GWD-I

Data Format Description Language (DFDL) v1.0

Parking Lot Document

(Internal Committee Working Document)

Status of This Document

This memo provides information to the Grid community regarding the specification of a Data Format Description Language. The specification is currently a working group internal draft. It does not define any standards or technical recommendations. Distribution is unlimited.

Copyright Notice

Copyright © Global Grid Forum 2004, 2005,,2006. All Rights Reserved.

Copyright © Open Grid Forum,2006. All Rights Reserved.

Abstract

This document contains text deleted from the current DFDL v1.0 committee working draft, but saved in case we want to revisit it in the future.

It serves as a record of ideas considered but then removed and also contains some rationale discussins about why various design decisions were made.

Revision History

	Latest entry at the top please

	Version
	Author/Contributor
	History
	Date(yyyy-mm-dd)

	003
	Mike Beckerle
	Moved Variable Usage Scenarios from Core doc to here. Should go in a tutorials doc and test cases should be created to match them.
Moved Exensibility here from Core.

Moved Schematron appendix here from Core

Moved defineStream here from Core.

Moved Conversion Packages here from Core (an extensibility feature).

Moved Conversion Search Example here from Core.
	2007-03-15

	002
	Geoff Judd
	Included Uncertainty material from v007 of DFDL draft spec - internal working document
	2006-08-23

	001
	Mike Beckerle
	Created from v007 of DFDL draft spec - internal working document
	2006-08-10

Contents

1Data Format Description Language (DFDL) v1.0

1Parking Lot Document

1(Internal Committee Working Document)

1Abstract

2Revision History

51
Basic Arrays

51.1
Standard XML Markup for Arrays

62
Basic Arrays

62.1
Example

72.2
Logical Views of the Array

73
General Arrays

83.1
Example Logical Models

83.1.1
Descriptor of the Array

113.2
Representation

153.3
How to use blackbox transforms

173.4
Implementation Issues

184
Appendix: A Note About Translation of DFDL-Described Data into XML

185
Appendix: Rejected Idea: String Literals and the Character Set encoding='bytes' Property

196
Appendix: Properties from earlier spec versions

197
Appendix: OMG/CAM properties

218
Appendix: Rationale Discussions, Decisions, Future Direction

219
Appendix: Rationale: Scoping - No Top-level Scope

2210
Appendix: Rationale for Layering

2311
Appendix: Implementation note on unbounded lookahead.

2312
Appendix: Rationale: Uncertainty Discussion

2312.1
Element Wildcards (any)

2313
Appendix: Rationale: Uncertainty (choice, wildcard) Alternatives Considered

2313.1
Speculative parsing and validation

2413.2
Assertions

2413.3
Discriminators

2413.4
Un-resolvable modelled uncertainty

2413.5
Element Wildcards

2614
Appendix: Default Values Rationale

2715
Appendix: Hex Literal Encoding: Rejected Approach

2816
Appendix TBD: MIssing Topics/Discussion

2817
Appendix: TBD List:

2918
Appendix: Rationale for no "Top-Down" support

2919
Appendix: Removed Text

3420
Selectors on Annotations.

3420.1
Selectors are Orthogonal to Scoping

35Data Source Indirection

3520.2
Linked Properties

3920.3
Omni-view

3920.4
Defining Data Streams

4020.5
Explicit conversion selection

4021
Uncertainty in DFDL

4021.1
Substitution groups

4021.2
Element Wildcards (xs:any) (Self-defining)

4121.3
Late Binding of DFDL Schemas

4221.4
Properties for Uncertainty

4221.5
Clarifying Examples for Uncertainty

4522
Variables Usage Scenarios

4522.1
Variable Usage Scenarios

4923
Extensions and Extensibility

4923.1
User-Defined Properties

5023.2
Defining conversions

5123.3
Registering conversions

5123.4
Defining Conversion Packages

5223.5
Example

5324
Appendix: Information about Schematron

5425
Defining and Changing Data Streams

5425.1
Use Cases for Stream Changing

5426
Conversion Packages

5527
Data independent attribute

5528
Index attribute

5529
Conversion Search Example

1 Basic Arrays

The fundamental logical data structure of an array is a contiguous (in memory)
list of elements, where each element has a specific data type.
Arrays are used in many ways, so there are a great variety of logical views and interpretations of such one-dimensional arrays, including matrices, multidimensional tables, "images", "maps” (e.g. of Illinois), and "points in an n-dimensional physical space".
In addition, arrays may be implemented by a variety of mechanisms. A given one dimensional array need not be stored as a memory image, it could be stored in sparse structures (such as lists), blocked structures (such as B-trees), and even as computed procedures
.
[image: image1.jpg](@) Logical View
(many possible)

() 1D Array
(in memory)

(c) Physical Storage
(many possible)

Figure 2
Figure 2 sketches this general model of arrays. A given one dimensional array of elements (b) might have many alternative logical views (a), and it might be stored in different ways (c). In this model, these layers (a-c) are related via algorithms. For example, algorithms define the relationship between elements of a B-tree (in (c)) and the one dimensional array it represents (b). Another algorithm defines the relationship between the elements of a logical multi-dimensional array (a) and the one dimensional array of elements (b).
1.1 Standard XML Markup for Arrays

The model in Figure 2 presents challenges for standard XML
 markup. Standard XML can model one dimensional arrays, e.g., as an element with “maxOccurs” greater than one. This description is correct for the middle element in Figure 2b.

XML markup also can represent many different logical views of data that might be stored in arrays (i.e., Figure 2a). For example, there are several ways to model a two dimensional array of numbers (see Section 17 below). But given the variety of logical views for a similar one dimensional array, there is no universal standard for representing arrays in XML.
Similarly, XML markup can represent lists, tables, or blocked data structures in many ways. Therefore, it is possible to define an XML schema for most stored data, i.e., for Figure 2c.

To implement the model discussed above, there might be several XML elements defined, which should be related by the appropriate algorithms. The DFDL provides mechanisms to precisely specify this complex model

2 Basic Arrays

DFDL defines format annotations to handle input and output for a logical one dimensional array of any type. The DFDL schema can include black box and white box transformations to define what is needed to decode/encode the storage (e.g. blocked storage, conventions for missing values, etc.) into a contiguous, ordered sequence of elements (between (c) and (b) in Figure 2).

Let’s call this one dimensional array (as in Figure 2b), the DFDL Array. The DFDL Array contains all the data in the array, including missing or implied values, in a canonical storage order. Note that the stored data may or may not be stored in this form.

The DFDL Array is sufficient for many uses, e.g., for transmission across a network, or as input to a program that will provide the logical interpretation.

The main points of the approach are:

· DFDL requires a logical layer that is a one-dimensional array of elements (termed here the DFDL Array)
· DFDL defines format annotations for many representations of a one dimensional array

· The one dimensional DFDL Array may be used to access the data

· Alternatively, views such as higher dimensional arrays are mapped to the DFDL Array through
· DFDL transforms to elements of XML logical models, or

· External interpretations guided by logical descriptions

Section 17 presents extensions to define the logical views of the one dimensional array.
2.1 Example

The DFDL Array is logically just an XML element with maxOccurs equal to the number of elements in the array.

For example, an array of 15 floating point numbers might be marked up in XML as:

<anArray>

8.5 9.6 10.7 11.8 1.9 2.0 3.1 4.2 34.1 56.2 68.3 80.4 45.7 49.2 72.7

</anArray>
The schema might be:

<xs:complexType name=”exampleArrayType”>

<xs:sequence>

<xs:element name="values" type="float" maxOccurs=”15”/>

</xs:sequence>
</xs:complexType>
<xs:element name="exampleArrayElement" type=”exampleArrayType”>
This element could be read from data in several forms. For example, the data might be a simple comma-delimited list in ASCII on one line, such as:

8.5,9.6,10.7,11.8,1.9,2.0,3.1,4.2,34.1,56.2,68.3,80.4,45.7,49.2,72.7

To read this array from comma delimited text, DFDL annotations would be added, as in:

<xs:complexType name=”exampleArrayType”>

<xs:annotation>

<xs:appinfo>

<dfdl:format repType=“text”

 encoding=“UTF-8”

 decimalSeparator=“.”

 separator=","

 terminator="\n"/>

</xs:appinfo>

</xs:annotation>

<xs:sequence>

<xs:element name="values" type="float" maxOccurs=”15”/>

</xs:sequence>
</xs:complexType>
<xs:element name="exampleArrayElement" type=”exampleArrayType”>

The same array could be read from other storage representations using different DFDL annotations. For example, the array might be stored in a binary data structure with:

· Length (integer)

· Pairs (index, value) (integer, float)

This would be read into the same one-dimensional array, using DFDL such as:

<xs:complexType name=”exampleArrayType”>

<xs:annotation>

<xs:appinfo>

…. FIX ME…

</dfdl:dataFormat>

</xs:appinfo>

</xs:annotation>

<xs:sequence>

<xs:element name="values" type="float" maxOccurs=”15”/>

</xs:sequence>
</xs:complexType>
<xs:element name="exampleArrayElement" type=”exampleArrayType”>
2.2 Logical Views of the Array

The layering and extension mechanisms of DFDL will enable the definition of alternative logical views (e.g., as a multidimensional array, or as an image
) of the DFDL Array.

For example, two general approaches that might be used to mark up these views:

1. The XML can contain a logical description of the view, e.g., “this data should be interpreted as a 5 X 3 array”. This approach is used by XSIL [1] and BFD [2], for instance.

2. The XML can contain a logical model (e.g., an XML schema for a 5 x 3 array), mapped to the elements of the DFDL Array. In this case, the DFDL Array could be a DFDL “hidden” layer. (See Section 14.2 Hidden Elements, also Known as Hidden Layers).

Note that the DFDL markup for the DFDL Array itself would be the same for all cases, the difference would be in whether the XML defined additional views, and what conventions are used for the views..
3
General Arrays
Section 12 presented the DFDL model for arrays. The heart of the proposal is that DFDL will provide markup to handle I/O for a logical one dimensional array of any type, termed a DFDL Array. For some uses, this array is sufficient and the user can access the DFDL Array directly. In other cases, the elements may be intended to have further logical interpretation, e.g., as a multidimensional array, or as an image. In this case, additional XML markup can be used to define views of the DFDL Array. In this case, the DFDL Array may be defined to be a hidden layer, not visible as part of the XML logical model.

Given the variety of logical models that might be used and the diversity of stored representations, it is very difficult to define a universal markup. Furthermore, it is often impossible or difficult to tell what interpretation should be used from the stored bytes. The intended interpretation is often implicit (e.g., the file extension is 'jpeg') or stored in conventional metadata, e.g. at the head of the file or even in an external data source. Therefore, we propose that the DFDL should not attempt to cover all possibilities; rather, it should provide a flexible base for other software to build views of data.
This section presents a proposed approach for how alternative logical views of a DFDL Array can be implemented using standard XML and DFDL extensions. The DFDL Array contains all the data in the array, including missing or implied values, in stored order. Additional XML markup can be used to define views of the DFDL Array. These views are related to the DFDL Array using the layers and extension capabilities of the DFDL.
This approach opens the way for modular implementations, so that standard markup for storage strategies (DFDL) can be readily mixed with standard markup for different logical views of arrays (e.g., application schemas). The DFDL provides the means for handling a variety of storage mechanisms and DFDL layers make it possible to either expose or conceal the transformations.

As discussed in section 12, the main points of the approach are:

· DFDL requires a logical layer that is a one-dimensional array of elements (he DFDL Array)
· DFDL defines markup for many representations of a one dimensional array

· The one dimensional DFDL Array may be used to access the data

· Alternatively, views such as higher dimensional arrays are mapped to the DFDL Array through
· DFDL transforms to elements of XML logical models, or

· External interpretations guided by logical descriptions
The claim is that this approach is sufficient to meet the needs of many users. To demonstrate the feasibility of this approach, we give some examples below.
3.1 Example Logical Models
This section illustrates three styles for representing the logical XML structure of an array. First, the array may be represented with a descriptor and a one-dimensional array of elements, a la XSIL (TBD Citation). Alternatively, the XML may contain a logical model for the array. We show two different styles: coordinate-attributes style, and nested vector style. That is, if you converted the array data into a literal XML document rather than accessing it via an API, then the document would look like one of the two possibilities given below.

3.1.1 Descriptor of the Array
One approach is to augment the DFDL Array with metadata indicating the intended interpretation of the datan element. This approach is used by XSIL [1] and BFD [2], which define a standard markup to describe array data. For example, the one-dimensional array with 15 floating point numbers might be defined to be a two dimensional array, 5x3 of “doubles”.
<Array Name="data" Type="double">

 <Dim>5</Dim>

 <Dim>3</Dim>

 <Stream >

8.5 9.6 10.7 11.8 1.9 2.0 3.1 4.2 34.1 56.2 68.3 80.4 45.7 49.2 72.7

 </Stream>

 </Array>

In this case, DFDL markup would be used to populate the array of numbers, while XSIL or BFD or other software would perform the interpretation of the multidimensional indexing.
The XML schema would be similar to earlier examples,

<xs:complexType name=”exampleArrayType”>

<xs:annotation>

<xs:appinfo>

TBD…. FIX ME…

</dfdl:dataFormat>

</xs:appinfo>

</xs:annotation>

<xs:sequence>
 <xs:element name=”Dim” type=”int” minOccurs=”1” maxOccurs=”unbounded” \>

 < -- constrain the value of dims, number of elemens? -- >

<xs:element name="values" type="float" maxOccurs=”15”/>

</xs:sequence>
 <attribute name=”Name” type=”string”\>

 <attribute name=”Type” type=”string” \> < -- constrain the value? -- >

</xs:complexType>
<xs:element name="Array" type=”exampleArrayType”>
3.1.2 Coordinate Attributes Style

An alternative approach is to mark up each element of the array as a single element, with attributes for the coordinates. For example, three elements of an array might be represented as this XML instance fragment:

 53.8
 -21.029D112
 -2.3

In this approach, an XPath expression like a[x='-123' and y='0'] extracts one value from the array. Slicing can be done by XPath expressions like a[y='0'] which selects a vector of elements.

Notice that elements can have negative indices. This representation naturally handles sparse matrices to some degree though not the specialized variants like block diagonal, etc.

The XML Schema description of the above is:

<element name="a" maxOccurs="unbounded">
 <complexType>
 <simpleContent>
 <extension base="double">
 <attribute
name="x" type="int"/> <!-- TBD use uniqueness constraints to stipulate no duplicate x, y pairs -->
 <attribute name="y" type="int"/> <!-- TBD optional range restrictions on these values -->
 </extension>
 </simpleContent>
 </complexType>
</element>

The DFDL annotationas ... {Fix this...

<xs:complexType name=”exampleArrayType”>

<xs:annotation>

<xs:appinfo>

…. TBD: FIX ME…

</dfdl:dataFormat>

</xs:appinfo>

</xs:annotation>

<xs:sequence>
 <xs:element name=”Dim” type=”int” minOccurs=”1” maxOccurs=”unbounded” \>

 < -- constrain the value of dims, number of elemens? -- >

<xs:element name="values" type="float" maxOccurs=”15”/>

</xs:sequence>
 <attribute name=”Name” type=”string”\>

 <attribute name=”Type” type=”string” \> < -- constrain the value? -- >

</xs:complexType>
<xs:element name="Array" type=”exampleArrayType”>
3.1.3 Nested Vectors Style
A third approach is to represent the array as vectors or nested vectors. For example, two rows of three elements of an array might be represented as this XML instance fragment:

 <x><y>3</y><y>4</y><y>5.1D24</y></x>
 <x><y>6</y><y>7D2</y><y>8</y></x>

The nested vectors form is not capable of expressing negative indices. Users can use layering to translate a different coordinate system so as to access the content of a nested-vectors logical array. (TBD: will need an example)

The XML Schema for the nested vectors above is:

<element name="x" maxOccurs="unbounded">
 <complexType>
 <sequence>
 <element name="y" maxOccurs="unbounded" type="double"/>
 </sequence>
 </complexType>
</element>

The above two schema fragments define what we have to work with by way of structure on which to "hang" DFDL annotations describing the actual representation and describing the mapping to and from the above logical structure.
In addition to the above, we'll assume that somewhere there are logical elements holding the logical dimensions of the array. Fixed size arrays in the nested vectors style can of course set maxOccurs and minOccurs to fixed values. However, in general we must handle data formats where the sizes of the array dimensions vary with each actual data instance; hence we assume there will be two prior elements giving the sizes of the dimensions:

<element name="xdim" type="int"/>
<element name="ydim" type="int"/>

Alternatively, there could be low and high limit values for each of the coordinate axes, from which the above sizes could be calculated.
<xs:complexType name=”exampleArrayType”>

<xs:annotation>

<xs:appinfo>

…. FIX ME…

</dfdl:dataFormat>

</xs:appinfo>

</xs:annotation>

<xs:sequence>
 <xs:element name=”Dim” type=”int” minOccurs=”1” maxOccurs=”unbounded” \>

 < -- constrain the value of dims, number of elemens? -- >

<xs:element name="values" type="float" maxOccurs=”15”/>

</xs:sequence>
 <attribute name=”Name” type=”string”\>

 <attribute name=”Type” type=”string” \> < -- constrain the value? -- >

</xs:complexType>
<xs:element name="Array" type=”exampleArrayType”>
3.2 Representation

The representation is assumed to be a 1d vector of values of the same type as the logical array's elements:

<element name="rep" type="double" maxOccurs="unbounded"/>

Typically this representation array will be in a hidden layer hence, to read data we must map from this representation to our logical structure. To write data we must perform the inverse mapping from the logical structure into this representation.

TBD: we need annotations to tell the DFDL system that the structure, while logically mapping to this XML schema is also really a multi-dimensional array such that a DFDL system could support an API for a programmer where API calls like x.getAt(5).getAt(2); can be made meaningful for accessing an element of the array.

Now let's look at annotations to describe the representation aspects:

3.2.1 Mapping - Parsing/Reading - Nested Vectors Logical Structure

<sequence>
 <element name="xdim" type="int"/>
 <element name="ydim" type="int"/>
 <elemnet name="rep" type="double" maxOccurs="unbounded"> <!-- hidden typically. Shown visible here -->
 <annotation><appinfo>
 <dfdl:format occurs="{../xdim * ../ydim }" occursUnit="elements"/>
 </appinfo></annotation>
 </element>
 <element name="x" maxOccurs="unbounded">
 <annotation><appinfo>
 <dfdl:format occurs="../xdim" occursUnit="elements"/>
 </appinfo></annotation>
 <complexType>
 <sequence>
 <element name="y" maxOccurs="unbounded" type="double">
 <annotation><appinfo>
 <dfdl:format inputValue="{ let xpos = ../x.position(); /* TBD exact way to get position within x vector */
 let ypos = position(); /* TBD exact way to get position within y vector */
 in ../rep[(xpos * ../../ydim) + ypos] /* TBD is this called row-major or column major order? */
 /* alternatively ../rep[(ypos * ../../xdim) + xpos] is the other order */
 /* TBD: failure behavior if either dim is 0, or rep is size 0 */
 }"
 occurs="../ydim" occursUnit="elements"/>
 </appinfo></annotation>
 </element>
 </sequence>
 </complexType>
 </element>
</sequence>

Note that an implementation of the above need not actually create a realization of the nested vectors x and y in memory. Rather, each access to x and y could be translated on the fly into an access to the underlying representation vector. It is highly desirable that the design of the annotations admits this kind of implementation.
3.2.2 Mapping – Adding in the Writing/Output Direction – Nested Vectors Logical Structure
<sequence>
 <element name="xdim" type="int">
 <annotation><appinfo>
 <dfdl:format outputValue="{../x.size()}"/> <!-- get from logical -->
 </appinfo></annotation>
 </element>
 <element name="ydim" type="int">
 <annotation><appinfo>
 <dfdl:format outputValue="{../x[1]/y.size()}"/> <!-- TBD: fails on size zero x vector -->
 </appinfo></annotation>
 </element>
 <elemnet name="rep" type="double" maxOccurs="unbounded"> <!-- hidden typically. Shown visible here -->
 <annotation><appinfo>
 <dfdl:format occurs="{../xdim * ../ydim }" occursUnit="elements"
 outputValue="{ let repPos = position();
 let xPos = floor(repPos/../xdim); /* TBD: is this row major or column major? */
 let yPos = mod(repPos, ../xdim);
 in ../x[xPos]/y[yPos]
 }"/>
 </appinfo></annotation>
 </element>
 <element name="x" maxOccurs="unbounded">
 <annotation><appinfo>
 <dfdl:format occurs="../xdim" occursUnit="elements"/>
 </appinfo></annotation>
 <complexType>
 <sequence>
 <element name="y" maxOccurs="unbounded" type="double">
 <annotation><appinfo>
 <dfdl:format inputValue="{ let xpos = ../x.position(); /* position within x vector */
 let ypos = position(); /* position within y vector */
 in ../rep[(xpos * ../../ydim) + ypos] /* is this called row-major or column major order? */
 /* alternatively ../rep[(ypos * ../../xdim) + xpos] is the other order */
 }"
 occurs="../ydim" occursUnit="elements"/>
 </appinfo></annotation>
 </element>
 </sequence>
 </complexType>
 </element>
</sequence>

TBD: doing all this division seems clumsy. A program that is actually reading in the data would just use counters. This is likely the reason why array support needs to be built in and not expressed in the above manner.
3.2.3 Mapping – Parsing/Reading –Coordinate Attributes Style
<sequence>
 <element name="xdim" type="int"/>
 <element name="ydim" type="int"/>
 <elemnet name="rep" type="double" maxOccurs="unbounded"> <!-- hidden typically. Shown visible here -->
 <annotation><appinfo>
 <dfdl:format occurs="{../xdim * ../ydim }" occursUnit="elements"/>
 </appinfo></annotation>
 </element>
 <element name="a" maxOccurs="unbounded">
 <annotation><appinfo>
 <dfdl:format inputValue="{ let pos = ./position(); // this is the logical element number.
 in ../rep[pos]
 }"
 occurs="{ ../xdim * ../ydim }" occursUnit="elements"/>
 </appinfo></annotation>
 <complexType>
 <simpleContent>
 <extension base="double">
 <attribute name="x" type="int">
 <annotation><appinfo>
 <dfdl:format inputValue="{ let pos=../position(); // this is the logical element number.
 in floor(pos, ../../xdim) // division. TBD: Row major?
 }"/>
 </appinfo></annotation>
 </attribute>
 <attribute name="y" type="int">
 <annotation><appinfo>
 <dfdl:format inputValue="{ let pos=../position();
 in mod(pos, ../../xdim) // TBD: row major?
 }"/>
 </appinfo></annotation>
 </attribute>
 </extension>
 </simpleContent>
 </complexType>
 </element>
</sequence>

Note that in the above, we don't strictly speaking even need the representation 1d array, as the logical representation is essentially 1d with attributes.

TBD: doing all this division seems clumsy. A program that is actually reading in the data would just use counters. This is likely the reason why array support needs to be built in and not expressed in the above manner.
3.2.4 Mapping – Adding the Write/Output Direction – Coordinate Attributes Style

<sequence>
 <element name="xdim" type="int">
 <annotation><appinfo>
 <dfdl:format outputValue="{ ??? }"/> <!-- TBD: how to get from logical -->
 </appinfo></annotation>
 </element>
 <element name="ydim" type="int">
 <annotation><appinfo>
 <dfdl:format outputValue="{ ??? }"/> <!-- TBD: how to get from logical -->
 </appinfo></annotation>
 </element>
 <elemnet name="rep" type="double" maxOccurs="unbounded"> <!-- hidden typically. Shown visible here -->
 <annotation><appinfo>
 <dfdl:format occurs="{../xdim * ../ydim }" occursUnit="elements"
 outputValue="{ let pos=./position();
 in ../a[x='floor(pos,../xdim)' and y='mod(pos,../ydim)'] // works for any logical order.
 }"/>
 </appinfo></annotation>
 </element>
 <element name="a" maxOccurs="unbounded">
 <annotation><appinfo>
 <dfdl:format inputValue="{ let pos = ./position(); // this is the logical element number.
 in ../rep[pos]
 }"
 occurs="{ ../xdim * ../ydim }" occursUnit="elements"/>
 </appinfo></annotation>
 <complexType>
 <simpleContent>
 <extension base="double">
 <attribute name="x" type="int">
 <annotation><appinfo>
 <dfdl:format inputValue="{ let pos=../position(); // this is the logical element number.
 in floor(pos, ../../xdim) // division. TBD: Row major?
 }"/>
 </appinfo></annotation>
 </attribute>
 <attribute name="y" type="int">
 <annotation><appinfo>
 <dfdl:format inputValue="{ let pos=../position();
 in mod(pos,../../ydim) // TBD: row major?
 }"/>
 </appinfo></annotation>
 </attribute>
 </extension>
 </simpleContent>
 </complexType>
 </element>
</sequence>

TBD: division issue again.

Comments overall: the use of division seems required to make the expression declarative. That is, making the expression not be dependent on a specific order of traversal of the data. Based on this scheme, with the division operations, an API could randomly access the elements, for example. We could get rid of the division operations only by actually creating and populating the logical structure.
3.3 How to use blackbox transforms

The examples above use “white box” transforms to map between the layers. With the three layers, there are three places where a “black box” transformation might be inserted. The following DFDL suggests where these might be placed. The format is TBD.

TBD: for efficiency, want to have a black box that eliminates the intermediate array, i.e., tunnels directly from disk to upper representation.

<?xml version="1.0"?>

<xs:schema

 targetNamespace="http://dataformat.org/tests"

 elementFormDefault="qualified"

 xsi:schemaLocation="http://dataformat.org/dfdl-0.1 ../../xsd/dfdl.xsd

 http://www.w3.org/2001/XMLSchema ../../xsd/XMLSchema.xsd"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns="http://dataformat.org/tests"

 xmlns:dfdl="http://dataformat.org/dfdl-0.1">

 <!-- Encapsulates the hidden information. -->

 <xs:complexType name="SVArrayHeader">

 <xs:sequence>

 <xs:element name="count" type="xs:int"/>

 <xs:element name="stringLengths" type="xs:int"

 maxOccurs="unbounded">

 <xs:annotation>

 <xs:appinfo source="http://dataformat.org/">

 <dfdl:dataFormat about="array"

 repLengthUnitKind="elements"

 storedLengthCalc="../count"/>

 <dfdl:dataFormat about="arrayElement" repLengthUnitKind="bits"/>
<!—BB0 call a BB here to read the data ??? -->

<dfdl:read=”blackBox(params)” />

<!—Rest of schema is unchanged -->

 </xs:appinfo>

 </xs:annotation>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="oneD"

 dfdl:byteOrder="littleEndian"

 dfdl:repType="binary">

 <xs:complexType>

 <xs:sequence>

<!-- Will create a hidden Instance named "rephdr". Hidden Instances-->

<!-- are called "layers" and are defined by nesting a <dfdl:layer> -->

<!-- tag in an empty sequence. -->

 <xs:sequence>

 <xs:annotation>

 <xs:appinfo source="http://dataformat.org/">

 <dfdl:layer name="rephdr"

 type="SVArrayHeader"/>

<!—BB1 call a BB here to read the data ??? -->

<dfdl:read=”blackBox(params)” needs params such as byte order? />

<!—Rest of schema is unchanged -->

 </xs:appinfo>

 </xs:annotation>

 </xs:sequence>

 <xs:element name="data" type="xs:string"

 maxOccurs="unbounded">

 <xs:annotation>

 <xs:appinfo source="http://dataformat.org/">

<!-- dataFormat's about attribute lets you narrow the scope of the -->

<!-- properties it defines. The allowed values are array and -->

<!-- arrayElement. arrayElement is the default. -->

 <dfdl:dataFormat about="array"

 repLengthUnitKind="elements">

 <dfdl:storedLengthCalc>

 ../rephdr/count

 </dfdl:storedLengthCalc>

 </dfdl:dataFormat>

 <dfdl:dataFormat about="arrayElement"

 repLengthUnitKind="characters"

 repType="text"

 charset="US-ASCII">

<!-- Attributes in the DFDL namespace are special. They allow the -->

<!-- DFDL author to access the Instance's runtime metadata. In this-->

<!-- we're using @dfdl:index, which stores the current Instance's -->

<!-- position in its parent array. -->

 <dfdl:storedLengthCalc>

 ../../rephdr/stringLengths[@dfdl:index]

 </dfdl:storedLengthCalc>

 </dfdl:dataFormat>

 </xs:appinfo>

 </xs:annotation>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="twoD"

 <xs:complexType>

 <xs:attribute name="xdimsize" type="xs:int"\>

 <xs:attribute name="ydimsize" type="xs:int"\>

 <xs:sequence>

 <xs:sequence>

 <xs:annotation>

<!—BB2 call a BB here to read the data ??? -->

<dfdl:read=”blackBox(params)” />

<!—Omit the ‘1D’ element above and next lines -->

<xs:appinfo source="http://dataformat.org/">

 <dfdl:layer name="data"

 type="oneD"/>
 </xs:appinfo>

 </xs:annotation>

 </xs:sequence>

 <xs:element name="data" type="xs:string"

 maxOccurs="unbounded">

 <xs:attribute name="xpos" type="xs:int"\>

 <xs:attribute name="ypos" type="xs:int"\>

 <xs:annotation>

 <xs:appinfo source="http://dataformat.org/">

 <dfdl:dataFormat about="array"

 repLengthUnitKind="elements">

 <dfdl:valueCalc>

 ../../rephdr/oned[@./xpos * ./ydimsize + ./xdim] this

 </dfdl:valueCalc>

 </dfdl:dataFormat>

 </xs:appinfo>

 </xs:annotation>

 </xs:element>

</xs:schema>

3.4 Implementation Issues

This approach separates and limits the requirements on the DFDL, interposing the one dimensional contiguous array (the DFDL Array). When the XML contains explicit markup that represents the logical view of the data, then the DFDL Array might be purely logical. In that case, it need not be fully realized by an implementation. Indeed, naively populating a huge array would be catastrophic for many cases, and more so if many elements are missing values or other computed values. These details are left to implementations.

4 Appendix: A Note About Translation of DFDL-Described Data into XML

DFDL processors which convert data into XML form from non-XML representations must not produce invalid XML by including any of the characters that are disallowed in XML documents in the output. (see Section 7.8.2 Escapes for Disallowed Character Codes in String Literals) Such implementations must substitute something for the disallowed characters.

To avoid a proliferation of different conventions, DFDL processors are encouraged to perform such substitution by inserting the "\#xH…;" or "\#D…;" escape sequences that are used to escape these same characters in DFDL Schema documents.

Note however that DFDL processors which provide API-based access to non-XML data without first translating into XML should not substitute for XML-disallowed characters.

5 Appendix: Rejected Idea: String Literals and the Character Set encoding='bytes' Property

We considered a proposal to add a special encoding='bytes' value for the character set encoding property. This was intended to make expression of mixtures of text and binary data easier. However, all sorts of complexities arise due to the fact that numeric character entities might be expressed which aren't even valid character codes for the DFDL schema's XML character set encoding, and that some implementations might normalize all XML document processing into Unicode at the time the XML document is being lexically analyzed. Requiring those implementors to translate back from Unicode to the character set of the XML document,... In general it just looked too complex for the benefits over the simpler approach of just using "%" escapes to get direct untranslated and character-set independent hex inserted into string literals.

The old description is here:

It is also possible to control the interpretation of string literals using the encoding='bytes' property binding. Consider:

<?xml version="1.0" encoding="ebcdic-cp-us" ?>

....

....

....<dfdl:format encoding='bytes' separator=","/>

.....

This special encoding='bytes' property binding indicates that character set translation for string literals should be suspended for the parts of the schema where this format annotation applies. In this case the string literal is populated with character codes using the encoding specified in the XML line at the top of the DFDL schema, which in this case is "ebcdic-cp-us", which means that in the separator="," syntax of the schema, the comma is a 0x6B character code. This will create a value for the separator directly containing character codepoint 0x6B, and this is the value that will be compared to the data with no further translation.

Note however, that if you try to use 'bytes' with character entities and multi-byte character sets you may get unexpected behavior. For example if you specify:

<?xml version="1.0" encoding="utf-8" ?>

....

....

....<dfdl:format encoding='bytes' separator="𝕀"/>

.....

You are probably not getting what you wanted. The "&x01D540;" character entity does not specify three bytes of data as hex digits. Rather, it specifies a single character code 0x1D540, which is a Unicode supplementary character (happens to be the "Mathematical Double Struck Capital I" character). Since the schema itself is in the UTF-8 encoding this character is valid. In UTF-8 the encoding of this character takes up 4 bytes, which happen to be the bytes 0xF09D9580. To get the 3 bytes containing exactly the values 0x01D540 use instead the "%" hex escape:

<?xml version="1.0" encoding="utf-8" ?>

....

....<dfdl:format separator="%01%D5%40"/>

.....

This form, using the "%" escape, avoids all character set translation and entirely ignores both the DFDL schema file's encoding given on the "<?XML ...?>" line, and also ignores any encoding property binding.
6 Appendix: Properties from earlier spec versions

The table below contains properties from earlier spec versions that have not yet had an equivalent created in this document, usually because there is some degree of uncertainty surrounding that functional area.
	stride
	????

	strideInBit
	????

	upperBound
	Integer.

The highest allowed index for this array dimension.

	lowerBound
	Integer.

The lowest allowed index for this array dimension.

	dimensionOrder
	Valid values are ‘firstDimensionChangesFirst’ and ‘lastDimensionChangesFirst’. Specifies the order in which dimensions of an array are stored.

7 Appendix: OMG/CAM properties

The OMG/CAM properties are listed here along with their manifestation, if any, in DFDL. This is for comparison purposes only.
	OMG/CAM property
	Description
	DFDL manifestation

	offset
	Integer
	offset

	accessor
	Enum
	<n/a>

	format
	String

PIC XXX etc for COBOL
	<n/a>

	baseWidth
	Integer.
	<n/a>

	baseInAddr
	Integer.
	<n/a>

	baseUnits
	Integer.
	<n/a>

	bigEndian
	Boolean
	byteOrder

	codepage
	String.

Specifies the active codepage.
	encoding

	DBCSOnly
	Boolean.

Used to indicate SI/SO needed.
	textDBCSOnly

	addrUnit
	Valid values are ‘bit’, ‘byte’, ‘word’, ‘doubleWord’, ‘halfWord’, and ‘quadWord’. Specifies the units for the width property.
	lengthUnits

	width
	Integer.

Specifies the size of the representation for the element. Should be used in conjunction with the addrUnit property.
	length

	lengthEncoding
	Enum

Whether string is null terminated, prefixed
	lengthKind

	prefixLength
	Integer
	prefixLength

	contentSize
	String.
See size below.
	<n/a>

	size
	String.
contentSize and size = addrUnit * width

size = corresponds to how much is allocated at runtime and contentSize = total/max size of the item.

So we don't have to carry forward contentSize and size attribute in DFDL. They could be computed at runtime.

We have carried forward skipCountLeading and skipCountTrailing attributes in DFDL which will allow us to take care of any slack bytes requirements.
	<n/a>

	attributeInBit
	Boolean.

If ‘true’, the size property is measured in bits. If ‘false’, the size property is measure in bytes.
	lengthUnits

	characterSize
	Integer.

Specifies the size of characters.
	textCharacterSize

	hostCodepage
	String

Denotes the code page used to for the decimal's representation.
	Encoding

	stride
	????
	???

	strideInBit
	????
	???

	upperBound
	Integer.

The highest allowed index for this array dimension.
	???

	lowerBound
	Integer.

The lowest allowed index for this array dimension.
	???

	stringJustification
	Enum

	textStringJustification, textCalendarJustification, textNumberJustification

	paddingCharacter
	String.

	textStringPadCharacter, textCalendarPadCharacter, textNumberPadCharacter

	numeralShapes
	Enum

Valid values ‘nominal’, ‘national’, ‘contextual’.

This property is used in bi-directional text.
	textStringBiDiNumeralShapes

	orientation
	Enum

Valid values ‘LTR’, ‘RTL’, ‘contextual_LTR’, ‘contextual_RTL’.
This property is used in bi-directional text.
	textStringBiDiOrientation

	symmetric
	Boolean.

This property is used in bi-directional text.
	textStringBiDiSymmetric

	textShape
	Enum

Valid values ‘nominal’, ‘shaped’, ‘initial’, ‘middle’, ‘final’, ‘isolated’.

This property is used in bi-directional text.
	textStringBiDiTextShape

	textType
	Enum

Valid values ‘implicit’, ‘visual’.
This property is used in bi-directional text.
	textStringBiDiTextType

	signed
	Boolean
	integerSigned

	signCoding
	Enum
	integerSignRep

	virtualDecimalPoint
	Integer
	decimalImpliedPlaces, numberImpliedPlaces

	signFormat
	Enum
	zonedSignFormat

	externalDecimalSign
	Enum
	zonedIncludedAsciiSignStyle

	floatType
	Enum
	floatType

	language
	String
	???

	defaultCodepage
	String

The defaults for all properties are set up at the dfdl:defineFormat level in the DFDL xsd.
	<n/a>

	defaultBigEndian
	Boolean

See above
	<n/a>

	defaultFloatType
	Enum

See above
	<n/a>

	defaultExternalDecimalSign
	Enum

See above
	<n/a>

	defaultHostCodepage
	String

See above
	<n/a>

8 Appendix: Rationale Discussions, Decisions, Future Direction
TBD: The 'rationale' appendices will eventually be removed from the specification, and put into a separate document which is retained for purposes of avoiding endless revisiting of the same issues as the standard evolves.
9 Appendix: Rationale: Scoping - No Top-level Scope
The following observations about XSD and DFDL are the core realizations that lead to the simplified scoping proposal described herein:
· Definitions or declarations of elements, types, and groups that are reusable occur only at the top level of some schema. This means the only lexical-scope that a reusable definition is found within is one at the top-level of a schema.
· We don't use any lexical scopes of representation properties that implicitly surround the whole set of top-level definitions of a schema. Rather format specifications are invoked by putting annotations directly on a specific global element declaration (or by specifying the equivalent from outside the schema.) At the global level of a schema you can define reusable named format definitions, but those annotations don't put any format into effect over the whole schema. This insures referential transparency for named declarations/definitions.
· We lose nothing important by this restriction. Instead of specifying a data format to use at the top-level of a schema, you put it at the outermost level of the declaration(s) or definitions it applies to.
· Selectors, that is the means of embedding multiple sets of data format annotations into the same XSD schema, is completely orthogonal to scoping.

10 Appendix: Rationale for Layering
The book “ASN.1 Complete” by Larmouth (ISBN 0-12-233435-3 and available online as a pdf) discusses the importance of layer support in format descriptions.
The layering concept is perhaps most commonly associated with the International Standards Organization (ISO) and International Telecommunications Union (ITU) “architecture” or “7-layer model” for Open Systems Interconnection (OSI) shown in Figure 3. While many of the protocols developed within this framework are not greatly used today, it remains an interesting academic study for approaches to protocol specification. In the original OSI concept in the late 1970s, there would be just 6 layers providing (progressively richer) carrier services, with a final “application layer” where each specification supported a single endapplication, with no “holes”.

It became apparent, however, over the next decade, that even in the “application layer” people wanted to leave “holes” in their specification for later extensions, or to provide a means of tailoring their protocol to specific needs. For example, one of the more recent and important protocols - Secure Electronic Transactions (SET) - contains a wealth of fully-defined message semantics, but also provides for a number of “holes” which can transfer “merchant details” which are not specified in the SET specification itself. So we have basic messages for purchase requests and responses, inquiry requests and responses, authorization requests and responses, and so on, but within those messages there are “holes” for “message extensions” - additional information specific to a particular merchant.

It is thus important that any mechanism or notation for specifying a protocol should be able to cater well for the inclusion of “holes”. This has been one of the more important developments in ASN.1 in the last decade, and will be a subject of much further discussion in this book.

“Catering well” for the inclusion of “holes” implies that the notation must have defined mechanisms (preferably uniformly applied to all specifications written using that notation) to identify the contents of a hole at communications time. (In lower layers, this is sometimes referred to as the “protocol id” problem). Equally important, however, are notational means to clearly identify that a specification is incomplete (contains a hole), together with well-defined mechanisms to relate the (perhaps later in time) specification of the contents of holes to the location of the holes themselves.

The argument made here is equally true for DFDL. We need the ability to describe a data format containing a hole or payload which another DFDL schema can then describe the format of. In general a hole is not even necessarily contiguous. One example is IP packet fragmentation in TCP/IP protocols. Another more data-format-centric example is the nonVSAM VS format. (see “IBM OS/390 DFSMS: Using Data Sets” IBM publication SC26-7339-01, Second Edition, December 2000. (online at: http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/DGT1D411/CCONTEN TS?SHELF=EZ239126&DN=SC26-7339-01&DT=20001014144419) In this format, data records with actual datan elements of interest are broken up into segments. The segments are of variable size, and a record can fit in a single segment or can span multiple segments. The segments are of 3 types, initial, middle (there can be zero or more of these), and final. The hole that the record fits in is assembled by putting together the partial holes from each of the segments. Adding minor additional complexity is that in the actual format the segments are then grouped into variable-sized blocks as an I/O transfer-unit efficiency optimization.

A further wrinkle on layering in DFDL is the notion of encoding. Modern data formats often contain holes (or we’ll also call them payloads) which have been encoded to allow data transfer in text-only mediums, or to compress to save space, or to encrypt, or for various other reasons. The encoding must be decoded and the resulting data is the payload where we then want to describe the format. There are many examples of this, but email messages using MIME encapsulated attachments are a classic example. We’d like to describe a file of email messages each containing MIME encapsulated attachments where the attachments are compressed binary data where the data is a binary data format. We’d like to describe this file and expose the logical structure of the data that is inside the MIME encapsulated attachments.
11 Appendix: Implementation note on unbounded lookahead.

Data formats may be described in DFDL where successful processing may require what is called unbounded look-ahead parsing. This generality is required in order to handle the wide variety of existing data formats. This standard does not specify mechanisms for control over this behavior in implementations, and implementations may differentiate themselves on the degrees of control over this capability that they provide.

12 Appendix: Rationale: Uncertainty Discussion
12.1 Element Wildcards (any)
In XSD, the namespace attribute of element wildcards controls the namespace in which the replacement elements occur but declarations don’t necessarily need to exist for the replacement elements. The processContents attribute controls whether schema validation requires that a declaration exists. If the processContents attribute value is set to “skip” or “lax” a declaration does not have to exist but if set to “strict” a declaration must exist. The semantics required by DFDL to control whether an element that matches the wildcard is modelled or un-modelled are not the same as the processContent attribute. Even if processContent is set to “skip” the data may be modelled. Therefore DFDL will use a DFDL specific property
13 Appendix: Rationale: Uncertainty (choice, wildcard) Alternatives Considered

This section contains some ideas that were considered but rejected during the development of the material on uncertainty.

(Most of an earlier proposal is recorded here by way of avoiding repeating these same mistakes as well debate the right definition of these features; however, clearly this section will eventually be deleted from the spec.)
13.1 Speculative parsing and validation

When considering how to handle speculative parsing and validation the following options were considered but rejected because it was decided that the overriding requirement was to separate parsing from logical validation.

a. Mandate that DFDL parsers must always enable XML Schema value validation.

b. The same as b. but allow Schematron assertions that can be used by speculative parsing where additional validation is required to select a branch. This could result in duplication of validation checks in the physical and XML Schema logical layers.

c. Allow XML Schema value validation to be optional but provide a Boolean property when set to true indicates that the DFDL Schema requires value validation to resolve modelled uncertainty. If a DFDL parser attempts to parse the DFDL Schema with XML Schema validation disabled a warning would be issued (The method of issuing the warning would be implementation specific).

13.2 Assertions

The use of Schematron assertions to control modelled uncertainty resolution was considered but it was decided that it is another form of logical validation. It may be useful to use Schematron for specifying validation rules that cannot be handled by XML Schema validation but not to mix it with the parsing of the data.
An alternative way of specifying a condition is to use a Schematron assertion (See Appendix A). This is a more general way of specifying assertions and could potentially be used more generally within a DFDL Schema than the discriminatorCondition. For instance it could be used for more complex validation than provided by XML Schema and for cross element validation. However Schematron assertions are still a form of logical validation and are separate from the conditions required by DFDL to determine the correct branch to take when resolving uncertainty.

13.3 Discriminators

The use of a DFDL discriminatorCondition property was considered but it was decided that the DFDL assertion mechanism was more flexible.
13.4 Un-resolvable modelled uncertainty

For the case where a point modelled uncertainty cannot be resolved from the data alone a parseAsBinary as property was considered to indicate to the parser that the data was to be handled as binary. However, it was decided that this was too implementation specific. Hence a more generic “unresolvableWhenParsing” property was chosen leaving the parser to decide how to handle this scenario.

	Property Name
	Description

	parseAsBinary
	A Boolean property.

1. When set to true the resolution of the modelled uncertainty will be handled as binary without any interpretation of the data. This will allow the data to remain unparsed until the user has decides how it should be resolved. This is only possible when the length of all the branches can be determined (see later discussion of parseAsBinary).

2. When set to false the parser will attempt to resolve the modelled uncertainty using the model. This is the normal behaviour (See further discussion for details)

13.5 Element Wildcards

The use of the XML Schema processContent attribute was considered as a way of specifying whether the data is modelled or self-defining but it was decided that the semantics required by DFDL are different. Some of the rationale is below:

DFDL could adopt the same rules and throw an exception if processContents is set to “strict” and there is no declaration in the DFDL schemas. If this scheme is adopted setting processContent to “strict” can be considered modelled uncertainty because the possible branches are global elements within the given namespace (this includes elements not qualified with a namespace) within the DFDL Schemas. However if processContents is set to “skip” or “lax” the element wildcard can be considered un-modelled uncertainty because a declaration does not necessarily exist within the DFDL Schemas. However in both cases the replacement elements must be qualified by a namespace (or not) corresponding to the namespace attribute of the element wildcard.

A “resolutionMethod” property that controlled where the resolution of an element wildcard could be found was considered but it was decided that it was overly complicated for the requirement. It could have taken one of the 3 following values.

1. Modelled – The element must be found in the model and if not it is an error.

2. Un-modelled – The element will always be self-defining, so is a hint to the parser not to look in the model.

3. Modelled or Un-modelled – Indication to the parser to try to match with the model first and if no match is found to handle as self-defining.

As the number of possible branches that could be matched in an element wildcard is potentially large it was considered giving the user further options to control how the parser locates a match. However once again it was decided that this was overly complicated. The options considered are summarised in the paragraph below.

These are specified as an enumeration of the resolutionMethod property. The useDiscriminator option indicates to the parser to only match with global elements that have specified a discriminatorCondition (discriminatorPosition) on the element or on a sub-element. This option is only applicable to enumerations 1 and 3 of the resolutionLocation property and no attempt will be made to match as self-defining. The useInitiator option will only match with global elements that have an initiator specified on them. This option is applicable to all resolutionLocation enumerations. If no match is found in the model and an initiatorExpression property value has been specified on the wildcard this will be used in an attempt to match with the data. The useExpression option will only match with global elements that have a regular expression specified on them. This option is only applicable to enumerations 1 and 3 of the resolutionLocation property and no attempt will be made to match as self-defining.

Allowing the user to parse self-defining data as binary was considered but there are no known scenarios that require this functionality so it was decided to reject it.

The following table lists the properties that were considered for an element wildcard but were rejected.

	Property Name
	Description

	resolutionLocation
	An enumeration that indicates to the parser where the resolution of the element wildcard will be found.

Modelled - The element must be matched in the model and if not it is an error.

Un-modelled – The element will always be self-defining, so is a hint to the parser not to look in the model.

Modelled or Un-modelled – Indication to the parser to try to match with the model first and if no match is found to handle as self-defining. (This is the default if the resolutionLocation property is not specified)

	resolutionMethod
	An enumeration that controls the method that the parser uses to match the element wildcard. If this property is not specified the parser will use speculative parsing.

useDiscriminator – Only attempt to match with global elements that have specified a discriminatorCondition on the element or sub-element.

useExpression – Only attempt to match with global elements that have a regular expression specified on them.

useInitiator – Only attempt to match with global elements that have an initiator. If no match is found it can match the element as self-defining if an initiator pattern has been specified on the wildcard.

parseAsBinary – Parse as self-defined and handle the data as hex binary. Requires a length on the element wildcard.

	initiatorExpression
	A regular expression used to match an initiator in a self-defining element.

	length
	Length used when parsing the data as self-defined hex binary. The value of this property can be a fixed value, an XPath expression or a regular expression that is to be applied to the data.

14 Appendix: Default Values Rationale
A default value must always be a valid value for the given type of the element (TBD or attribute). However a null value in an element can be out-of-bound; that is not a valid value for the type of the element. For instance in COBOL a user may fill an element with LOW-VALUES or HIGH-VALUES.

XML Schema does not support null handling for attributes (if supported by DFDL) so DFDL will also disallow it. I don’t think this will be an issue because most users of DFDL will not be using attributes unless the model comes from XML in which case null handling will not be expected for attributes. This allows DFDL to use the xsd:nillable attribute of XML Scheman element declarations to control null handling.

XML Schema supports the xsd:nillable attribute for elements that have a simple type or a complex type with either simple or complex content. This is supported in XML documents using the xsi:nil attribute in instance documents. However this is not so easy to support in DFDL because a value has to be specified which is identified as the null value or the value is missing from the document.

TBD: There are several options as to how this could be supported:

1. Only allow nillable on elements that have a simple type or have a complex type with simple content (this is the same as default values)

2. Allow nillable on all elements and allow the nullValueKind and nullValues properties to be specified for both simple and complex elements. For complex elements check for this value before parsing as a complex element.

3. Allow nillable on all elements and treat a complex element as null only if the nullIndicatorPath and nullIndicatorIndex indicates it is null.

Although XML Schema default handling is different for attributes and elements DFDL will not distinguish between attributes and elements. The XML Schema ‘default’ or ‘fixed’ attribute of an element or attribute declaration will be used by DFDL for specifying a default value. From a defaulting perspective there is no difference between a ‘default’ or ‘fixed’ attribute value. The difference is that if the element appears in an instance document it must equal the value of the ‘fixed’ attribute if present. The ‘default’ and ‘fixed’ attributes are mutually exclusive.

XML Schema only supports default values for elements that have a simple type, a complex type with simple content or mixed content. As the support of mixed content is not supported by DFDL only elements that have a simple type or a complex type with simple content (if complex types with simple content are supported by DFDL) will be supported.
15 Appendix: Hex Literal Encoding: Rejected Approach

We rejected a scheme by which a string literal would be specified in hex by specifying a separate control property indicating the 'language' that the literal was expressed in. Hex and text were the two enums for this we envisioned. This has been rejected in favor of an escape sequence which allows any string literal to contain a mix of hex bytes and text characters.

The rejected approach used specifying the '…encoding' attribute when specifying the literal string. For example:

<xs:annotation>

<xs:appinfo source="http://dataformat.org/">

<dfdl:format

separator=”2C”

separatorEncoding="hex />

(Note that we now use separatorEncoding to indicate the character set encoding of the data for the separator, not to describe the nature of the string literal in the schema being hex or text).

In the example, we see the separator property works with an additional modifying property which specifies that the separator property is specified in hex. The default value for the separatorEncoding attribute is ‘text’, and values ‘hex’ and ‘regexp’ are available to indicate that the separator syntax is either hexadecimal digits, or regular expression syntax. The default value ‘text’ means that the separator is specified as a string literal in the character set of the schema.

The additional encoding attributes are:

· initiatorEncoding

· terminatorEncoding

· separatorEncoding

· nullReservedValuesEncoding (only for string type elements or elements with text repType)

· fillCharEncoding, fillStringEncoding

· alternateZeroRepresntationEncoding.

There are other rep. properties that must be strings, but DFDL does not allow encoding for them: digitGroupingSeparator, decimalSeparator, exponentCharacters, date pattern, time pattern, and duration pattern.
16 Appendix TBD: MIssing Topics/Discussion

1. Associating DFDL with data - embedded, prefix, referenced, etc. Once you do this, there's lots of other metadata that wants to be tightly associated with the data too: Semantic tagging - attaching provenance information, documentation, data owner, checksums and digital signatures, sample data, and all other sorts of metadata. (This is all clearly beyond scope, but do we want to say something about there being some standard way to do the binding of DFDL to data. This is doable using layering at minimum. I.e., zip your data, base100 encode it, then express your data layout as on top of that representation via layering and a black box unzip and decode of the single element which is all the data. It would also be relatively easy to describe a file containing an XML prefix which is a textual element followed by the rest of the data in binary form. This would let you slam some XML header that points at a DFDL schema on the front of data. The schema just has to include description of the XML header too or how to skip over it.)

17 Appendix: TBD List:

In previous spec (from 2005)

· Data Source Indirection - (as part of layering) - also described in prior spec, but needs work as it is parse-direction only as described there.

In primer (ggf-dfdl-primer-005.doc has discussion)

· associating DFDL with data

· implied XML schema

· 'the leverage of using XSD'
18 Appendix: Rationale for no "Top-Down" support

Top Down = start from XSD. Add annotations to describe format

Bottom Up = start from format, structure of DFDL/XSD is dictated by format

The top down approach suggests that we support features of XSD people will want in XSD schemas. The top down approach means people start from an XSD and want to annotate it to make it describe a physical format.
The bottom up approach suggests that we support only what we need from XSD. Can be a very small subset. The bottom up approach suggests that people start from the data format and the XSD emerges from it.
These features are coupled and should all be decided together

· attributes

· xs:all groups

· substitution groups

· complex type derivation

· max/minOccurs on non-elements (on sequence/all/choice)

· types: gYear, gMonth, gDay, etc.

Resolution: Suggest - no top down support for v1.0

· Note: we do expect some people to want to use a top-down approach

Note: There is a 3rd use case. User doesn't yet have an XML Schema, but wants to develop one. Start from DFDL, but there are some other constraints on the way they want it to come out. Related to top-down, but fuzzier since there is no real pre-existing XSD. In this 3rd use case it might be reasonable to have say, attribute support, but not complex type derivation, or not substitution groups.

Note: One can also use XSLT to meet that kind of requirement.

19 Appendix: Removed Text
Contiguous representation – When all the bits that make up a data item are found adjacent to each other then that data item is said to have a contiguous representation. Note that alignment padding is allowed between bits and we would still think of the representation as contiguous, but bits containing the representation of any other data item are not allowed in between.

Discontiguous representation – When some of the bits making up the representation of an item are not adjacent to the others and are separated from them by part or all of the representation of other data elements, then the item is said to have a discontiguous representation.

Referential transparency – When a definition can be named and moved to another location and referenced from the original location without changing the meaning of the schema, then the schema is said to be referentially transparent. That is, whether something is included directly or referenced doesn't matter. Referential transparency must take into account that you can't literally take the XSD referenced definition/declaration text and move it without taking into consideration the namespaces may change from the referenced schema to the referencing schema. (Could have different target namespaces.) But conceptually, if you keep all the symbols in the right namespaces, moving the definition from point of definition to the point of reference should not change the meaning of the schema.

· TBD: ok to rule out model groups with occurances for v1.0? If we want these I think we'll have to use the 'id' attribute of groups to make them pseudo nodes addressable from DFDL expressions.

· TBD: can we restrict to just two cases? either (maxOccurs = 1 and minOccurs=1), or (minOccurs=0, and maxOccurs >=1). In other words, the minOccurs on variable length things is always zero? I think this restriction would simplify DFDL v1.0 considerably.

Note that the DFDL extensibility mechanisms (TBD reference) allow the set of properties to be expanded. By default a new property binding can be placed on any of the construct-specific annotations as well as on dfdl:format or used in short form as a non-native attribute. The extensibility mechanism also provides a means to restrict which construct-specific annotations on which the property can be bound. (TBD reference to section on how to do this.)

In order to preserve the ability to use attribute declarations as part of the logical model in a future version of DFDL, we currently reserve the use of applies='hereOnly' on complexType declarations.

Aggregate - In XSD the constructs which can have multiple children are xsd:sequence groups, , and the vectors implied by use of multiple-occurrences. Collectively these are referred to as aggregate constructs or aggregates.

All groups and setVariable: Note that this implies variables will generally be used for scopes which include a sequence group since 'all' groups do not specify the order that the contained constructs will be encountered; hence, one cannot reliably depend on the proper order of the setVariable annotation relative to where the variable is referenced.

· dfdl:useTypeAlias (TBD: still doing this?) - associates a type having format information so that all occurances of an unadorned type will use the alias type which includes the format information instead.

· Resolving substitution groups
using a discriminating DFDL assertion on the substitution group members

This example is the same as the previous variable example except that a substitution group is used in place of the choice.

<xsd:element name=”envelope”>

<xsd:complexType>

<xsd:sequence>

 <xsd:annotation><xsd:appinfo source=”http://dataformat.org/”>

 <dfdl:defineVariable name=”MSG_ID” type=”xsd:string”/>

 </xsd:appinfo></xsd:annotation>

.......

<xsd:element name=”metaData”>

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name=”messageType” type=”xsd:string”

 dfdl:setVariableName=”MSG_ID”

 dfdl:setVariableValue=”{ $(.) }”/>

 </xsd:sequence>

 </xsd:complexType>

</xsd:element>

.......

<xsd:element name=”textBlock”>

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref=”mess0”/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 </xsd:sequence>

</xsd:complexType>

 </xsd:element>

 <xsd:element name=”mess0”/>

<xsd:element name=”mess1” subsitutionGroup=”mess0”>

 <xsd:annotation>

 <xsd:appinfo source=”http://dataformat.org/”>

 <dfdl:assert test=”$ibm:MSG_ID == ‘id1’"

 discriminator=”true”

 timing=”before”>Message not id1</dfdl:assert>
 </xsd:appinfo>

 </xsd:annotation>

<xsd:complexType>

.......

</xsd:complexType>

</xsd:element>

<xsd:element name=”mess2” substitutionGroup=”mess0”>

 <xsd:annotation>

 <xsd:appinfo source=”http://dataformat.org/”>

 <dfdl:assert test=”$ibm:MSG_ID == ‘id2’"

 discriminator=”true”

 timing=”before”>Message not id2</dfdl:assert>
 </xsd:appinfo>

 </xsd:annotation>

<xsd:complexType>

.......

</xsd:complexType>

</xsd:element>

<xsd:element name=”mess3” substitutionGroup=”mess0”>

 <xsd:annotation>

 <xsd:appinfo source=”http://dataformat.org/”>

 <dfdl:assert test=”$ibm:MSG_ID == ‘id3’"

 discriminator=”true”

 timing=”before”>Message not id3</dfdl:assert>
 </xsd:appinfo>

 </xsd:annotation>

<xsd:complexType>

.......

</xsd:complexType>

</xsd:element>

DPath:

Location Paths are evaluated with respect to their Initial Context. The Initial Context is the Context before any of the path’s steps have been evaluated. Each step in the path selects the set of nodes that have the specified relationship to the current Context node. Independent Location Paths are always evaluated with respect to the Initial Context. This is one of the primary differences between XPath and DPath. In XPath, independent Location Paths are evaluated with respect to the current Context. The example below illustrates the difference.

TBD: It would be better to be consistent with XPath, but it makes expressions quite hard to work with the way XPath's rules work. If we had XQuery like 'let' variable binding this issue goes away. So we need XQuery, or at least XPath with 'let' added to it if we want to avoid this digression from the way XPath works.

	Location Path

	<xs:element name=”top”>

 <xs:element name=”foo” type="xs:int"/>

 <xs:element name=”bar” type="xs:int"

 dfdl:valueCalc="{ /top/foo[position()] }"/>

 </xs:element>

</xs:element>

	XPath Interpretation
	DPath Interpretation

	The position() function is evaluated on the element “foo” because it is the context node.
	The position() function is evaluated on the element “bar” because it is the Initial Context node.

19.1.1 Escapes for Disallowed Character Codes in String Literals

DFDL schemas are XML documents themselves. However, certain character codes are disallowed in XML syntax, and are not allowed as part of the XML Infoset, yet we need to specify those character codes in delimiters, patterns, enumerations of allowed values for restricted types, default values, null reserved values, and so forth since they can clearly appear in real (non-XML) data representations.

Hence, an escape convention is required which allows us to indicate that the string literal contains the needed character code while not requiring the character code to be part of the XML document that is the DFDL schema.

This escape convention is needed for XML 1.0 for these Unicode character codes:

#x0-#x8 #xB #xC #xE-#x1F #xD800-#xDFFF #xFFFE #xFFFF

In addition, a character entity must be used to express #xD. ("")
.

In XML 1.1 (draft, not yet standard as of 2005-03-01), there are fewer restrictions. An escape is needed for these character codes:

#x0 #xD800-#xDFFF #xFFFE #xFFFF

In addition, a character entity must be used to express #xD as in XML 1.0.

Note that these character codes are truly disallowed by XML. Their values are not allowed in the XML Infoset at all. You cannot disguise them using regular XML character entities like: "�" or "&xD804;" since these character entities are removed at the time the XML document (like a DFDL schema) is read in as an XML document; hence, the document would still contain these illegal-for-XML character codes.

To overcome these XML restrictions all string literals in DFDL schemas will support these escape sequences:

· “\#D…;” (“D…” denotes digits) inserts a single character with the character code given by the base 10 decimal value.

· “\#xH…;”(“H…” denotes hex digits) inserts a single character with that code value.

· “\\#” inserts a literal “\#” pair of characters.

TBD: Susan Malaika of IBM suggested this is a general w3c issue that transcends just the DFDL group. There ought to be a standard way to talk about characters with these reserved character codes inside XML documents.

All characters specified using these escape sequences are still subject to character set translation. For example, if you specify:

<?xml version="1.0" encoding="UTF-8" ?>

....

....

....<dfdl:format encoding='ebcdic-cp-us' separator="\#x2C;"/>

.....

then this separator, 0x2C which is a Unicode comma, will be translated from the Unicode codepoint to the corresponding EBCDIC codepoint (which is 0x6B) before comparing it with any data.

To completely avoid character set translation and directly specify in hex the value to be compared against the data, use the "%" escape described above.

Rationale for omitting \# escapes:

· Distinction:

· \#xHHHHHH; inserts a character in the character set of the DFDL schema, into the string litteral. These string literals are translated into the character set of the data format for use at run time.

· example

· DFDL schema has <?XML version="1.0" encoding="ascii"?>

· string literal says: "abcd\#x09;efg"

· x09 is an ascii tab(HT) character

· DFDL annotation says encoding="ebcdic-cp-us"

· the \#x09; will be translated into x05, the ebcdic tab (HT)

· Advantage: You can change the encoding="ebcdic-cp-us" annotation to "ascii", the format specification will still be correct when used on ascii data files

· %HH inserts a hex byte into a string literal. The hex byte is not changed by translations applied to the other characters of the string.

· example

· same, but string literal says "abcd%05efg"

· the %05 is not translated

· issue: if you changed the DFDL annotation from encoding="ebcdic-cp-us" to encoding="ascii", the format specification is broken! You must fix the string literal to match.

· Issue: definition of translation tables. Lots of dead spots where there is no sensible translation.

· Proposed that #xHHHHHH; is not needed. Translation of any of the XML disallowed characters would be very confusing anyway.

· E.g., \#x2E; (ebcdic ACK character) has no corresponding character defined in ascii

· E.g., most unicode codepoints above xFF have nothing corresponding in ebcdic or ascii

· Suggest: %HH is enough for now.

· Resolution: yes, %HH is enough for v1.0

Selector - Used to describe predicate tests which select which of multiple different annotations on a schema construct will be interpreted. This is used to allow the same logical schema to hold multiple sets of incompatible format annotations without them interfering with eachother. (TBD: - used to be called 'guard' or 'test'. Standardized name to 'selector' We reserve 'guard' for it's use in the conversions section.)

Special Attributes of format annotations:

· 'selector' used when a single schema contains multiple distinct format descriptions. See Section 11 Selectors on Annotations.

20 Selectors on Annotations.

All the DFDL annotation elements have an optional 'selector' attribute. The selector contains a Dpath predicate expression. The rest of the annotation element is only visible to the DFDL processor if the predicate evaluates to a non-Null value that is not FALSE.

This can be used to set values conditionally. For example, the following sets the value of numberOfElements to 5 if and only if it has a sibling called size which evaluates to the string “small”:

<dfdl:set name=”$numberOfElements” value=”5” type=”xs:int”

 test=”../size=’small’”/>

It also allows set statements that only apply if the value they refer to has not, already been set:

<dfdl:set name=”$numberOfElements” value=”5” type=”xs:int”

 test=”not($numberOfElements)”/>

20.1 Selectors are Orthogonal to Scoping

TBD: example to illustrate that selectors can be used to choose different baseFormats. Example should be of the envelope payload idiom with radically different baseFormats. Alternative: reference the section of the spec. on selectors and put the example there.

· dfdl:defineStream - used to create a correspondence between a logical data model and of multiple input/output sources. Alternatively, used to create layered representations where a format description is broken up into multiple descriptions which are layered on top of each other such that the logical model of one is the representation layer of another.

Data Source Indirection

See Section 36 Appendix: Rationale for Layering and Data Source Indirection Features, for discussion of the motivation for this feature.

TBD: whole section including motivating example (payload/envelope layered idiom).

20.2 Linked Properties

TBD: are linked properties needed. That is, is generality needed here, or can the conversions that use these linked properties provide the back-down strategy that says if separatorEncoding is not found in scope then it will use encoding instead. Perhaps there is no general 'linking' mechanism needed. Arguments that they are needed are like this: If we find we need these for all the encoding-related properties (encoding, BOM stuff, byteOrder, etc.) then user-defined extensions will also potentially need this same capability.
Some properties are linked. For example, separatorEncoding is linked to the ordinary 'encoding' property in that if there is no definition found for separatorEncoding, then we would like to use the encoding property as its value.

This is achieved by use of an expression which explicitly links the two.

 <dfdl:format separatorEncoding='{ $dfdl:encoding }' />
This property definition indicates that separator encoding is to get its value from the encoding property. A definition like the above frequently exists in a base format specification. Bindings of new values for the separatorEncoding property are very infrequently used; hence, it is most convenient to have just one property to control the character set encoding for all text in the data.

Linked properties bring up the issue of when the link is followed. When the original property value is determined to be a link to another property (via the normal context lookup rules described below), then the linked property's value is then determined starting all over from the innermost context where the original lookup began.
This is easy to clarify with an example:

 <xs:annotation><xs:appinfo source=”http://dataformat.org/”>
 <dfdl:defineFormat

 name="myFormat

 separatorEncoding='{ $dfdl:encoding }'/>

 </xs:appinfo></xs:annotation>

 <xs:complexType name="myType">

 <xs:annotation><xs:appinfo source=”http://dataformat.org/”>

 <dfdl:format encoding="ascii" ref="myFormat"/>

 </xs:appinfo></xs:annotation>

 <xs:sequence separator=","> <!-- separator encoding is ascii -->
 ...

 </xs:sequence>

</xs:complexType>

In the above, the top level format definition named 'myFormat' defines the separatorEncoding property to be linked to the regular 'encoding' property. Now, inside the type definition 'myType' the sequence has a separator specified. The separatorEncoding property is not defined, so it will be looked up in the context. The only place it will be found in the context is via the baseFormat reference to 'myFormat' where it will be determined to be a link to the encoding property. The value for the encoding property is then determined starting from the point of the original sequence. Since there is no encoding property specified directly, the encoding is looked up in the context. There a definition is found which was provided by the annotation on the complexType 'myType'. So that binding value for encoding is used as the value for separator encoding.

Note: The base format definitions supplied with DFDL will likely link all variations of encoding to 'encoding', all variations of byteOrder to 'byteOrder', all variations of bomRequired to 'bomRequired', and so forth.

	textStringPadCharacter
	String.
Linked to textPadCharacter.
The padding character to used in conjunction with textStringJustification.

May be character or hex or Unicode
.

(TBD: how to specify hex literal)

In variable-width character sets, this character must be a minimum-width character.
[OMG/CAM property paddingCharacter]
Annotation: dfdl:element (simple type ‘string’)

	textStringTrimKind
	Enum

Linked to textTrimKind.

Valid values ‘none’, ‘padChar’, ‘leadingWhitespace’, ‘trailingWhitespace’, ‘bothWhitespace’

Indicates whether to trim data on input.

Normally only white space may be trimmed in this manner, but if lengthKind is ‘fixed’ then the padding character can be trimmed instead, as controlled by textStringJustification.

Annotation: dfdl:element (simple type ‘string’)

	textNumberPadCharacter
	String.
Linked to textPadCharacter.
The padding character to use in conjunction with numberJustification.

Behaviour as for textStringPadCharacter

Annotation: dfdl:element (simple type ‘number’)

	textNumberTrimKind
	Enum

Linked to textTrimKind

Valid values ‘none’, ‘padChar’, ‘leadingWhitespace’, ‘trailingWhitespace’, ‘bothWhitespace’

Indicates whether to trim data on input.

Behaviour as for textStringTrim.

Annotation: dfdl:element (simple type ‘number’)

	textCalendarJustification
	Enum

Linked to textStringJustification.

Valid values ‘left’, ‘right”, ‘none’

Controls what happens on output when the actual length of a text calendar is different from the specified length.

Behaviour as for textStringJustification.

Annotation: dfdl:element (simple type ‘calendar’)

	textCalendarPadCharacter
	String.
Linked to textPadCharacter.
The padding character to use in conjunction with textCalendarJustification.

Behaviour as for textStringPadCharacter

Annotation: dfdl:element (simple type ‘calendar’)

	textCalendarTrimKind
	Enum

Linked to textTrimKind.

Valid values ‘none’, ‘padChar’, ‘leadingWhitespace’, ‘trailingWhitespace’, ‘bothWhitespace’

Indicates whether to trim data on input.

Behaviour as for textStringTrim.

Annotation: dfdl:element (simple type ‘calendar’)

	initiatorEncoding
	Enum.

Linked to the encoding property.

Values are IANA charsets, or CCSIDs. See the 'encoding' property..

Annotation: dfdl:element, dfdl:sequence, dfdl:choice

	initiatorByteOrder
	Enum

Linked to the byteOrder property.

Valid values ‘bigEndian’, ‘littleEndian’.
Provides the byte order when initiator encoding is UTF-16 and UTF-32.
Annotation: dfdl:element, dfdl:sequence, dfdl:choice

	initiatorBomRequired
	Enum

Linked to the bomRequired property.

Valid values ‘always’, ‘never’, ‘onInput’, ‘onOutput’

Policy for handling byte order mark when initiator encoding is UTF-16 and UTF-32.

Annotation: dfdl:element, dfdl:sequence, dfdl:choice

	
	

	terminatorEncoding
	Enum.

Linked to the encoding property.

Values are IANA charsets, or CCSIDs. See the 'encoding' property..

Annotation: dfdl:element, dfdl:sequence, dfdl:choice

	terminatorByteOrder
	Enum

Linked to the byteOrder property.

Valid values ‘bigEndian’, ‘littleEndian’.
Byte order when terminator encoding is UTF-16 and UTF-32.
Annotation: dfdl:element, dfdl:sequence, dfdl:choice

	terminatorBomRequired
	Enum

Linked to the bomRequired property.

Valid values ‘always’, ‘never’, ‘onInput’, ‘onOutput’

Policy for handling byte order mark when terminator encoding is UTF-16 and UTF-32

Annotation: dfdl:element, dfdl:sequence, dfdl:choice

	separatorEncoding
	Enum.

Linked to the encoding property.

Values are IANA charsets, or CCSIDs. See the 'encoding' property..

Annotation: dfdl:sequence,

	separatorByteOrder
	Enum

Linked to the byteOrder property.

Valid values ‘bigEndian’, ‘littleEndian’.
Byte order when separator encoding is UTF-16 and UTF-32.
Annotation: dfdl:element, dfdl:sequence, dfdl:choice

	separatorBomRequired
	Enum

Linked to the bomRequired property.

Valid values ‘always’, ‘never’, ‘onInput’, ‘onOutput’

Policy for handling byte order mark when separator encoding UTF-16 and UTF-32.

Annotation:dfdl:sequence

	occursSeparatorEncoding
	Enum.

Linked to the encoding property.

Values are IANA charsets or CCSIDs. See the 'encoding' property..

Annotation: dfdl:element, dfdl:choice, dfdl:sequence

	occursSeparatorByteOrder
	Enum

Linked to the byteOrder property.

Valid values ‘bigEndian’, ‘littleEndian’.
Byte order when occurs separtaor encoding is UTF-16 and UTF-32.
Annotation: dfdl:element, dfdl:sequence, dfdl:choice

	occursSeparatorBomRequired
	Enum

Linked to the bomRequired property.

Valid values ‘always’, ‘never’, ‘onInput’, ‘onOutput’

Policy for handling byte order mark when occurs separator encoding is UTF-16 and UTF-32.

Annotation: dfdl:element, dfdl:sequence, dfdl:choice

20.3 Omni-view

The omniview of the document is the document that would be constructed if all the hidden elements were taken out of their annotations. DFDL parsers MAY also provide a mode of operation would construct this XML document.

Hidden elements MAY be accessible to the application through a special API.

· dfdl:useConversion - explicitly uses a conversion

20.4 Defining Data Streams

The name of the current stream from which data is being extracted is maintained in the Context. The default source stream is called “stdin” and is of type “xs:byte”. The name of the current stream is held in a property called “source”.

The DFDL document begins parsing against “stdin”. At any point in the parsing the source stream can be switched either by choosing an alternative input source (e.g. a file, url or data stream) or by applying a conversion to the existing stream.

.....

The next example above applies a conversion (which must have been defined and registered with the parser) that, in this case, decompresses the data.
</xs:annotation>
 <xs:appinfo>

<dfdl:defineStream name=”uncompressed" applyConversion=”gunzip"/>

<dfdl:useStream name=”uncompressed”/>

</xs:appinfo>
</xs:annotation>
20.5 Explicit conversion selection
At any point in the document traversal, if the DFDL parser reaches an explicit “useConversion” annotation it will apply the conversion to the data from the current source stream to populate the DFDL element or model group that the annotation is associated with. If the results of the conversion do not match the type of the element then a runtime error is returned
.

<xs:element name="testElement" type="xs:string">

<xs:annotation>

<xs:appinfo>

<dfdl:useConversion name=”pigLatin" test=”$pigLatin=’on’”/>

</xs:appinfo>

</xs:annotation>

</xs:element>
If the optional test condition is present then the statement is only applied if the test condition is satisfied.

21 Uncertainty in DFDL
21.1 Substitution groups

Substitution groups

can be considered a form of modelled uncertainty because the choice is between the head element and the member elements that specify the head element as a substitution group. Note that substitution groups may be multi-levelled. That is a member of a substitution group maybe the head of another substitution group. Members of a substitution group do not necessarily have to be in the same namespace as the head element. The type of members of a substitution group may be restrictions of the type of the head element. Thus the only difference between the head element and a member element may be facets that have been specified on the member. Therefore it may not be possible to distinguish the substituted element from the data types alone.

21.2 Element Wildcards (xs:any)
 (Self-defining)

As discussed previously element wildcards are the only form of un-modelled uncertainty. Also, even when element wildcards are modelled the number of branches could potentially be large. Therefore using the default mode of speculative parsing could potentially be expensive in terms of performance. One option is to allow the user to specify whether the resolution of the wildcard will be modelled or whether it will be self-defining
.
 Thus it will prevent the parser having to search the model when it is known that the matched data is self-defining. This can be achieved by a “modelled” boolean property that if set to true indicates that the resolution of the wildcard is modelled and if set to false it indicates tat the data is self-defining. The presence of the “modelled” property also means that it is not necessary to use the XML Schema processContent attribute to decide where to find the resolution of the element wildcard.

When the “modelled” property is set to true the default mode of speculative parsing is applicable. However a difference is that the set of possible branches is not explicitly specified but consists of the set of global elements in the set of DFDL Schemas. Although the set of global elements could be narrowed down by the XML Schema namespace attribute of the xsd:any element.

The “unresolvableWhenParsing” property may also be set to true for an element wildcard. In this case it is left to the parser to decide how to handle the parsing, as with the other types of modelled uncertainty.

If the “modelled” property is set to false the data is not modelled. In this case the parser must decide whether it has enough information to parse the data as self-defining. To parse as self-defining it must be possible to determine the end of the data. As there is no model information to specify the length there must be some piece of markup or the end of the data to indicate the end of the element. Thus this scenario is only be supported in a delimited environment. That is the parent specifies a separator value or the wildcard (xs:any) itself specifies a terminator. The end of the data for the wildcard could also possibly be delimited by the separator or some delimiting markup from a higher level in the model. This is based on the assumption that the delimiter does not appear anywhere in the data. As self-defining data is only allowed in a delimited environment it will be handled as a string, not as binary. (Binary data can be handled via the encoding="bytes" mechanism. See SectionError! Reference source not found..) The name to be associated with the data

must be auto-generated unless an initiator can be found which can be used as the name of the data. To determine whether an initiator exists an initiatorSeparator property is required that will allow the initiator to be extracted (fixed length tags are not allowed). The match should be done on the data extracted using the separator. If an initiator is found it will be used as the name and the remaining characters will be handled as the data. On output if the name is auto-generated just the data will be output. If the name is not auto-generated the name of the element will be output followed by the initiatorSeparator and the data.

21.3 Late Binding of DFDL Schemas

There are scenarios where not all the DFDL Schemas that are required to parse a document are known at the start of the parse. For instance the X12 standard has an outer envelope message that contains a version element. This version element determines which DFDL Schema is the model for the embedded body messages.

This is supported by extending the discriminator mechanism described previously. To locate a DFDL Schema a discriminating DFDL assertion is specified in each DFDL Schema at the top level which is used to identify that particular schema. All the DFDL Schemas are placed in a common location. This common location would then be passed as a parameter to the parser in an implementation-dependent manner. Also the variable to be used in the schema discriminating DFDL assertion described below must be available when evaluating the test condition.

At the point in the envelope where the payload message is to appear an element wildcard (xsd:any) would be defined in the outer DFDL Schema. On this element wildcard a “dfdl:useSchemaDiscriminator” boolean property would be set to true which indicates that a new DFDL Schema needs to be found and that the discriminating DFDL assertion at the Schema level has to evaluate to true for a match to be successful. During the parse of the outer envelope, prior to the element wildcard, a variable would be set which holds the version number to be used in the identification of the inner DFDL Schema. The value would then be used in the schema discriminating DFDL assertion to locate and load the correct inner DFDL Schema prior to parsing the payload message. As to how the lookup is done would be left to the implementation of the parser.

For instance a hypothetical command line DFDL parser would take the following parameters in this scenario:

1. A URL of the Schema that models the outer envelope

2. The location of the Schema files that model the payload messages

3. The location of the instance data to parse

4. The name of the envelope message

TBD: A disadvantage of this mechanism is that a variable has to be set in the envelope message which is then used in a discriminating DFDL assertion which is defined within the DFDL Schemas to be bound later. It is also possible that another variable would be have to be set to identify the correct global element, within the inner DFDL Schema, that models the payload message.
21.4 Properties for Uncertainty

	Property Name
	Description

	modeled

	Boolean

If ‘true’ only modeled global elements can appear in place of this element wildcard..
When set to false indicates that the resolution of the element wildcard is self-defining. See Section TBD on Uncertainty

Annotation: dfdl:any

	useSchemaDiscriminator
	Boolean

If true then the DFDL Schema containing the element to match this wildcard is determined dynamically using a DFDL assertion.

If false then the DFDL Schema containing the element to match this wildcard must be already part of the full schema being processed.

See Section TBD on late binding.

Annotation: dfdl:any

21.5 Clarifying Examples for Uncertainty
21.5.1 Resolving an element wildcard as self-defined

The following example shows how to model an element wildcard that is to be resolved as self-defining with no initiator. This can be handled by DFDL because we have enough information about the syntax of the data to determine the length of the element wildcard (xs:any) using the delimiter information.

<xsd:element name=”OuterElem”>
 <xsd:complexType>

 <xsd:sequence dfdl:separator=”#” dfdl:separatorType=”infix”

 dfdl:terminator=”}”>

 <xsd:any processContent=”lax”

 dfdl:modelled=”false”/>

 </xsd:sequence>
 </xsd:complexType>

</xsd:element>
21.5.2 Resolving an element wildcard as self-defined tagged data in a delimited environment

The following example shows how to model an element wildcard that is to be resolved as self-defined with a tag

<xsd:element name=”OuterElem”>

 <xsd:complexType>

 <xsd:sequence dfdl:separator=”#” dfdl:separatorType=”infix”

 dfdl:terminator=”}”>

 <xsd:any processContent=”lax”

 dfdl:modelled=”false”

 dfdl:initiatorSeparator=”:”/>

 </xsd:sequence>

 </xsd:complexType>

</xsd:element>

21.5.3 Resolving element wildcards using a schema discriminating DFDL assertion and a discriminating DFDL assertion on the global elements

This example is the same as the previous choice variable example except that an element wildcard is used in place of the choice and the global elements that can be matched within the element wildcard are defined within another DFDL Schema that is determined by a version element within the envelope metadata.

The below is envelope.xsd
<xsd:element name=”envelope”>

 <xsd:complexType>

 <xsd:sequence>

 <xsd:annotation>

 <xsd:appinfo source=”http://dataformat.org/”>
 <dfdl:defineVariable name=”SCHEMA_ID” type=”xsd:string”/>

 <dfdl:defineVariable name=”MSG_ID” type=”xsd:string”/>
 </xsd:appinfo>

 </xsd:annotation>

.......

 <xsd:element name=”metaData”>

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name=”version” type=”xsd:string”

 dfdl:setVariableName=”SCHEMA_ID”

 dfdl:setVariableValue=”{ (.) }”/>

 <xsd:element name=”messageType” type=”xsd:string”

 dfdl:setVariableName=”MSG_ID”

 dfdl:setVariableValue=”{ (.) }”/>

 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name=”textBlock”>
 <xsd:complexType>

 <xsd:sequence>
 <xsd:any processContent=”strict”

 dfdl:useSchemaDiscriminator=”true”

 dfdl:modelled=”true”/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>

</xsd:element>

The below is: v1_schema.xsd

<xsd:schema …>
<xsd:annotation>

 <xsd:appinfo source=”http://dataformat.org/”>

 <dfdl:assert test=”$ibm:SCHEMA_ID

== ‘v1’"

 discriminator=”true”

 timing=”before”>Schema not v1</dfdl:assert>
 </xsd:appinfo>

</xsd:annotation>

<xsd:element name=”mess1”>

 <xsd:annotation>

 <xsd:appinfo source=”http://dataformat.org/”>

 <dfdl:assert test=”$ibm:MSG_ID == ‘id1’"

 discriminator=”true”

 timing=”before”>Message not id1</dfdl:assert>
 </xsd:appinfo>

 </xsd:annotation>

 <xsd:complexType>

 </xsd:complexType>

</xsd:element>

<xsd:element name=”mess2”>

 <xsd:annotation>

 <xsd:appinfo source=”http://dataformat.org/”>

 <dfdl:assert test=”$ibm:MSG_ID == ‘id2’"

 discriminator=”true”

 timing=”before”>Message not id2</dfdl:assert>
 </xsd:appinfo>

 </xsd:annotation>

 <xsd:complexType>

 </xsd:complexType>

</xsd:element>

</xsd:schema>

The below is v2_schema.xsd

<xsd:schema …>

<xsd:annotation>

 <xsd:appinfo source=”http://dataformat.org/”>

 <dfdl:assert test=”$ibm:SCHEMA_ID == ‘v2’"

 discriminator=”true”

 timing=”before”>Schema not v2</dfdl:assert>
 </xsd:appinfo>

</xsd:annotation>

<xsd:element name=”mess1”>

 <xsd:annotation>

 <xsd:appinfo source=”http://dataformat.org/”>

 <dfdl:assert test=”$ibm:MSG_ID == ‘id1’"

 discriminator=”true”

 timing=”before”>Message not id1</dfdl:assert>
 </xsd:appinfo>

 </xsd:annotation>

 <xsd:complexType>

 </xsd:complexType>

</xsd:element>

<xsd:element name=”mess2”>

 <xsd:annotation>

 <xsd:appinfo source=”http://dataformat.org/”>

 <dfdl:assert test=”$ibm:MSG_ID == ‘id2’"

 discriminator=”true”

 timing=”before”>Message not id2</dfdl:assert>
 </xsd:appinfo>

 </xsd:annotation>

 <xsd:complexType>

 </xsd:complexType>

</xsd:element>

</xsd:schema>

22 Variables Usage Scenarios

22.1 Variable Usage Scenarios

Example scenarios for variables are:

1. The value of a markup property such as a separator or terminator is determined by a character in a service string element that occurs earlier in the document. The service string is often defined in an outer envelope message and the inner payload message, defined in another Schema, references the service string. An important point to note is that the inner payload message is not necessarily aware of the structure of the envelope message. Therefore it is difficult to use an XPath location path to reference the service string from the payload message.

2. The length of an element is determined by the value of a preceding element in the document that is not simply adjacent, but is in some prior header or envelope.

3. The number of times an element repeats is determined by the value of a preceding element in the document that is not simply adjacent, but is in some prior header or envelope.

4. A payload message that appears within an envelope message is determined by a preceding element in the document that is modelled by the envelope message. In this scenario there are 2 levels of reference required. An element wildcard in an envelope message references an earlier element in the same message. The value of this element is then used to identify the inner message (global element) that is to appear in the position of the element wildcard. The definition of the inner message will often be defined in a different Schema to that of the outer envelope message.

The following sections show how the previous scenarios could be modelled using user-defined properties.

22.1.1 Scenario 1

Where markup values are dependent on the value of a field. For example in the EDI message standards a field is defined as a service string and characters within this field control the values used in markup. To use the variable mechanism in this scenario the service string would have to be modelled as a complex element with simple element children for each of the characters in the service string. Each of the simple element children will have a variable corresponding to it. The name of the variable will depend on the meaning of the character. For instance EDI would use values such as "EDIFACT_DS", "EDIFACT_CS" etc… These variables' values will be used in markup properties such as separators and terminators. These markup properties could contain one or more of these variable values. Therefore the markup properties will use the variable values directly via an XPath expression. For example this could be a format annotation:

dfdl:separator="{ concat($EDIFACT_DS, $EDIFACT_CS) }".

During a parse when the service string element is encountered the values are stored in the corresponding variable by assignment. An example is shown below of how this mechanism would work. (The sections relevant to this scenario are in bold):

File Envelope.xsd

<xsd:schema ...
 ibmEDI:ns="...some URI.." >

 <xsd:include schemaLocation="Payload.xsd"/>

<xsd:element name="envelope">

 <xsd:annotation><xsd:appinfo>

 <dfdl:defineVariable name="EDIFACT_DS" type="xsd:string"/>

 <dfdl:defineVariable name="EDIFACT_CS" type="xsd:string"/>

 </xsd:appinfo></xsd:annotation>
 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="serviceString">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="ds" type="xsd:string" dfdl:length="1">

 <xsd:annotation><xsd:appinfo source="http://dataformat.org/">

 <dfdl:setVariable name="ibmEDI:EDIFACT_DS" value="{ $(.) }"/>

 </xsd:appinfo></xsd:annotation>

 </xsd:element>

 <xsd:element name="cs" type="xsd:string" dfdl:length="1" >

 <xsd:annotation><xsd:appinfo source="http://dataformat.org/">

 <dfdl:setVariable name="ibmEDI:EDIFACT_CS" value="{ $(.) }"/>

 </xsd:appinfo></xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element> <!-- end serviceString -->

 <!-- arbitrary other elements here -->

 <xsd:element name="textBlock">

 <xsd:complexType>

 <xsd:sequence maxOccurs="unbounded">

 <xsd:element ref="mess1"/> <!-- reference to payload -->

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

</xsd:element>

</xsd:schema>

File Payload.xsd

<xsd:schema

 targetNamespace="...some URI..."

 ibmEDI:ns="...some URI..." >

 ...>

<xsd:element name="mess1" dfdl:terminator="{ $ibmEDI:EDIFACT_CS }" >

 <xsd:complexType>

 <xsd:sequence dfdl:separator="{ $ibmEDI:EDIFACT_DS }"

 dfdl:separatorType="infix">

 </xsd:sequence>

 </xsd:complexType>

</xsd:element>

</xsd:schema>
22.1.2 Scenario 2

Where the length of an element is determined by the value of another element. In the case below the length field is immediately preceding, so this kind of stored length is is easily expressed directly in DFDL without need of variables; however, let's examine how this might be done by using a variable named "lengthVar" into the mix:

<xsd:element name="outerElem">

 <xsd:annotation><xsd:appinfo>

 <dfdl:defineVariable name="lengthVar" type="xsd:int"/>

 </xsd:appinfo></xsd:annotation>
 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="length" type="xsd:int">

 <xsd:annotation><xsd:appinfo>

 <dfdl:setVariable name="lengthVar" value=="{ $(.) }"/>

 </xsd:appinfo></xsd:annotation>

 </xsd:element>

 <!-- any other elements here -->

 <xsd:element name="varString" type="xsd:string"

 dfdl:length="{ $ibm:lengthVar }" />

 </xsd:sequence>

 </xsd:complexType>

</xsd:element>

22.1.3 Scenario 3

Where the number of occurrences of an element is determined by the value of another element. This is similar to the length reference scenario above. For instance the element whose value is to be used as a repeat count will be used to define a variable in the current target namespace named "COUNT". The element whose repeat count is determined by the first value will have the "occursPath" DFDL property set to value "$COUNT". This example is shown below. Note that we use the short-form syntax to set the variable value.

<xsd:element name="outerElem">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:annotation><xsd:appinfo>

 <dfdl:defineVariable name="COUNT" type="xsd:int"/>

 </xsd:appinfo></xsd:annotation>

 <xsd:element name="count" type="xsd:int"

 dfdl:setVariableName="COUNT"

 dfdl:setVariableValue=="{ $(.) }"/>

 <!-- any other elements can be here -->

 <xsd:element name="repString" type="xsd:string"

 minOccurs="0" maxOccurs="unbounded"

 dfdl:occursPath="{ $COUNT }"

 dfdl:occursPathUnits="items" />

 </xsd:sequence>

 </xsd:complexType>

</xsd:element>

22.1.4 Scenario 4

Where an inner payload message is embedded within an envelope message. This is common in industry standard formats such as SWIFT and EDI. In these scenarios there is an element in the envelope message whose value identifies the payload message. So for instance we can use a variable named "ibm:MSG_ID". The place where the payload message will appear in the envelope message will be defined by a wildcard element. The wildcard will specify a namespace and global elements in that namespace are the candidates for resolution. Each such global element will carry a dfdl:assert with discriminator="true", and a test for the corresponding message type via the variable. The actual message payload schemas can still be in separate schemas that don't know about the discrimination protocol by using type definitions for them and putting these type definitions in different schemas which are included.

<include message1Type definition .../>

<include message2Type definition .../>

<element name=”envelope”>

<complexType>

 <sequence>

 <annotation><appinfo source=”http://dataformat.org/”>

 <dfdl:defineVariable name=”MSG_ID” type=”string”/>

 </appinfo></annotation>

.......

 <element name=”metaData”>

 <complexType>

 <sequence>

 <element name=”messageType” type=”string”

 dfdl:setVariableName=”MSG_ID”

 dfdl:setVariableValue="{ $(.) }"/>

 </sequence>

 </complexType>

</element>

.......

<element name=”textBlock”>

 <complexType>

 <sequence>

 <any processContent=”strict”

 maxOccurs="1" minoccurs="1"

 dfdl:modelled=”true”/>

 </sequence>

 </complexType>

</element>

 </sequence>

 </complexType>

</element>

<!--

 'trampoline' element discriminates then indirects to the type

 which actually contains the payload format definition.

 These trampolines can be in the same schema file as the envelope, or

 separate ones that are created for each payload.

-->

<element name=”mess1” type="mess1Type">

 <annotation>

 <appinfo source=”http://dataformat.org/”>

 <dfdl:assert test=”$ibm:MSG_ID == ‘id1’"

 discriminator=”true”

 timing=”before”>Message not id1</dfdl:assert>
 </appinfo>

 </annotation>

</element>

<element name=”mess2” type="mess2Type">

 <annotation>

 <appinfo source=”http://dataformat.org/”>

 <dfdl:assert test=”$ibm:MSG_ID == ‘id2’"

 discriminator=”true”

 timing=”before”>Message not id2</dfdl:assert>
 </appinfo>

 </annotation>

</element>

23 Extensions and Extensibility

DFDL provides several extension mechanisms.
23.1 User-Defined Properties

Users can extend the set of properties with their own, and reference them from expressions inside DFDL annotations.
23.1.1 Property Definition Syntax

Variables and properties in DFDL are very similar in their definition syntax and in the use of their values. They differ in how they get their values. Once defined they are used/referenced in a manner indistinguishable operationally from each other or any of the built-in properties, except that they should be in a different namespace than all the built-in dfdl properties.

A new user-defined property is introduced using the dfdl:defineProperty annotation element:

<dfdl:defineProperty name="myNewProperty" type="xs:string"/>

The name of a newly defined property is placed into the target namespace of the schema.

Once defined, a property can be bound in a dfdl:format (or equivalent) annotation, and becomes indistinguishable from a built-in property except for the namespace which should not be the DFDL namespace (usually mapped to prefix 'dfdl').

Note: implementations of DFDL are free to actually define the built-in properties using dfdl:define property if they wish.

23.1.2 Property Binding
The short form annotation for a binding will also work, even when the property is not in the DFDL namespace. A DFDL processor must inspect all non-native attribute settings on the constructs of the schema, and compare their attribute names with those defined as properties in the schema. For example:

<element name="ds" type="string" ibmEDI:myNewProperty="|"/>

Any non-native attributes found which are not the names of defined DFDL properties (built-in or user-defined) or where the corresponding property definition is not in an enclosing scope, are ignored by the DFDL processor.

Once this value is bound to the new property then within the scope of the binding, the property can be used in XPath expressions.

It is a schema definition error if a schema attempts to set a property like it was a variable.
23.1.3 Reference to Properties

From a path the property is referenced by preceding its name with a ‘$’. The name can be a QName.

It is a schema definition error to reference a property that is not bound within the expression context.

23.1.4 Use Cases for User-defined Properties

TBD: goes in the tutorial document. The examples are ones where you define a property and then define a type or reusable global element, and have expressions (on say, inputValueCalc properties) refer to your property to control how the type is represented.

23.2 Defining conversions

Being able to add user-defined conversions is fundamental to the extensibility of DFDL. For DFDL to be useful in cutting edge technology areas like the Grid and to support the breadth of existing legacy formats particularly in the scientific world, this sort of extensibility is essential.
Conversions are defined using the “dfdl:defineConversion” element. Conversions can be defined purely as prototypes (for conversions built-in to the parser) as using external logic (known as blackbox) conversions and conversions which use DFDL directly (known as whitebox
conversions).

23.2.1 Prototype Conversions

A prototype conversion defines the name and type signature of a conversion built in to the parser.
<dfdl:defineConversion name=”dfdl:bytesToInt” input=”xs:byte” output=”xs:int” inverseConversion=”dfdl:intToByte”/>
Note that the inverse conversion is required to exist but may not yet have been defined. This is the conversion that is used to write out the values read-in in using this conversion.

The purpose of a prototype conversion is to explicitly define conversions which are built in to the parser. Once they are made explicit the data modeler can use them directly when defining his/her own conversions and packages.

23.2.2 Blackbox conversions

The blackbox conversion is like a prototype conversion except it specifies how to call an external method for example in java:
<dfdl:defineConversion name=”parseText” input=”xs:string” output=”xs:float” inverseConversion=”writeText”>

<dfdl:exec language=”java
”>org.foo.Example.parseText(sourceStream, “$separator”, “$numberOfElements”)</dfdl:exec>

</dfdl:defineConversion>
This would call java methods of the form:

public static InputStream ParseText (InputStream input, String separator, int numberOfElements);

TBD: Define blackbox conversions for C, XSL, OS-command-line, WSDL-web service.

There is a semantic fudge in this between individual types, streams of types and sequences of types. This has to be worked through properly.
23.2.3 Whitebox conversions

The following is a simple example of a conversion in which the value of the input integer is doubled.
<xs:complexType>

<xs:annotation>

<xs:appinfo>

<dfdl:defineConversion name=”doubleInt” />

 <dfdl:hidden”>

<xs:element name="x" type="xs:int"/>

</dfdl:hidden>

</xs:appinfo>

<xs:annotation>

<xs:element name="doubled-value" type="xs:int" dfdl:value=”2* ../x”/>
</xs:complexType>

This conversion has the following prototype declaration, which the parser must infer from the definition:

<dfdl:defineConversion name=”dfdl:doubleInt” input=”xs:int” output=”xs:int” />
23.3 Registering conversions

Once defined, conversions must be registered. Conversions are registered by adding them to the “conversions” element in the context:

<dfdl:registerConversion name=”parseText”/>
This statement will add the conversion “parseText” to the top of the list of conversions:

<context>

<dfdl:conversions>

<parseText … />

<bytesToInt… />

<bytesToString… />

</dfdl:conversions>

</context>

23.4 Defining Conversion Packages

A conversion package is simply a dfdl:defineFormat annotation that registers one or more conversions. It may also define new conversions and set up appropriate default values.

For example a small package might look like:

<dfdl:defineConversion name=”dfdl:binInt” input=”xs:byte” output=”xs:int” test=”$binary” />

<dfdl:defineConversion name=”dfdl:binFloat” input=”xs:byte” output=”xs:float” test=”$binary”/>
<dfdl:defineConversion name=”dfdl:binDouble” input=”xs:byte” output=”xs:double” test=”$binary”/>
<dfdl:defineFormat name=”smallBinary”>

<dfdl:registerConversion name=”dfdl:binInt” />

<dfdl: registerConversion name=”dfdl:binFloat” />

<dfdl registerConversion name=”dfdl:binDouble” />

 <dfdl:set name=”binary” value=”true” test=”not($binary)”/>

<dfdl:set name=”byteOrder” value=”bigEndian” test=”not($bigEndian)”/>

 <dfdl:format ref=”binaryStrings”/>

</dfdl:defineFormat>

To use this package we would have to (obviously) include the file containing the packages and then (where relevant) use the bundle:

<dfdl:format ref=”smallBinary”>
Notice that all of the set context statements have a test to ensure that they do not attempt to double-register the conversion. This allows different packages to include the same conversions.

Notice that packages can also refer to other packages. The last line of the format definition references another package called “binaryStrings”. So “binaryStrings” is included in “smallBinary”, although because it is included at the end the constant definitions and conversion guards from smallBinary take precedence over those in binaryStrings
. For example, suppose that “binaryStrings” contained the line:

<dfdl:set name=”byteOrder” value=”littleEndian” test=”not($bigEndian)”/>

This line would be silently overridden by the value for this property set in “smallBinary” shown above.

23.5 Example

In this section we present two examples of using these extensions:

· The first example defines a new conversion to decrypt a document, making use of a key supplied in the data.

· The second example defines two new conversions to handle non-IEEE representations of 32 and 64 bit floating point numbers. In this example we register one of the conversions and not the other in order to demonstrate how to insert a conversion into the automatic selection process, and also how to explicitly apply a conversion which has not been registered.
<?xml version=”1.0” encoding=”UTF-8”?>

<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema” >

<xs:annotation>

<xs:appinfo source=”http://dataformat.org/”>

<!—set up the new conversion (

<dfdl:defineConversion name=”decriptStream” input=”xs:byte” output=”xs:byte”>

<dfd:exec language=”java”>com.crypto.decrypt(sourceStream,”$cryptoKey”)</dfd:exec>

</dfdl:defineConversion>

<!—define a stream that applies the new conversion (

<xs:defineStream name=”decryptedData” applyConversion=”decryptStream”/>

</xs:appinfo>

</xs:annotation>

<xs:element name=”encryptedExample”>

<xs:complexType>

<xs:sequence>

<!—pick out the key and add its value to the global context (

<xs:element name=”key” type=”xs:base64Binary” dfdl:length=”128” addToGlobalContext=”cryptoKey”/>

<xs:element name=”data”>

<xs:annotation>

<xs:appinfo source=”http://dataformat.org/”>

<!—invoke the new data stream (

<dfdl:useStream name=”decryptedData”/>

<dfdl:dataFormat repType=”text”
 separator=","

 encoding=”UTF-8”/>

</xs:appinfo>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name=”name” type=”xs:string”/>

<xs:element name=”address” type=”xs:string”/>

<xs:element name=”zipCode” type=”xs:int”/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>
Example 1 – showing the definition of a new black-box conversion to handle an ecrypted data payload. One of the encryption keys is passed in the data (in unencrypted form).

<?xml version=”1.0” encoding=”UTF-8”?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:annotation>

<xs:appinfo>

<!-- set up the new conversions -->

<dfdl:defineConversion name="nonIEEEByteToFloat" input="xs:byte" output="xs:float">

<dfd:exec language="java">com.fp.byteToFloat(sourceStream,"$byteOrder")</dfd:exec>

</dfdl:defineConversion>

<dfdl:defineConversion name="nonIEEEByteToDouble" input="xs:byte" output="xs:double">

<dfd:exec language="java">com.fp.byteToDouble(sourceStream,"$byteOrder")</dfd:exec>

</dfdl:defineConversion>

<!-- note for the purposes of demonstration we only register the double conversion -->

<dfdl:registerConversion name="nonIEEEByteToDouble"/>

</xs:appinfo>

</xs:annotation>

<xs:complexType name="exampleType">

<xs:sequence>

<xs:element name="x" type="xs:int"/>

<xs:element name="y" type="xs:float">

<!-- explicitly select the float converion -->

<xs:annotation>

<xs:appinfo>

<dfdl:useConversion name="nonIEEEByteToFloat"/>

</xs:appinfo>

</xs:annotation>

</xs:element>

<xs:element name="z" type="xs:double"/>

<!-- The double conversion is automatically applied because we registered it -->

<!-- which will send it to the top of the list
. So it is guaranteed to be the first -->

<!-- chosen when we reach this point in the document. -->

</xs:sequence>

</xs:complexType>

<xs:element name="exampleElement">

<xs:annotation>

<xs:documentation>Comment describing your root element</xs:documentation>

</xs:annotation>

</xs:element></xs:schema>
Example 2 – in this example two new blackbox conversions are defined to handle the conversion of bytes into a float and a double using some non-IEEE floating point representation. The conversion to double is registered and chosen automatically by the parser. The conversion to float is not and has to be explicitly chosen by the data-modeler.

24 Appendix: Information about Schematron

Schematron V1.5 is soon to become the ISO/IEC 19757-3 standard (Document Schema Definition Languages (DSDL) – Part 3: Rule-Based validation – Schematron). See the following link for the specification: http://www.schematron.com/spec.html.

Schematron allows assertions to be made about a document. The assertions contain a test attribute that uses an XPath expression that returns true or false. The expression is evaluated in a context specified on the rule element containing the assertion. The default language binding uses the extended version of XPath specified in XSLT for XPath expressions and contexts are interpreted according to XSLT (see Annex C of the specification). However the default query binding language can be overridden using the queryBinding attribute on the Schematron scheman element.

Schematron can be used in standalone Schematron Schemas and can also be embedded within W3C XML Schema annotations. A paper discussing the embedding of Schematron with XML Schema can be found at the following link: http://www.topologi.com/public/Schtrn_XSD/Paper.html. An example from this document is shown below:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="Root" type="xs:string">
 <xs:annotation>
 <xs:appinfo>
 <sch:pattern name="Test constraints on the Root element" xmlns:sch="http://www.ascc.net/xml/schematron">
 <sch:rule context="Root">
 <sch:assert test="test-condition">Error message when the assertion condition is broken...</sch:assert>
 </sch:rule>
 </sch:pattern>
 </xs:appinfo>
 </xs:annotation>
 </xs:element>
</xs:schema>
25 Defining and Changing Data Streams

The name of the current stream from which data is being extracted is maintained in the Context. The default source stream is called “stdin” and is of type “xs:byte”. The name of the current stream is held in a context variable called “source”.

The DFDL document begins parsing against “stdin”. At any point in the parsing the source stream can be switched either by choosing an alternative input source (e.g. a file, url or data stream

For example this shows how the source stream can be switched to access a new file, in this case one located at “http://my.data.com/file.csv”.
<xs:annotation>

<xs:appinfo>

<dfdl:defineStream name=”myNewStream" url=”http://my.data.com/file.csv”
/>
 <dfdl:setVariable source=”myNewStream”/>
 </xs:appinfo>

</xs:annotation>
A stream can be externally defined (URL), or can be specified by an XPath to an element in the schema. In this case the value of the element becomes the source (for parsing) or target (for unparsing).

In DFDL V1.0, the element addressed by an XPath when defining a stream must be of type xs:string, or xs:hexBinary (tbd: or an array of type xs:byte?). Future versions of the DFDL standard may support more types.

25.1 Use Cases for Stream Changing

TBD: This goes in a tutorial document; however, the use cases are layered things like the VB/VBS type formats with cobol records found inside the VB/VBS segment blocks.

26 Conversion Packages

Typically conversions are used in groups. For convenience, definitions can be grouped together in a surrounding dfdl:defineFormat, and used as a bundle that registers the whole group and sets up appropriate default values. A collection of conversion definitions and registrations that are packaged together in this way will be termed a conversion package.

TBD: example of a dfdl:defineFormat with a bunch of conversion definitions and registrations inside it, name is "smallBinary".
To use this package we would have to (obviously) include the schema containing the format defintion for the package and then (where relevant) use the format.

By placing packages of conversions into reusable named format definitions we provide a useful mechanism for controlling which conversions are at the top of the conversion list in a local context.

If a section of a DFDL schema was represented in binary we could simply apply:

<dfdl:format ref=”smallBinary”>

At the start of the section and these conversions would be preferentially picked up through the scope of the modification to the context.

TBD: We have discussed in DFDL a property called repType which can take the value of “text” or binary this property in this formulation would be used on guards to determine which conversions would be chosen. However and alternative way to provide this functionality would be to have the user choose the appropriate bundle of conversions at the top of the document i.e. include the “text” conversions or the “binary” conversions.

27 Data independent attribute

A data independent property is a value in the context that has been declared static:

<dfdl:set name=”$numberOfElements” value=”5” type=”xs:int”

 dataIndependent=”true”/>

A data independent property may not be set with reference to any values which are dependant on the data i.e. its value may not be set with an XPath that points to an element from the data or to a value derived from the data such as position().

Data independent properties can be evaluated entirely from the DFDL Schema itself with no reference to the data.

TBD: default state could be data independent and data dependent must be declared?

28
Index attribute

The “dfdl:set” and “dfdl:setGlobal” has a further optional attribute “index. When a context value is part of a structured property
and it being placed into a sequence the “index” attribute can be used to set its position in a list.

The index attribute is an XPath that must evaluate to the strings “first”, “last” or a number from 0..N where N is the current length of the list. If the value is “first” the new element is placed first in the list. If the value is “last” the new element is placed last in the list. If the value is a number the new value is inserted into the list so that the number is its new position. The previous object with that index (if any) has an index one greater in the new context:

<dfdl:set name=”$listOfElements/zipCode” value=”94118” type=”xs:int”

 position=”last”/>

29 Conversion Search Example

In this section we work through a small example to show how the conversion selection algorithm works. Consider the following fragment of XML:
<xs:complexType name=”exampleType”>

<xs:annotation>

<xs:appinfo>

<dfdl:dataFormat repType=“text”

charset=“UTF-8”

decimalSeparator=“.”>

<dfdl:separator>,</dfdl:separator>

</dfdl:dataFormat>

</xs:appinfo>

</xs:annotation>

<xs:sequence>

<xs:element name="w" type="int"/>

<xs:element name="x" type="int"/>

<xs:element name="y" type="double"/>

<xs:element name="z" type="float"/>

</xs:sequence>
</xs:complexType>
<xs:element name="exampleElement" type=”exampleType”>
Let us suppose that the following conversions have been registered in the context:

<byteToInt input=”xs:byte” output=”xs:int” guard=”$repType=’binary’” />

<charactersToTokens input=”xs:string” output=”xs:string” guard=”$repType=’text’” />

<bytesToCharacters input=”xs:byte” output=”xs:string” guard=”$repType=’text’” />

<stringToInt input=”xs:string” output=”xs:int” guard=”$repType=’text’” />

<stringToDouble input=”xs:string” output=”xs:double” guard=”$repType=’text’” />

<stringToFloat input=”xs:string” output=”xs:float” guard=”$repType=’text’” />

The logical DFDL parser parses the XML document and reaches this element (exampleElement). The first thing it will do is to look at the type of example1, which in this case is defined to be the complex type exampleType and it checks to see if there are any conversions registered which can produce one of these types. .

The parser fails to find a conversion that produced the element in one go. So, since it is a complex type it adds the element to the output model and attempts to populate its children.

It enters the complex type exampleType and sees an annotation with property values. A new layer is added to the context stack and the values are added to this layer. The current context now looks something like this:

<context>

 <dfdl:repType>text</ dfdl:reptype/>
<dfdl:charset>UTF-8</ dfdl:charset>

<dfdl:decimalSeparator>.</ dfdl:decimalSeparator>

<dfdl:separator>,</dfdl:separator>
 <…. other values defined earlier in the schema…>

</context>

The parser moves on down the document and visits the first child element, w, which is of type “xs:int”. The parser looks through its registered conversions, starting at the top, looking for a conversion which supplies a value of type xs:int. It sees:

<byteToInt input=”xs:byte” output=”xs:int” guard=”$repType=’binary’” />

But the test evaluates to false (since repType has been set to “text” in the current context). So the parser does not select this.

The parser moves on and finds:

<stringToInt input=”xs:string” output=”xs:int” guard=”$repType=’text’” />

The test evaluates to true, so this conversion is chosen. The parser looks at the input type. The type is a string, but it is holding the default input stream which is composed of xs:byte. So the parser goes back to the list of registered conversions and looks down the list for a conversion that produces strings. The first one it finds is:

<charactersToTokens input=”xs:string” output=”xs:string” guard=”$repType=’text’” />

The guard evaluates to true, so this conversion is chosen. The parser checks the input type for the conversion. It needs a “string”, the parser is still holding a byte stream so it goes back to the registered conversions and looks down the list from the top.

The first conversion found is charactersToTokens, but that is already being applied in this case and we cannot use it twice, so the parser moves on. The next conversion it finds that produces strings is:

<bytesToCharacters input=”xs:byte” output=”xs:string” guard=”$repType=’text’” />

The test evaluates to true, so this conversion is chosen. This conversion takes xs:byte as input which is what the parser has to offer and so we have finished. The final set of conversions applied is:

 dataStream -> bytesToCharacters -> charactersToTokens -> stringToInt

The parser assembles this stack of conversions and then asks stringToInt for an integer. StringToInt calls characterToTokens for a string characterToTokens asks bytesToCharacters for a series of single character strings (until it finds a separator) and characterToTokens, in turn, calls bytesToCharacters to supply the characters. Finally bytesToCharacters pulls the requisite number of bytes from the underlying data stream.

The parser adds the resulting integer element as a child of “exampleElement” and moves on to the next value.

If the parser fails to find a sequence of primitive conversions that can populate a simple type then it is a Schema Definition Error. Note that the parser may need to backtrack and explore alternative sequences of conversions before it can find one that will carry out the required conversion.

TBD: controls on this search to ensure that it can be curtailed at a maximum depth or number of nodes visited.

TBD: The above section begs the question of what is the exact set of conversions that in a linear list provide the semantics of all our rich properties.

� This is as of XML 1.0 3rd edition, #xD cannot be expressed directly as it will be replaced automatically with #xA by conforming processors. One must use a character reference to express this character.

�All the examples in this got their indentation and formatting clobbered somehow. Need to reformat.

�Do we have to say "in memory" here. This seems unnecessary and/or misleading. Does any DfDL processor really have to put these things adjacent "in memory"

Don't we mean a conceptually contiguous list of elements?

�I don't understand this. Say more and be clear abou tthis possibility, or say less as it is likely an unimportant detail at this point.

�Do we want to keep talking about XML here? That is, we're defining what we mean in our Array constructs by mappings into/out of actual XML.

Perhaps we just have to make it clear that we're suggesting a 'model' for what the data would look like were it to be converted to XML syntax.

Large parts of the array discussion seem to need to go to the rationale section. .

�I didn't understand this at all. Perhaps an example is needed, or just a clearer description.

�Perhaps use short-form annotations throughout the arrays examples when possible to make them shorter?

�Hidden element? (or make non-hidden for now since hidden layers are not yet introduced?

�Unclear. Do you mean like a pixel array, or a jpeg?

�This ararys material is all still very rationale oriented an not very close to a spec, but I think leaving it here for now is ok as we refine it we'll split it up.

�Note we're using attributes here, and attributes aren't part of the DFDL Information Model; however, our use here isn't really putting them into the inforamtion model either. They're only used as ways of dealing with the indexes of the arrays.

Not having attributes in V1.0 DFDL Information Model doesn't necessarily rule out this use of attributes for arrays.

�Except that we can't leave this up to the parser, we still have to describe exactly what happens.

�Doesn't have to be. You point out below that you could use flag/out-of-band null indicators.

I've seen this for a nullable date element. There were 3 sub elements day, month, year, and a null byte indicator in front of it. So this was a nullable complex type.

In this particular case the data was Cobol and packed decimal representation of the date information.

�So am I correct in thinking that on input the actual date elements are present in the input stream but that they do not contain valid values when the null byte indicates that they are null.

If this is the case it is a scenario that I had not considered. I had made the assumption that the actual element would be missing from the input stream if its null indicator indicated that it is null.

�Should we delete this section? In the beginning we say no substitution group support in DFDL.

� we have a modularity issue. This envelope knows that ALL the messages happen to have chosen this same variable to be their discrimination parameter. This might happen if all the message formats were sub-message formats part of a single overall data standard (e.g., swift), but in general it would be better if the messages didn't have to know about the envelop.

�Unclear what 'unicode' means here. The schema might not be written in unicode.....?

�Not adequately defined.

�I believe this should be a schema definition error, not a runtime parse error.

�Is this the same thing as a selector? Or is this some other kind of guard. If this is just the usual selector predicate deciding whether to use the annotation or not then we can leave this out.

�Do we have to support for v1.0 of DFDL?

�GJ

No we don’t need to support substitution groups.

�Can we avoid these in DFDL v1.0?

�GJ

Allow modelled but not unodelled

�GJ

This is the section from the original document that talks about both modelled and unmodelled uncertainty.

�Define "self-defining" data. Unclear what you mean here. I'm guessing you mean that we can determine its length and therefore copy or skip over it reliably while treating it as opaque.

�GJ

Yes, the length of the data can be determined. Howver there may be a tag at the sartt. See the initiatorSeparator at the beginning.

�I don't get the difference between Modeled="false" and unresolvableWhenParsing="true"

Seems to me if unresolvable is true then in this case the data is treated as Opaque if its length can be determined somehow including all these stuff about delimiting in the next section. Otherwise it is a schema definition error. This is the same as when modeled is false in the next paragraph.

�GJ

Modelled=false means explicitly that the contents is not modelled.

UnresolvableWhenParsing means that the data is modelled but it cannot be determined from the data which branch models the data.

�This is unmodeled. What's this name stuff?

I think this section is colored by an interpretation that we're trying to translate data into XML. We're not necessarily. IN this particular case I believe we're just trying to skip over or copy the content.

This notion of self-describing, i.e., the data has some initiators in it which would allow us to convert them to tags or something is very separate from the issue of how we get the length and get past the item.

Trying to deal with this self-describing situation seems like heroics to me. Seems we should be able to get by with just carrying or skipping the data.

�GJ

This section was not coloured by translating into XML. It was more coloured by my knowledge of how our existing parser functions. However I cannot come with a scenario where it is actually required. Therefore probablky a good idea to omit unmodeled uncertainty from DFDL V1.0

�Do we have to have this in DFDL v1.0?

�GJ

Although a nice to have I think it can be left out of version 1.

�Can we eliminate unmodeled uncertainty for DFDL v1.0?

�I fail to understand why this is any different. The key thing is the ability to determine the length. The fact that you can recognize initiators seems beside the point.

I can also model this as a sequence containing a variable number of pairs. Each pair is two element declarations. The first is called TAG, and ends with a terminator which is what you call the initiatorSeparator. The second is named VALUE and goes to end of data (which the separator of the enclosing sequence provides for).

This isn't even hard to express.

So my guess is you are after a special translate-to-XML-without-schema mode for initiator tagged data. This is fine, but let's not pretend this is some general mechanism, let's just put in the special feature, which I would call "initiatorTaggedDataAsXMLString" or something like that.

�GJ

The idea is that the tag would be handled as meta data and would be the name give to the element rather the value of a TAG element. It is not intended to mimic XML any way. For V1.0 self-defining elements will be place in the parking lot.

�Same modularity problme as before. All the candidate payload declarations must share a common variable to discriminate them. This seems unrealistic. Laying in a big choice at the point where the payload is embedded seems more likely to me.

Alternatively, special "trampoline" schemas could be created which have nothing beside the discrimination logic and an include of one of the message payload schemas. This is just breaking up the big choice over a number of files, but it would let you add more payloads without editing any existing DFDL schema files.

�GJ

Needs further discussion. Will place late binding of Schemas into the parking lot for DFDL V1.0.

�TBD: rewrite this section to remove all but the prototype declaration form of defineConversion.

�We need better language independence than this. We need to just define and reference some symbolic name from inside the DFDL schema and have a separate implementation-specific way to associate a language and libreary with the symbol.

�This is very operational and clunky. Can't we just take a union of everything that eveyrone includes and pull them together into the full schema once?

�I would have expected the opposite. That things later in the file textually would take precedence. Do we append to the tail of the conversions list as we add more conversions? If so we should reiterate that factoid here.

�Earlier it seemed that later registrations appendied things to the end of the list of conversions. This suggests the opposite, that they're put on the front or first viewed end.

�more realistic examples would use a variable here and likely setup the variable by an implementation-specific mechanism from outside the DFDL processor.

�Unless we have defineProperty then we can take all this out.

�Unclear why we needed structured properties. Was this just to provide semantics of registerConversion? or do we need it for other things also. if it's just for registerConversion I think we should not put in this mechanism but simply explain that the conversions are held in a list in the context.

�TBD: This is where the algorithm must be changed to accommodate the fact that there is a complex type here. E.g., a sequence is different from a choice, from a

Also, this algorithm assumes that we disguise everything about initiators for a group into the processing of the elements of the group which is unreasonable and won’t work right inductively.

What we do here is look at the complex type, see that it is a sequence, and start trying to select the right sequence conversion. These are selected differently however. They are based on a bottom type (like string or chars, and the top type is the sequence – in general – itself. The conversion is selected if its guard is satisfied, and recursively all its children get conversions then selected inductively.

File: ggf-dfdl-v1.0-007-parking-lot.doc

Page 1 of 57

