GWD-I

dfdl-wg@ggf.org

Category: INFORMATIONAL

GGF Data Format Description Language Working Group
2006-08-25
GWD-I

Category: Informational

GGF Data Format Description Language Working Group
2006-08-25

Data Format Description Language (DFDL) v1.0

Support of Default Values, Null Values and Optional Data
(Internal Committee Working Document)

Status of This Document

This memo provides information to the Grid community regarding the specification of a Data Format Description Language. The specification is currently a working group internal draft. It does not define any standards or technical recommendations. Distribution is unlimited.

Copyright Notice

Copyright © Global Grid Forum 2004, 2005,,2006. All Rights Reserved.

Copyright © Open Grid Forum,2006. All Rights Reserved.

Abstract

This document provides a set of supplemental properties that extend the core DFDL specification to add the ability to express additional data formats..
Revision History

	Latest entry at the top please

	Version
	Author/Contributor
	History
	Date(yyyy-mm-dd)

	001
	Geoff Judd
	Extracted from v007 of DFDL draft spec - internal working document
	2006-08-24

Contents

1Data Format Description Language (DFDL) v1.0

1Support of Default Values, Null Values and Optional Data

1(Internal Committee Working Document)

1Abstract

2Revision History

31
Introduction

32
Definitions

33
Defaults values

43.1
Default Values on input

53.2
Default Values on output

54
Null Handling

64.1
Null Handling on input

64.2
Null Handling on output

65
Guiding principles of Default Handling

76
Examples

96.1
Example of defaulting values when defaultWhenMissing is set to always

106.2
Defaulting a value for a tagged element on input

106.3
Example of using using Null Values on a delimited element

116.4
Example of using using Null Values on a tagged element

117
Contributors

128
Intellectual Property Statement

129
Disclaimer

1210
Full Copyright Notice

1211
References

1 Introduction
The aim of this document is to describe how default and null values are modelled by DFDL and how a DFDL complaint parser parses default and null values.
2 Definitions
There are several words used in describing Null and Default Handling that have specific meanings in this context. The following list clarifies the meanings attached to some words.

	Absent
	On input an element that is not present in any form within the input stream. That is no initiator, value or terminator. However there may be some markup that indicates that it is not present. For instance 2 consecutive separators may indicate that an element for which no initiator is defined is not present.

On output an element that is not passed to the un-parser to be written out. How the parser represents an absent element in the output stream is dependent on the properties described in this document.

	Missing
	On input a missing element is the same as an absent element for elements that have no initiator defined. However for an element with an initiator defined an empty element is handled as missing by the parser.

On output a missing element is one that is absent. That is an element that is not passed to un-parser to be written out.

	Empty
	On input an element whose initiator is present in the input stream but whose value is not present.

On output an element that is passed to the un-parser with an empty value. For instance an empty string (note that this different to a null value – see below).

	Null
	On input a special logical value given to an element to explicitly indicate that it has no value.

The null value is not in the value space of the element. How this is indicated within the input stream is dependent on the properties described in this document.

On output an element passed to the un-parser that has its value set to the same special logical value to explicitly indicate that it has no value. How the parser represents a null element in the output stream is dependent on the properties described in this document.

3 Defaults values
DFDL uses the XML Schema default attribute or fixed attribute values for defaulting values. The following table describes the properties that control the parsing of Default values by a DFDL compliant parser, both on input and output:
	Property Name
	Description

	defaultWhenMissing
	Enum

Valid values ‘never’, ‘always’, ‘onInput’, ‘onOutput’

Controls when missing elements are defaulted on input and output.
The value 'onInput' means that an element missing from the input stream is substituted with its default value if specified. However if an element is missing on output the default value will not be substituted for the element.
The value 'onOutput' means that a representation will be written using the default value if specified and it is mandatory. However if the element is missing from the input stream it will not be substituted.
The value ‘always’ is equivalent to having both ‘onInput’ and ‘onOutput’ set.
Annotation: dfdl:element (all simple types)

	useNullValueForDefault
	Boolean

If true then nullValues is used when an element is missing on output rather than the default value.

Annotation: dfdl:element (all simple types)

3.1 Default Values on input

An element in DFDL falls into one of 4 categories as far as delimiting is concerned:

a) Those that have an initiator and the data is not fixed length

b) Those that have an initiator and the data is fixed length

c) Those that have no initiator and are delimited by a separator

d) Those with no initiator or separator and the element has a fixed length

For category (a) if the value of the element is empty, the element has a default value defined and the DefaultWhenMissing property is set to input or always the default value is used as the value of the element on input. However if the element is absent no value is defaulted..
For category (b) if the initiator of an element is present the parser assumes that the data of the fixed length is also present therefore no value is defaulted. As in category (a) if an element is missing no value is defaulted.

For category (c) if an element is missing, the element has a default value defined, the element is optiuonal, and the DefaultWhenMissing property is set to input or always the default value is used as the value of the element on input.
TBD: For category (c) where maxOccurs is greater than 1 the number of repeats defaulted is dependent on a number of factors. If the occursKind property is set to “fixed”, the number of values in the input stream for the element >= minOccurs but < maxOccurs, up to maxOccurs values are defaulted. If the occursKind property is set to “fixed” and maxOccurs is set to unbounded no extra values are defaulted. If the occursKind property is set to “xpath” the value of the xpath expression will determine how many additional elements will be defaulted.
 If the occursKind property is set to “stopValue” or “markup” no additional values will be defaulted.

For category (d) default values are not used on input.
3.2 Default Values on output

Default values used on output to populate the output stream with the elements that are missing on output. Thus allowing a user to populate a sparse representation rather than a complete representation of what is to be output. On output default values are populated for all 4 categories of delimiting described the Default Values on Input section. If the element has an initiator or terminator they are also output. For default values to be used on output the DefaultWhenMissing property must be set to output or always.

TBD: For repeating elements the number of values to be defaulted is also dependent on the “occursKind” property. If occursKind is set to “fixed” and maxOccurs > 1 up to maxOccurs values are defaulted. If occursKind is set to “fixed” and maxOccurs is set to unbounded up to minOccurs values are defaulted. If occursKind is set to “xpath” the number of values defaulted is determined by the xpath expression. For an “occursKind” of “stopValue”
and “markup” up to minOccurs values are defaulted.

The useNullValueForDefault Boolean property allows the value in the nullValues property (See following sections on Null values) to be used on output if an element is missing instead of the XML Schema default or fixed attribute values. It is invalid to set the useNullValueForDefault property to true if the nullValueKind property has not been set or the element is not nillable.
4 Null Handling

DFDL uses the XML Schema nillable attribute to control whether an element can have a null value. That is a special value that will be considered as a null value by the DFDL parser. XML Schema supports the nillable attribute on elements that have a simple type or a complex type with either simple or complex content. DFDL V1.0 only supports the nillable attribute on elements that have a simple type or a complex type with simple content.
If an element is allowed to be null there are 4 possible methods of encoding a null value. These encodings are used both on input and output. These methods are controlled by the nullValueKind property. The nullValueKind property is used in conjunction with the nullValues property. The following table describes these properties.
	Property Name
	Description

	nullValueKind
	Enum

Valid values ‘literalValue’, ‘logicalValue’, ‘literalCharacter’, ‘missing’

Specifies the nature of null processing. Only acted upon if nillable set to true

If ‘literalCharacter’ then nullValues must be any single character. On input the element value is null if all characters in the data match the nullValues character. On output if the element value is null the nullValues character is output to the required length. Only applicable to fixed length elements. Only applicable for fixed-width character sets.
If ‘literalValue’ then nullValues must be any string value that can fit in the element. On input the element value is null if the data matches nullValues literally without any conversion. On output if the element value is null nullValues is output.

If ‘logicalValue’ then nullValues must be any value that matches the simple type. On input the element value is null if the data, converted to its logical type, matches nullValues. On output if the element value is null, nullValues is converted to its physical representation and output.

If ‘missing’ nullValues is not used. On input the element value is null if it is not present in the data. On output if the element value is null, no value is output but if an initiator is defined it will be output.

Annotation: dfdl:element (all simple types)

	nullValues
	String

The null value of the element.

For ‘literalValue’ and ‘logicalValue’ several null values may be specified in
this property. On output the first value in the list is used.

Annotation: dfdl:element (all simple types)

4.1 Null Handling on input
If null handling is enabled for an element, on input the DFDL Parser will extract the value from the input stream as normal. If the value is present the value is compared with the values in the NullValues property. How the comparison is done is determined by the NullValueKind property. A special case is when NullValueKind is set to “missing”. In this case the value is treated as null if the element is missing.
When NullValueKind is not set to “missing” for elements that have an initiator defined in the model the initiator must be present in the input stream for a value to be matched as null. It is not valid to have just a value without an associated initiator. For elements that have no initiator defined in the model just the value must be present.

When NullValueKind is set to “missing” the same rules apply as apply to default values on input. That is if the data is fixed length (categories (b) and (d)) this method cannot be used to identify an element as being null. For category (a) the element must be empty and for category (c) the element must be missing. For category (c) the same issues with minOccurs and maxOccurs discussed for default values also apply here.
For a value that is handled as null in the input data a special logical value is provided (whatever the representation) that explicitly indicates that its value is null. This is a value not in the normal range of allowed values for an element.
4.1.1 Using both Default Values and Null Values on input
If both null handling and default handling is enabled the null handing takes precedence. In particular if the nullValueKind property is set to “missing” and there is a default for an element it will be handled as a null value if it is missing in the input stream. A consequence of this order of precedence is that a defaulted value will never be considered as a null value because the default handling is preformed after the null handling
4.2 Null Handling on output
If the value of an element in the representation is set to null the value written to the output stream is determined by the nullValueKind property. If the element has an initiator it wil also be outpt before the value in the output stream.
5 Guiding principles of Default Handling
On input a guiding principal of default handling is that it should not make an invalid document valid. This is similar to the XML Schema attribute rule that a default value is not allowed if the attribute is “required”. Thus if an element has no initiator only optional elements will be defaulted on input because defaulting a mandatory element will make an invalid document valid. This also means that if there are less than minOccurs occurrences no additional values will be defaulted. The only exception is the case of tagged elements that have an initiator in the data but no value.

On output only missing mandatory elements will be defaulted unless the occursKind property indicates that a specific number of occurrences must appear in the output.

6 Examples

This section gives examples of the use of the properties described in the previous sections in the document. Most of the examples are based on the following logical model:
<xsd:element name="root">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="A" type="xsd:string" minOccurs="0"/>
 <xsd:element name="B" type="xsd:string" minOccurs="0"/>

 <xsd:element name="C" type="xsd:string" minOccurs="0"/>

 </xsd:sequence>

 </xsd:complexType>

</xsd:element>

The following 3 DFDL schemas model tagged, delimited and fixed length representations of the above logical model

Tagged

<xsd:element name="root">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:annotation>

 <xsd:appinfo source="http://dataformat.org/">

 <dfdl:sequence separator=","/>

 </xsd:appinfo>

 </xsd:annotation>

 <xsd:element name="A" type="xsd:string" minOccurs="0">

 <xsd:annotation>

 <xsd:appinfo source="http://dataformat.org/">

 <dfdl:element initiator="A:"/>

 </xsd:appinfo>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="B" type="xsd:string" minOccurs="0">

 <xsd:annotation>

 <xsd:appinfo source="http://dataformat.org/">

 <dfdl:element initiator="B:"/>

 </xsd:appinfo>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="C" type="xsd:string" minOccurs="0">

 <xsd:annotation>

 <xsd:appinfo source="http://dataformat.org/">

 <dfdl:element initiator="C:"/>

 </xsd:appinfo>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

</xsd:element>

Delimited
<xsd:element name="root">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:annotation>

 <xsd:appinfo source="http://dataformat.org/">

 <dfdl:sequence separator="," separatorType=”infix”/>

 </xsd:appinfo>

 </xsd:annotation>

 <xsd:element name="A" type="xsd:string" minOccurs="0"/>

 <xsd:element name="B" type="xsd:string" minOccurs="0"/>

 <xsd:element name="C" type="xsd:string" minOccurs="0"/>

 </xsd:sequence>

 </xsd:complexType>

</xsd:element>

Fixed Length
<xsd:element name="root">

 <xsd:complexType>

 <xsd:sequence>
 <xsd:element name="A" type="xsd:string" minOccurs="0">

 <xsd:annotation>

 <xsd:appinfo source="http://dataformat.org/">
 <dfdl:element length="3"/>

 </xsd:appinfo>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="B" type="xsd:string" minOccurs="0">

 <xsd:annotation>

 <xsd:appinfo source="http://dataformat.org/">

 <dfdl:element length="3"/>

 </xsd:appinfo>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="C" type="xsd:string" minOccurs="0">

 <xsd:annotation>

 <xsd:appinfo source="http://dataformat.org/">

 <dfdl:element length="3"/>

 </xsd:appinfo>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

</xsd:element>

Example input streams for each of the DFDL Schemas is

tagged – A:aaa,B:bbb,C:ccc
delimited – aaa,bbb,ccc
fixed – aaabbbccc
The representations produced from an input document and the representations used to produce an output document are shown as a tree for convenience. However the actual representation produced by a parser is outside the scope of the specification. The tree produced from the above input streams is:

[image: image1]
6.1 Example of defaulting values when defaultWhenMissing is set to always
This example is based on the Delimited DFDL Schema. Supposed element “B” has a default value of “zzz” and has the “defaultWhenMissing” property set to “always”:

<xsd:element name="B" type="xsd:string" minOccurs="0"
 default=”zzz”>

 <xsd:annotation>

 <xsd:appinfo source="http://dataformat.org/">

 <dfdl:element defaultWhenMissing=”always”/>

 </xsd:appinfo>

 </xsd:annotation>

</xsd:element>

On parse the input stream:

aaa,,ccc
produces tree

[image: image2]
On serialisation the tree:

[image: image3]
produces output stream
aaa,,ccc
 because element B is optional
However if the model is changed to

<xsd:element name="B" type="xsd:string" minOccurs="1"
 default=”zzz”>

 <xsd:annotation>

 <xsd:appinfo source="http://dataformat.org/">

 <dfdl:element defaultWhenMissing=”always”/>

 </xsd:appinfo>

 </xsd:annotation>

</xsd:element>
the same tree produces output stream

aaa,zzz,ccc
because element B is now mandatory
6.2 Defaulting a value for a tagged element on input
This example is based on the Tagged DFDL Schema. Suppose that element “B” has the idefault value of “zzz” and has the “defaultWhenMissing” property set to “always”.
<xsd:element name="B" type="xsd:string" minOccurs="0"
 default=”zzz”>

 <xsd:annotation>

 <xsd:appinfo source="http://dataformat.org/">

 <dfdl:element initiator="B:" defaultWhenMissing=”input”/>

 </xsd:appinfo>

 </xsd:annotation>

</xsd:element>

On parsing the input stream:

A:aaa,B:,C:ccc
produces tree:

[image: image4]
6.3 Example of using using Null Values on a delimited element
This example is based on the Delimited DFDL Schema. Suppose that element “B” has nullValueKind set to “literalValue” and a single nullValues value of “xxx” .

<xsd:element name="B" type="xsd:string" minOccurs="0"
 nillable=”true”>

 <xsd:annotation>

 <xsd:appinfo source="http://dataformat.org/">

 <dfdl:element nullValueKind=”literalValue”

 nullValues=”xxx”/>

 </xsd:appinfo>

 </xsd:annotation>

</xsd:element>
On parsing the input stream:
aaa,xxx,ccc will produce tree

[image: image5]
and serialisation of the above the tree will produce the same output stream.

6.4 Example of using using Null Values on a tagged element

This example is based on the Tagged DFDL Schema. Suppose that element “B” has nullValueKind set to literalValue, a single nullValues value of “xxx” .

<xsd:element name="B" type="xsd:string" minOccurs="0"
 nillable=”true”>

 <xsd:annotation>

 <xsd:appinfo source="http://dataformat.org/">

 <dfdl:element initiator="B:" nullValueKind=”literalValue”

 nullValues=”xxx”/>
 </xsd:appinfo>

 </xsd:annotation>

 </xsd:element>

On parsing the input stream:
A:aaa,B:xxx,C:ccc will produce tree

[image: image6]
and serialisation of the above the tree will produce the same output stream.

7 Contributors

Michael J. Beckerle, IBM Software Group, Westborough, MA, USA

Martin Westhead, Avaya, Milpitas, CA, USA

James Myers, NCSA, Urbana-Champaign, IL, USA

Suman Kalia, IBM Software Group, Markham, Ontario, Canada

Steven M. Hanson, IBM Software Group, Hursley, UK

Tara Talbot, PNNL, Richland, WA, USA

Robert McGrath, NCSA, Urbana-Champaign, IL, USA

Geoff Judd, IBM Software Group, Hursley, UK
Dewey M. Sasser, IBM Software Group, Westborough, MA, USA

David A. Loose, IBM Software Group, Westborough, MA, USA

Eric S. Smith, IBM Software Group, Westborough, MA, USA

Kristoffer H. Rose, IBM Research, Hawthorne, NY, USA

8 Intellectual Property Statement

The GGF
 takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the GGF Secretariat.

The GGF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to practice this recommendation. Please address the information to the GGF Executive Director.

9 Disclaimer

This document and the information contained herein is provided on an “As Is” basis and the GGF disclaims all warranties, express or implied, including but not limited to any warranty that the use of the information herein will not infringe any rights or any implied warranties of merchantability or fitness for a particular purpose.
10 Full Copyright Notice

Copyright (C) Global Grid Forum 2004, 2005,2006. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the GGF or other organizations, except as needed for the purpose of developing Grid Recommendations in which case the procedures for copyrights defined in the GGF Document process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the GGF or its successors or assignees.

11 References

TBD: GGF requires that only permanent documents should be cited as references. Other materials, such as Web pages or working groups, should be cited inline (i.e., see the Global Grid Forum, http://www.ggf.org). References should conform to a standard such as used by IEEE/ACM, MLA, Chicago or similar. Include an author, year, title, publisher, place of publication. For online materials, also add a URL

Name=C

Value=ccc

Name=B

Value=NULL

Name=A

Value=aaa

Name=root

Name=C

Value=ccc

Name=B

Value=NULL

Name=A

Value=aaa

Name=root

Name=C

Value=ccc

Name=B

Value=zzz

Name=A

Value=aaa

Name=root

Name=C

Value=ccc

Name=A

Value=aaa

Name=root

Name=C

Value=ccc

Name=B

Value=zzz

Name=A

Value=aaa

Name=root

Name=C

Value=ccc

Name=B

Value=bbb

Name=A

Value=aaa

Name=root

�This describes only in-band nulls. It doesn't describe the also-common flag or out-of-band nulls.

�Although an element may contain an out-of-bound value in the input stream as its null value it would still be a given the special NULL value as its logical value. This could be indicated by setting nullValueKind to literalCharacter or literalValue. Similarly a element indicated as being null by another element in the input stream would also be given the special NULL value.

�<SMH> Not sure about this. We need to go through the whole min/maxOccurs thing very carefully, it’s a thorny area.

�Will the stop value actually be represented. I can see it would make sense for a stopValueKind of “logical” but I am not sure whether this would make sense “literal” and “empty”. Does the stopValue count as a repeat? For instance if stopValueKind is set to “logical” it would make sense for this to be the case. However if it is set to “empty” it would not make sense because it is intended to handle the case where the end of the repeats are modeled by two consecutive occurs separators.

�<SMH> We need to go through the min/maxOccurs thing very carefully, it’s a thorny area.

�How is list specified such that an empty string can be expressed as a null value for a nullable string field?

�TBD: update for new "OGF". Also the template may change, new IP statement language may have to be used, etc. etc.

File: ggf-dfdl-supplement-advanced-delimited-format-properties-v1.0-001.doc

Page 1 of 13
dfdl-wg@ggf.org

Page 2 of 13

