1. whenInitiatorAbsent - Just the null value is present, no initiator or terminator (if defined) is present.

2. whenInitiatorPresent - The initiator, null value and terminator (if defined) are present. (This is the normal case)

3. whenInitiatorAbsentOrPresent - Both of the above

The whenInitiatorAbsent enumeration is only valid when the content model of the model group in which the element is contained is ordered. That is because the model order is required to match the value with an element in the model when there is no initiator. The initiatedElementNull property is also not applicable when the nullIndicatorPath property has been set and when nullValueKind has been set to “missing”.

For example if element “B” has nullValueKind set to literalValue, a single nullValues value of “xxx” and initiatedElementNull set to whenInitiatorPresent for selector “tagged”. On parsing the input stream:

A:aaa,B:xxx,C:ccc will produce tree

[image: image10]
and serialisation of the above the tree will produce the same output stream.

For example if element “B” has nullValueKind set to literalValue, a single nullValues value of “xxx” and initiatedElementNull set to whenInitiatorAbsent for selector “tagged”. On parsing the input stream:

A:aaa,xxx,C:ccc will produce tree

[image: image11]
and serialisation of the above the tree will produce the same output stream.

22.6 Using both Default Values and Null Handling on input
As null processing can be considered as operating at the physical level and default values at the logical level it would make sense for the Null handling to take precedence over the default value handling. Therefore there is no conflict between using Default Values and Null Handling. In particular if the nullValueKind property is set to “missing” and there is a default for an element it will be handled as a null value if it is not present in the input stream. Another consequence of this order of precedence is that a defaulted value will never be considered as a null value because the default handling is preformed after the null handling.
22.7 Default Values on output without null values being considered

As discussed in the section comparing default values for input and output the way that default values would be used on output is to populate an output document with the elements that are missing on output. Thus allowing a user to populate a sparse representation rather than a complete representation of what is to be output. On output default values will be populated for all 3 categories of delimiting; it is OK to output default vales for fixed length. For repeating elements the number of values to be defaulted is also dependent on the “occursKind” property. If “occursKind” is set to “fixed” up to maxOccurs values will be defaulted. If “occursKind” is set to “xpath” the number of values defaulted will be determined by the xpath expression. For an “occursKind” of “stopValue”
and “markup” up to minOccurs values will be defaulted. Thus if an element is optional it will not be defaulted.

A special case is where a user wants to populate elements with a null literal character on output. This is to cope with the COBOL case where a user may wish to populate the elements with LOW-VALUES or HIGH-VALUES. This is the output case of the literalCharacter nullValueKind case described for input. However on output I consider this more a default value case rather than a null value case, although we may be generating out-of-bound data for the element in the output document. For a null value case there would be an element in the representation with a value set to null rather than a missing element.

A solution to this is to create a boolean property called useNullValueForDefault which specifies whether the value in the nullValues property is to be used on output if an element is missing on output. It will be invalid to set the useNullValueForDefault property to true if the nullValueKind property has not been set or the element is not nillable. (TBD: This property is not applicable to attributes because they do not support null handling.) If the element has an initiator defined the initiatedElementMissingWhen or initiatedElementNull properties will be used to control what is output in the output stream dependent on the whether nullValueKind is set to “missing” or not.

22.8 Null Handling on output without default values being considered

If the value of an element in the representation is set to null the value on output will be determined by the nullValueKind property. However if the value is null and the nullIndicatorPath property is set no value will be written on output because the calculation indicates whether it is null or not.

For initiated elements with nullValueKind set to “missing” the initiatedElementMIssingWhen property controls what is output:

1. absent
Output no value or initiator

2. empty
Output the initiator but no value

3. absentOrEmpty
Output the initiator but no value

For initiated elements with nullValueKind not set to “missing” the initiatedElementNull property controls what is output:

1. whenInitiatorAbsent - Just output the null value itself with no initiator or terminator (if defined).

2. whenInitiatorPresent - Output the initiator, null value and terminator (if defined). (This is the normal case)

3. whenInitiatorAbsentOrPresent - Output the initiator, null value and terminator (if defined).

The whenInitiatorAbsent enumeration is only valid when the content model of the model group in which the element is contained is ordered. That is because if the output stream is to be re-parsed the model order is required to match the value with an element in the model when there is no initiator. The initiatedElementNull property is also not applicable when the nullIndicatorPath property has been set and when nullValueKind has been set to missing.

22.9 Flowcharts for Null and Default Behaviour
The following 2 sections contain flowcharts that illustrate how the default and null value behaviour is decided for an element on input and output.

22.9.1 Input flowcharts

[image: image12]

[image: image13]

[image: image14]
22.9.2 Output Flowcharts
 SHAPE * MERGEFORMAT

 SHAPE * MERGEFORMAT

 SHAPE * MERGEFORMAT

22.10 Interaction of Properties

The following table shows the interaction of properties on input and output. The top right blue part of the table represents the interaction on input and the bottom left yellow part the interaction on output. If there is no interaction between 2 properties the cell is greyed out. The values in the table are the cross references to the sections and tables in the preceding document that cover the interaction of the properties.

Table 3 Interaction of properties

	Input\

Output
	Nullable
	Default
	Optional
	Simple/

Complex
	Element
	Occurs/

Separators
	Initiator

	Nullable
	
	23.6,

	
	23.3,23.5

	Error! Reference source not found.
	23.4,23.5
	23.5
Error! Reference source not found.

	Default
	23.7
	
	23.4
Error! Reference source not found.
	23.3
	Error! Reference source not found.
	23.4
	23.4
Error! Reference source not found.

	Optional
	
	23.7,
	
	
	23.4
	23.4
	23.4

	Simple/

Complex
	23.3,23.8

	23.3,23.7
	
	
	Error! Reference source not found.
	
	

	Element
	Error! Reference source not found.
	Error! Reference source not found.
	23.7
	Error! Reference source not found.
	
	23.4
	

	Occurs/

Separator
	
	23.7
	
	
	
	
	23.4

	Initiator
	23.8
	23.7
	
	
	
	
	

23 Built-in Specifications

TBD: this section gives the names, import URLs for, rep-property definition sets, property definitions, etc. for the built-in named format definitions. I won't go so far as to say conversion definitions and registrations are made explicit here since many of these will want to be built-ins for implementations. Note that the URLs for importing these must contain the version number of the standard so that future revisions of the standard can define new built-in format definitions without breaking older schemas.
24 Properties Supported by Specialized Annotation Elements

The table below indicates the subset of representation properties allowed on each of the specialized annotation elements.

	Schema Construct
	Matching Annotation Element
	Allowed properties

	xs:sequence
	<dfdl:sequence ... />
	encoding, separatorEncoding,

separator

separatorKind

(others TBD)

	xs:choice
	<dfdl:choice ... />
	TBD

	xs:element declaration or reference without occurrences or with minOccurs=0, maxOccurs=1 (aka optional)
	<dfdl:element ... />
	initiator, terminator

(TBD: everything meaningful for elements, and optional elements)

	xs:element declaration or reference with 2 or more possible occurrences
	<dfdl:element .../>
	occursSeparator

initiator, Terminator

(TBD: everything meaningful for elements, including occurance properties)

	xs:any
	<dfdl:any ... />
	(TBD: suitable for any wildcards)

	all other locations
	<dfdl:format .../> That is, there is no helper annotation element
	All properties

25 Security Considerations
When writing data. All locations must be properly initialized before writing so as to prevent accidental (or purposeful) transmission of data in the unused parts of data formats. Even when a DFDL description does not specify that data should be written to a particular part of the output representation, a defined pattern should always be written.

All DFDL processors must check when writing data, that the representation properties that control filling and padding are defined by the DFDL schema. It is an error if they are not defined, and the DFDL processor must fail if they are not defined so that it is certain no region of the output data has unspecified contents.

If regions within a DFDL-described data object are encrypted, then when decrypting them proper means must be used to assure secure passage of passwords to the decrypting software. Such means are beyond the scope of the DFDL language specification.

In addition, if encryption passwords/keys are stored in DFDL schema-described data, then proper means must be used to assure that the decrypted form of these passwords is not revealed. Such means are beyond the scope of the DFDL language specification.

26 Contributors

Michael J. Beckerle, IBM Software Group, Westborough, MA, USA

Martin Westhead, Avaya, Milpitas, CA, USA

James Myers, NCSA, Urbana-Champaign, IL, USA

Suman Kalia, IBM Software Group, Markham, Ontario, Canada

Steven M. Hanson, IBM Software Group, Hursley, UK
Tom Sugden, EPCC
Tara Talbot, PNNL, Richland, WA, USA

Robert McGrath, NCSA, Urbana-Champaign, IL, USA

Geoff Judd, IBM Software Group, Hursley, UK
Dewey M. Sasser, IBM Software Group, Westborough, MA, USA

David A. Loose, IBM Software Group, Westborough, MA, USA

Eric S. Smith, IBM Software Group, Westborough, MA, USA

Kristoffer H. Rose, IBM Research, Hawthorne, NY, USA

27 Intellectual Property Statement

The OGF
 takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to practice this recommendation. Please address the information to the OGF Executive Director.

28 Disclaimer

This document and the information contained herein is provided on an “As Is” basis and the OGF disclaims all warranties, express or implied, including but not limited to any warranty that the use of the information herein will not infringe any rights or any implied warranties of merchantability or fitness for a particular purpose.
29 Full Copyright Notice

Copyright (C) Global Grid Forum 2004, 2005,2006. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the OGF or other organizations, except as needed for the purpose of developing Grid Recommendations in which case the procedures for copyrights defined in the OGF Document process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the OGF or its successors or assignees.

30 References

TBD: OGF requires that only permanent documents should be cited as references. Other materials, such as Web pages or working groups, should be cited inline (i.e., see the Global Grid Forum, http://www.ogf.org). References should conform to a standard such as used by IEEE/ACM, MLA, Chicago or similar. Include an author, year, title, publisher, place of publication. For online materials, also add a URL
XML 1.0 http://www.w3.org/TR/REC-xml
XML 1.1 http://www.w3.org/TR/xml11/
Unicode (now at version 4.0) http://www.unicode.org/
IANA character set encoding names: (http://www.iana.org/assignments/character-sets)

XML Schema: http://www.w3.org/XML/Schema
[RFC 2119] IETF (Internet Engineering Task Force). RFC 2119: Key words for use in RFCs to Indicate Requirement Levels. S. Bradner. 1997.

TBD: OMG/CAM/TD Model reference
XSIL homepage, http://www.cacr.caltech.edu/SDA/xsil/
Binary Format Description (BFD) Language, http://collaboratory.emsl.pnl.gov/sam/bfd/
31 Appendix: About UTF-16 and Unicode Character Codes above 0xFFFF

When we define UTF-16 to be a fixed-width double-byte wide character set we say that each UTF-16 codepoint is represented by 2 bytes. Notice the careful use of the term 'codepoint' here. Unicode characters can have character codes as large as 0x10FFFF which requires 3 bytes to store (21 bits actually); however in UTF-16 characters with more than 2 bytes of code are encoded as two codepoints, called a surrogate pair; hence, UTF-16 is fixed-width, 2 bytes per codepoint. It is not 2 bytes per Unicode character. UTF-16 is really a variable-width encoding, but the characters that require the surrogate-pair treatment are so infrequently used that UTF-16 is most often treated like a 16-bit fixed-width character set. It is the acknowledgement of the existence of surrogate pairs that leads to the “codepoint” vs. “character code” distinction.

UTF-32 is a fixed width encoding with a full 4-bytes per character code. It represents all of Unicode with the same width per character.

Hence, when we refer to lengths in character strings we will often refer to length in characters, but we qualify that it means 2-byte codepoints when the character set encoding is UTF-16. Hence, when the property lengthUnitKind is 'characters' and the charset is 'UTF-16', then the units are actually 16-bit codepoints, not Unicode characters
.
Use instead the lengthUnitKind='fullUnicodeCharacters' to get the number of true characters, not the number of 16-bit codepoints.

Stop

No

Yes

Element missing?

To Null Handling

Assign Default or Fixed Value

Yes

No

Default or Fixed value specified?

Stop

Yes

Yes

No

No

Element missing?

UseNullValueForDefault?

Default Handling

No

Yes

Output initiator, value and terminator based on nullValueKind, nullValues and initiatedElementNull

No

Initiated Element?

From Default Handling

Output value based on nullValueKind and nullValues

No

Stop

Process referenced element TBD

Yes

nullValueKind == logical && nullIteratorPath set?

No

Output initiator only

Yes

initiatedElementMissingWhen == absent?

Stop

nullValueKind == missing?

No

Yes

Yes

No

Yes

Element value == null?

To Main Flow

Initiated Element?

Null Handling

No

Yes

From Null Handling

To Default Handling

To Null Handling

DefaultWhenMissing == output or always?

Yes

No

 Stop

Nillable?

Start

Yes

No

Element missing?

Assign Default or Fixed Value

Yes

No

Default or Fixed value specified?

Stop

Yes

Yes

Check element against initiatedElementMissingWhen

No

No

Initiated Element?

Element optional?

Default Handling

Assign Null Value

Yes

No

Element optional?

Element missing?

To Main Flow

No

Yes

Null?

Check element using

nullValueKind, nullValues and initiatedElementNull

No

Yes

Initiated Element?

No

No

No

Yes

Referenced element value matches null value?

Yes

To Main Flow

Check value of element referenced by nullindicatorPath and nullIndicatorIndex against nullValues property

No

Yes

Assign Null Value

Element value matches null value?

nullValueKind == logical

&& nullIndicatorPath set?

Check element value using nullValueKind and nullValues

Yes

Check element against initiatedElementMissingWhen

No

Yes

No

Yes

nullValueKind == missing?

To Main Flow

Initiated Element?

Null Handling

No

Yes

From Null Handling

To Default Handling

To Null Handling

DefaultWhenMissing == onInput or always?

Yes

No

 Stop

Nillable?

Start

Name=C

Value=ccc

Name=B

Value=NULL

Name=A

Value=aaa

Name=root

Name=C

Value=ccc

Name=B

Value=NULL

Name=A

Value=aaa

Name=root

Name=C

Value=ccc

Name=B

Value=NULL

Name=A

Value=aaa

Name=root

Name=A

Value=zzz

Name=A

Value=zzz

Name=C

Value=ccc

Name=B

Value=bbb

Name=A

Value=aaa

Name=root

Name=C

Value=ccc

Name=B

Value=zzz

Name=A

Value=aaa

Name=root

Name=C

Value=ccc

Name=B

Value=zzz

Name=A

Value=aaa

Name=root

Name=C

Value=ccc

Name=A

Value=aaa

Name=root

Name=C

Value=ccc

Name=B

Value=zzz

Name=A

Value=aaa

Name=root

Name=C

Value=ccc

Name=B

Value=bbb

Name=A

Value=aaa

Name=root

� Codepoint for UTF-16

� The concept of native-endian is avoided in DFDL since a DFDL schema containing such a property binding does not contain a complete description of data, but rather an incomplete one which is parameterized by characteristics of the machine and implementation where the DFDL processor is executed. In DFDL this same behavior is achieved through use of true parameterization, for example by use of Selectors to choose among two different format annotations.

� CCSID stands for Coded Character Set ID, a 3 digit representation for a codepage specifier. TBD: cite relevant standard for CCSIDs here.

� The concept of native character encoding is avoided in DFDL since a DFDL schema containing such a property binding does not contain a complete description of data, but rather an incomplete one which is parameterized by characteristics of the operating environment where the DFDL processor executes. In DFDL this same behavior is achieved through use of true parameterization, for example by use of Selectors to choose among annotations specifying different character set encoding property bindings.

�TBD: can these be suppressed? The point of discriminators is to resolve ambiguity rather than leave it up to whether something causes error or not. This argues that an error during evaluation of a discriminator is never suppressed. However, if the entire discriminator is inside a context where uncertainty is being resolved by error, then maybe we’ve speculated down a path where all the assumptions, including those which allow the discriminator to evaluate without error aren’t valid.

�Alphabetize. Consider removing terms we don't use. (Though we may still need them in sections still to be written.)

�Important to do before release of this draft publicly.

Need examples of text formats here to give some intuition of the kinds of text formats that DFDL can describe.

�Show Nullability via an isNull attribute.

�What attributes should we show here: maxOccurs/minOccurs ? stringLength, stringMinLength, stringMaxLength ? totalDigits, fractionDigits?

�I've come to like this less. We have two other ways of doing this: Use type String and encoding='bytes'. Use an element of type 'byte' and maxOccurs="unbounded". That is, we can model an opaque blob of bytes as a byte string or an array of bytes. Why do we need yet another way?

�This used to say only processContents="strict", but I took this out because xs:any wildcards inside unordered groups are intended to support finding elements that have no corresponding element declaration but where an initiator is separated by the initiatorSeparator delimiter.

This is a skip-style contents processing.

Furthermore, in ordered groups an xs:any wildcard with processContents="skip" (or maybe lax also) could be made useful in delimited text situations, or in general any situation where we can determine the bounds of the representation of an element. E.g., in an ordered group with separators, or if there is a required terminator scoped over our definition, or if all items are fixed length.

In other words, there are situations where we can parse successfully creating strings as the values of anonymous elements where an xs:any is found.

�This URL must change. We no longer own dataformat.org, dfdl.com is available, but owned by someone who wants to sell it for $$$$. I suggest we use a subdomain inside the ogf namespace, i.e., dfdl.ogf.org. or � HYPERLINK "http://www.ogf.org/dfdl/" ��www.ogf.org/dfdl/�

�It would be great to have an dfdl-xml-schema-subset.xsd as well which we could create by taking the schema for xml schema, and subsetting it.

This would let people get validation errors on their schemas if they haven't restricted them to the dfdl subset of xml schema.

�What is the difference between scheme and format? We should be careful of consistency in element naming.

�Presumably there is a sequential ordering and declarations must come before assignments. What about hierarchical scope?

�Supposedly there is a technical issue with establishing namespaces in annotations which needs to be addressed.

I don’t understand this issue. Seems ok to me. I just preserved this comment from a previous draft of this doc.

�A little elaboration on this would be good.

�TBD: reindent and apply color scheme.

�Syntax: these should be surrounded by <dfdl:format> ...</dfdl:format>

�Darn it, why don't these update properly?

This is to the scoping section.

Looks like we need to TBD all xrefs instead of actually putting them in since MS Word doesn't do the right thing as sections are inserted, reordered, etc.

�Change pos1 to pos_out, pos to pos_in

Also change order of inputs and outputs to be consistent.

�TBD: I think we need an isNull return value also

�Some of these should be schema definition errors.

When we can show that the path reaches into a peer within a choice, for example, we can detect this statically so it should be a schema definition error.

This root value approximation device only lets us detect processing time errors.

�This section in the wrong place.

�Note: both Lctxt and Sctxt share the variable definition. Not sure this makes sense for Lctxt i.e., here-only stuff. But perhaps when there are derived simple types it's possible to have some setContexts and reference to the variable spread over parts of the schema?

�TBD: more precise xref to where it talks about the difference between applies=ToScope and applies=hereOnly.

�TBD: more precise xref to where it talks about the difference between applies=ToScope and applies=hereOnly.

�For output symmetry, consider "format strategy" as the general term, possibly consisting of a combined parse and unparse strategy.

�Might want a special case just for optionals to simplify the parse strategies. Could split that out here, or inside the definition of the A rule.

�Sufficient? For pre-processing the initiator can be used to determine what the element is.

Revisit this definition once we put choice handling in.

�Note: both Lctxt and Sctxt share the variable definition. Not sure this makes sense for Lctxt i.e., here-only stuff. But perhaps when there are derived simple types it's possible to have some setContexts and reference to the variable spread over parts of the schema?

�TBD: more precise xref to where it talks about the difference between applies=ToScope and applies=hereOnly.

�TBD: more precise xref to where it talks about the difference between applies=ToScope and applies=hereOnly.

�Not sure any of the PRE, SEP, or POST rules need to be able to reference variables. It is expressions referencing variables which is why mem would be needed. Can expressions end up being evaluated here?

�Reminder: didn't say how path gets lengthened, or how the first unknown place holder for the element value is created. This goes back in the element decl processing rule.

�Note: both Lctxt and Sctxt share the variable definition. Not sure this makes sense for Lctxt i.e., here-only stuff. But perhaps when there are derived simple types it's possible to have some setContexts and reference to the variable spread over parts of the schema?

�TBD: more precise xref to where it talks about the difference between applies=ToScope and applies=hereOnly.

�TBD: more precise xref to where it talks about the difference between applies=ToScope and applies=hereOnly.

�TBD: does choice need pre/post? Can a choice have alignment, leading skip or trailing skip bytes or initiator/terminator. I think we should disallow this.

�Not sure we need CONTENT function. Might just be recursive call to P here.

�Leave this section out until we're happy with the Ordered Sequence Group treatment. Then clone and modify that.

�TBD: Discrimination mechanism? Do we only include an alternative for global element decls having a discriminating assert?

�Consider moving this to a supplement on tagged formats?

�To make this a schema definition error I believe that offset must be a literal value, not a computed value.

offsetFrom can't sensibly be an expression since it identifies another element in the schema.

�This case can easily arise if fixed element width multi-byte character-set data is converted to say, UTF-8 and it actually contains mutli-byte characters. You end up with data that is fixed number of characters in fields, but the byte width of those characters varies.

�Same restriction for strategy guards.

Seem to have lost the definition of "data independent elements".

�Does all this go without saying given the above discussion of conversions?

�Grammar is not yet general enough. Need to handle null/optional/default/missing aspects.

�Break up this grammar for different parse strategies.

Each parse strategy is explained in terms of schema source-to-source rewriting, and a grammar which is used to give meaning to how the various properties are interpreted.

�Grammars are not universal, they should be specified by parse strategies. One parse strategy, one grammar.

�TBD: this must be enhanced for nulls/defaults/optional/missing ????

E.g., the cobol example where the entire thing is filled with "high values" or "low values".

I think we need NP = null pattern, NV = null value (the indicator value), empty (the value is missing – which means we have to have a TERM.

Note that our Parse Rules must return a null indicator for the value in addition to the other things they return.

�Need to make clear what optional means vs. size zero.

�where should this go? It's a complex restriction.

�This is consistent with XML Schema 1.1, and there's no issue with parsing this.

I think this is ok.

�Can it? perhaps it must be a literal integer?

�assuming here that leading/trailingSkipBytes cannot be an expression. Can it?

�ditto above comment on leading/trailing skip bytes.

�TBD: perhaps this is where we extend the path to have the sub-element name on the end of it?

I prefer to do that in the general code of how sequence groups are handled, not in the specific strategy.

�TBD: this can't deal with case insensitivity or any other kind of initiator match other than exact bits match.

�Need to distinguish a type error (schema definition) from a run time error (parse error)

�TBD: this can't deal with case insensitivity or any other kind of initiator match other than exact bits match.

�Need to distinguish a type error (schema definition) from a run time error (parse error)

�ditto above comment on leading/trailing skip bytes.

�Do we need regexp for Array lengths or just simple types?

Anyone know of any example using regexp for length of an array?

Really it's not much different than lengthUnits='characters' where instead of a stored length indicating N characters, we find the Nth character by scanning with a regexp.

� One might like to define this in such a way that a DFDL processor can statically determine whether all the setVariable calls will occur before any references, and if references receive the default value that there can be no setVariable calls afterwards. The current definition here is too operational for this. However, given 'choice' and complex predicates guiding them, I believe this cannot be statically determined in general.

�Expression section says you call dfdl:variable().

I’d prefer exactly one mechanism.

�TBD: make data model stuff early in the document consistent with this.

�Note: the Schema for DFDL annotation syntax will use an xs:token for this.

�All dfdl symbols are reserved. Others would be allowed as a way to allow new parse strategies to be defined and added to DFDL.

�Name issue: This "BinaryStream" is going to be confused with other use of the term 'stream' which I believe are more important.

Suggest "bits" as the name of this concept. As in "The data is either text or bits"

Perhaps repType=”bytes” or repType=”nonText” ??

�Cite a standard for CCSID values in the footnote.

�We want this to be as small as possible a set. Can we get away with just UTF-8,

Also TBD: what aliases of the IANA names are required? All of them? So, e.g., "Latin1" is accepted?

�bomRequired should be BOMRequired since BOM is an acryonym. OTOH we could spell it out as byteOrderMarkRequired, which I actually prefer. Why bother abbreviating.

TBD: change all BOMxxx iand bomXXX into byteOrderMarkXXX

�Not enough cases. On input we need always, never, optional. On output we need always, never.

The name "BOMRequired" doesn't seem right. For input we need to be able to say the BOM isn't required, it's optional.

BOMHandling seems like a better name.

There are 4 useful combinations of behaviors I believe.

always input, always output

never input, never output

optional on input, always on output

optional on input, never on output

(good names for these 4 modes are:

Required, notAllowed, generated, tolerated)

This last mode is likely to be heavily used (unfortunately) as it is the "tolerate BOMs if they appear cuz I'm not sure if they'll be there or not." mode.

�Ditto

�Advanced/Supplement or v2.0 ?

�expression or calculated again.

�Not consistent with lengthKind which has just 'prefixed" not "prefix1" and "prefix2".

�Changed from “self” to “prefix” for clarity.

�TBD: what are the restrictions here.

�A predefined format set should define this as left and number justification to right. (What about the others? also left like string?)

�A pre-defined format set should have this as "right"

�For these boolean reps, we need to be able to use a list of values. (Similarly, null flags allow lists of values) however there is an issue of how you can put the empty string into a list since the empty string might be one of the reps that is accepted as false for example.

�Seems these shouldn't be here.

�Again the issue of how to provide lists of true values (or false values) for these booleans, and what to do about empty string as one of those values?

�What doe s this mean?

Seems to imply a float-size property so that you know how big it is and can at least skip over it.

I would prefer to simply drop this. We have ways of doing opaque types so that you can skip over things like this.

�Name issue, already raised. Perhaps 'bits' is the representation name?

�Don't understand this. What does "modeled separately" mean?

�Why not say can be empty string indicating no decimal separator.Then we can eliminate numberimpliedPlaces?

Or was this done for implementation reasons? I.e., to avoid having to tweek the ICU libraries?

�Why not eliminate this and just use decimalSepaator="" (empty string) to mean this?

�Add XREF to section on layering which discusses these properties.

�TBD: added dfdl:element, sequence, choice

Is this correct?

�Too much flexibility. Why not control this with the initiator settings?

�What are the alignment units? Bits or Bytes? I believe it should either only be bits, or we need an alignmentUnits tha t has enum bits/bytes.

�Note: this behaves just like a hidden element with alignment=1, alignmentUnits=’bytes’, and this length.

�Omit? Or allow only for binary rep type?

�Is 'markup' the right name? or should this be 'delimited'

�Missing occursSeparatorKind= infix or prefix, or postfix.

�use short-form annotations to make shorter

�GJ

Added to provide similar behavior to the DataStage TX Type Syntax->Empty property. This allows an initiated element to have a value specified with no initiator on input that is be treated as indicating that the element is empty. This was initially added to DataStage TX to handle the case where an empty XML element could be specified as <element/> whereas the element was modeled with an initiator of <element> and terminator </element>. However users have used the property in non-XML scenarios.

�I changed 'field' to element throughout this document.

Also shouldn't the name of this end with "When" and the "when prefix" stripped off of the enum values?

�GJ

Have to choose one or the other.

�How is list specified such that an empty string can be expressed as a null value for a nullable string field?

�Example is needed to illustrate usage here. This example is the one where there is a trailing bit vector of null flags. I have seen prior and after byte flags, and prior and after bit vectors. The example has to also show how the null indicator is set on output..

�There seems to be some confusion around null indicators and whether or not the element itself will appear in the data. Generally, if the element is fixed size, having a null indicator doesn't change the amount of space taken up in the stream. Rather, both the flag and the element storage would be in the data. If the element Is variable size then things are trickier.

�Not right. For a flag you have to be able to set it on output, so we need both null values and not-null values. I think trying to pretend null indicators are in some way "a lot like" in-band nulls is a mistake. It's a different technique and the properties should perhaps just be separated.

�Added all this logic. This case where we have variable size with minimum greather than zero is an annoying complexity.

Can we consider saying DFDL v1.0 doesn't support minOccurs other than 0 or 1, and minOccurs = 1 only when maxOccurs also = 1 ??

This would eliminate many hard cases, not just here in the null-flags stuff, but in many other parts of the spec.

�TBD: one based if we switch DPath to be one based.

�GJ

Try to keep concepts of uncertainty and speculative parsing the core but move most of the rest out.into a separate document.

�For DFDL v1.0 can we get away with only doing choice? Or otherwise somehow doing less than all of this.

Can we eliminate substitution group support?

�GJ

I think we need choices, wildcards and optional elememts for DFDL V1.0 but I think some of it can be split from the core document.

Yes, we can dispense with substitution groups.

�We can't leave this an implementation dependent detail. We must provide semantics here.

�GJ

The intention is that the paser just handles the data as a blob of unparsed data. It is then up to the user how the data is then handled. If they know that it can be parsed using a partuclar branch they can re-parse the buffer. Only thing to be determined is the

�Need to define "root of the branch" precisely.

�GJ

Put in a separate paragraph to describe a branch and what is meant by the root of the branch.

�Turn into an example.

�GJ. OK

Example 7.10 Terminating speculative parsing using a “dummy” dfdl assertion added

�Turn into an example.

�GJ. See example 7.6 Resolving choices using a discriminating DFDL assertion on a sub-element below.

�Need to define 'nearest point' more precisely in terms of context.

�GJ

Add to same paragraph that explains root of branch.

�GJ

Should assertions remain in the core document?

�If it can't reliably identify then how can it continue to parse? We need enough certainty to determine the size anyway.

�TBD: do we need another property to indicate that using this fixed-length so use longest method is ok?

�GJ

I am not sure why we would need another property. It will always need to able to calculate the length of the longest branch when unresolvableWhenParsing is set to true.

�This describes only in-band nulls. It doesn't describe the also-common flag or out-of-band nulls.

�Although an element may contain an out-of-bound value in the input stream as its null value it would still be a given the special NULL value as its logical value. This could be indicated by setting nullValueKind to literalCharacter or literalValue. Similarly a element indicated as being null by another element in the input stream would also be given the special NULL value.

�I think this entire examples section needs to be split into separate rationale and specification sections. TBD

�I found this sentence very confusing. Rephrase? Done

�<SMH> Not sure about this. We need to go through the whole min/maxOccurs thing very carefully, it’s a thorny area.

�<GJ>

Yes, it could be considered that if an xpath is specified that exactly that number of repeats should appear in the input document.

�Is another enumeration of occursKind required?

�<GJ>

Yes, I think an additional occursKind property enumeration is required. For instance an enumeration with name “occursSeparator”. Which means that the number of occurs separators determines the number of repeats. This will only work if the occurs separator doesn’t conflict with the separator of the enclosing group or above in the model.

�Hmm. this example has positional elements and initiators and initiatedElementNull.

My guess is that typical use of initiators like this is in unoredered representations and then this would be unclear as your "xxx" doesn't identify which element is present the way an initiator does.

In other words, there's lots of potential for ambiguity here.

I'm concerned that this initiatedElementNull thing that allows the initiator to be absent when the element is null is actually it's own kind of tag which can be used BOTH to identify which element is occurring, and to recognize that it is null. That's the case in the XML/TX explanation you gave above.

you discuss this more later below, but I think the issue is already apparent here.

�I agree there is an ambiguity. However the non-XML example given by Stephanie Fetzer was of elements with non-discriminating initiators where the null elements were indicated by “N/A” for example

 #AAAA|N/A|#CCCC|#DDDD

�Will the stop value actually be represented. I can see it would make sense for a stopValueKind of “logical” but I am not sure whether this would make sense “literal” and “empty”. Does the stopValue count as a repeat? For instance if stopValueKind is set to “logical” it would make sense for this to be the case. However if it is set to “empty” it would not make sense because it is intended to handle the case where the end of the repeats are modeled by two consecutive occurs separators.

�<SMH> We need to go through the min/maxOccurs thing very carefully, it’s a thorny area.

�Should the calculation be checked to ensure that it indicates that the value is null. In particular if it refers to another element. If it doesn’t match should an error be thrown.

Alternatively should a reverse calculation be specified which can be used to set the value from the other element.

�I believe that proper functioning for output should set the nullIndiatorPath location automatically.

However, as with stored length information the case of whether the user overwrites it with an invalid value is present.

I think it is a good idea for a element that is an indicator or length for another element to simply not be writable directly. A calculation for output would have to be what fills it in. Perhaps we have a property to stipulate this, and you take your chances if you don't use it?

�This sounds like a reasonable way to go. However at the moment the reference is from the element whose nullness or length is indicated by this element. It is possible to have more than one element referring to the same length or indicator element. Should we also have a reverse reference from the indicating element to the element from which its value is calculated on output? Should references by restricted to 1 - 1 references?

�This table destroyed itself when I reorganized things in this combined document.

The content here is very important so this has to be fixed. However, the content this is referencing needs to be spec content and not rationale sections. The above material needs to be split into spec/rationale and the rationale moved out to an appendix.

�TBD: update for new "OGF". Also the template may change, new IP statement language may have to be used, etc. etc.

�Need CCSID code pages reference.

�Everyplace we describe lengthUnitKind in this document and mention characters ideally we should footnote and say "lengthUnitKind='characters' means 16-bit for UTF-16 character set encodings. See the Appendix..."

File: ogf-dfdl-v1.0-Core-014.doc

Page 1 of 112
dfdl-wg@ogf.org

Page 2 of 112

_1200564142.doc

[image: image1]

Integer

String(tokens)

String(tokens)

String(1-char)

String(1-char)

Byte

input stream

populate

document

