GWD-I

Stephen Davey, Edinburgh University

Vijay Dialani, IBM Corporation
Category: Informational
Abdeslem Djaoui, Rutherford Appleton Laboratory

 INFOD-WG
 Ronny Fehling, Oracle Corporation

Steve Fisher, Rutherford Appleton Laboratory

Dieter Gawlick, Oracle Corporation

Christopher Kantarjiev, Oracle Corporation

Cecile Madsen, IBM Corporation

Susan Malaika, IBM Corporation

Shailendra Mishra, Oracle Corporation

Mallikarjun Shankar, Oak Ridge National Laboratory

September 30, 2007

INFOD (Information Dissemination) Base Use Case Scenarios

Status of This Memo

This memo provides information to the Grid community motivating scenarios for the Information Dissemination working group. It does not define any standards or technical recommendations. Distribution is unlimited.
Copyright Notice

Copyright © Open Grid Forum (2007). All Rights Reserved.
Abstract
INFOD (Information Dissemination) is a working group in OGF focusing on publishing and consuming data within a grid or distributed system infrastructure. A variety of commercial and scientific scenarios are introduced in this document to illustrate how the INFOD base specification interfaces are used. They may also provide a source of materials for the data and information architecture activities in the OGSA working group. INFOD patterns are also included in this document.

Contents
2Contents

41
Introduction

52
NextGRID Graphical Animations Use Case

52.1
Introduction

52.2
Actors

52.3
Scenarios

62.3.1
Vocabularies

72.3.2
Subscriptions

92.3.3
Joining the media community

102.3.4
Designer and Reviewer Subscription

112.3.5
Examples of XML messages

222.4
Security

232.5
Performance

232.6
Requirements Implied

243
Car Dealer Use Case

243.1
Introduction

243.2
Actors

243.3
Scenarios

243.3.1
Creating the Car Dealer/Buyer Communities

263.3.2
Joining/Leaving the Car Dealer Community

283.3.3
Joining/Leaving the Car Buyer Community

303.3.4
Subscribing to the Inventory of Car Dealer

313.3.5
Publishing Information

323.3.6
Consuming Information

323.3.7
Examples of XML messages

373.4
Security

373.5
Performance

383.6
Requirements Implied

394
Sensor Networks Use Case

394.1
Introduction

394.2
Actors

394.3
Scenarios

404.3.1
Sensor and Applications – Common Vocabulary of the Community

414.3.2
Sensor Characteristics

424.3.3
Data Sources

434.3.4
Application Subscription

444.3.5
Scenario Steps

444.3.6
Examples of XML messages

484.4
Security

484.5
Performance

484.6
Requirements Implied

495
3rd Party Delivery of Query Results Use Case

495.1
Introduction

495.2
Actors

495.3
Scenarios

495.3.1
Creating Data Vocabularies

505.3.2
Creating Property Vocabularies

505.3.3
Creating Entries (except Data Source Entries)

505.3.4
Creating Data Source Entries

505.3.5
Examples of XML Messages

525.4
Security

535.5
Performance

535.6
Requirements Implied

546
Editor and Contributor Information

567
Acknowledgements

578
Intellectual Property Statement

589
Full Copyright Notice

5910
References

6011
Appendix A – INFOD Patterns of Interaction

6011.1
Introduction

6011.2
Description of Patterns

6011.2.1
No Subscriptions

6111.2.2
Subscriptions - Managed by Registry

6211.2.3
Subscription Based Publications

6311.3
Outline of Operations

6311.3.1
No Subscriptions

6411.3.2
Subscriptions - Managed by Registry

6711.3.3
Subscription Based Publications

6912
Appendix B – Accessing the INFOD Registry

6912.1
The Publisher View

7012.2
The Consumer View

7012.3
The Subscription View

7112.4
The Consumer/PublisherEntry View

7212.5
The Publisher/ConsumerEntry View

7212.6
Other Important Views

1 Introduction

The goal of this document is to define use cases to illustrate the use of the INFOD base specification interfaces [INFOD] in a variety of environments. The document ends with appendices on use case patterns and ways of accessing the INFOD registry.

The following use cases are included:

· NextGRID Graphical Animations Use Case
· Car Dealer Use Case

· Sensor Networks Use Case

· 3rd Party Delivery of Query Results Use Case

You will note that each use case in its general form follows the same structure:

1. Define a community which is achieved by defining vocabularies in the INFOD registry.

2. Create the necessary INFOD registry information. This is achieved by defining publisher entries, subscription entries, subscriptions, consumer entries and data source entries in the INFOD registry.

3. The registry determines which publishers have to be notified to publish what has to be published to which consumers.

4. Publishers publish messages in response to subscriptions.

4. Consumers consumer messages using the consume interface.
When you read the use cases, please keep in mind that in most scenarios, portions of the use cases would not be repeated, e.g., defining communities (defining vocabularies) would be done once for each use case. Vocabularies are often re-used.

2 NextGRID Graphical Animations Use Case

2.1 Introduction

This use case is based on the Digital Media use case described in the NextGRID Vision and Architecture White Paper, http://www.nextgrid.org/download/publications/NextGRID_Architecture_White_Paper.pdf
Nowadays, almost all films and commercials use computer graphics animations to implement the special effects that the artists want to depict on the screen. Designers can use several software applications for creating 3D scenes like 3D Studio Max and Maya. These applications can build a 3D environment or just a single scene and render it. The large number of objects, textures, light sources and effects, like shiny surfaces and fog, is a factor that limits the design of a scene due to the increased computational effort. The best solution is to combine the summed power of many single PCs to accomplish the job with the existing software, thus combining the advantages of a powerful computer cluster with the “single PC” way.

The designer develops the job on a single PC with the client’s instructions followed as well as possible to ensure that the final result is the expected one. A close online collaboration between the client and the designer is required in order to obtain results close to the client’s needs.

KINO, a leading producer of TV commercials and films in Greece, anticipates this novel business model can be supported by a Grid enabled rendering infrastructure that can handle not only the in-house production of urgent jobs and small jobs, but also large tasks with a task based negotiation. This negotiation, on the outsourcing of large tasks, has such parameters as the deadline, the complexity of the task, the number of frames and the total computational time needed.

2.2 Actors

In this use case the actors are the Designers, Reviewers, Bosses, Rendering Services and the INFOD registry. The Designer has submitted animation rendering jobs to the Grid, and the Designer and Reviewers are interested in knowing when those jobs have finished.

The Designer and Reviewer want to be informed as soon as each animation is completed.

The Boss wants to know which Designers are available between certain dates.
The Publisher is the Rendering Service.
The INFOD registry manages the vocabularies and subscriptions etc.
2.3 Scenarios

In these scenarios the designer submits jobs (i.e., animated scenes to be rendered) to the rendering service (compute cluster). On submitting the rendering job, parameters such as time limit, complexity, number of frames in the scene, type of rendering software to use, data transport protocol etc may all be specified. But how the job is submitted to the rendering service and the animation data transport are outside the scope of this document.

These scenarios will just concentrate on the notification of job completion to the designer and reviewers, within the INFOD framework.

It is also assumed that the Rendering Services have already been created and their addresses are known.
2.3.1 Vocabularies
The first stage is to define the appropriate vocabularies for the Animators, Reviewers, Bosses & Rendering Services community:
	Organisation Vocabulary
	Comment

	Organisation_Name
	Name of the organisation hosting the rendering service.

	Organisation_Location
	Address of the organisation hosting the rendering service.

	Organisation_Email
	General e-mail address of organisation.

	Organisation_Website
	URL.

	BBB_rating
	A number between 1 and 5.

	Security_Policy
	Security policy.

Table 2‑1: Media Organisation Vocabulary.
	Rendering Service Vocabulary
	Comment

	Service_Name
	Name of rendering service.

	Service_Address
	URL.

	Organisation_Name
	Name of the organisation hosting the rendering service.

	Organisation_Location
	Address of the organisation hosting the rendering service.

	BBB_rating
	A number between 1 and 5.

	Rendering_Software
	List of rendering software products available, e.g. 3D Studio Max, Maya.

Table 2‑2: Rendering Service Vocabulary.
	Employee Vocabulary
	Comment

	Employee_Name
	Name of the animator/designer, reviewer or boss.

	Employee_Email
	E-mail address.

	Employee_Type
	Designer, Reviewer or Boss.

	Organisation_Name
	Name of the organisation hosting the rendering service.

	Organisation_Location
	Address of the organisation hosting the rendering service.

	Hourly_Rate
	Hourly rate, for example for designing animations.

	Availability
	Dates and times when the employee is available.

Table 2‑3: Employee Vocabulary.
	Animation Vocabulary
	Comment

	Designer_Name
	Name of the designer that submitted the animation for rendering.

	Rendering_Job_Name
	Name for the submitted rendering job.

	Project_Name
	Name of the project (e.g. film or commercial perhaps).

	Number_of_Scenes
	Number of scenes to be rendered (i.e. some measure of the complexity of the animation).

	Rendering_Software
	Rendering software used, e.g. 3D Studio Max or Maya etc.

	Job_Time_Limit
	Maximum completion time for the rendering job.

	Job_Start
	Actual start time for the rendering job.

	Job_End
	Actual end time for the rendering job.

	Job_Status
	Status of the rendering job, e.g. Accepted, Rejected, Submitted, Started, Completed, Reviewed, Passed, Failed, Exceeded Time Limit.

	Animation_EPR
	Location (EPR) of the resulting stored animation.

Table 2‑4: Animation Vocabulary.

2.3.2 Subscriptions
The next stage is to create relevant subscriptions:

	Subscription
	Values

	infod:SubscriptionName
	Find a Rendering Service

	infod:SubscriptionDescription
	Find a Rendering Service

	Infod:SubscriberEntryReference
	The EPR of the boss as subscriber

	infod:DataConstraint
	Watch available rendering services

	infod:Property_Constraint
	Rendering Service Organisation: BBB_Rating > 2

	Infod:DynamicConsumerConstraint
	None

Table 2‑5: Designer finding a rendering service subscription.
	Subscription
	Values

	infod:SubscriptionName
	Find completed animations

	infod:SubscriptionDescription
	Watch for completed animations

	Infod:SubscriberEntryReference
	The EPR of the boss as subscriber

	infod:Data_Constraint
	Rendering_Jobs_Inventory: SHOW (Rendering_Job_Name, Animation_EPR) FOR Project = Toy Story 3, Status = Completed

	infod:Property_Constraint
	None

	Infod:DynamicConsumerConstraint
	Designer: Name - designer

Table 2‑6: Designer monitoring animation jobs subscription.
	Subscription
	Values

	infod:SubscriptionName
	Find animations for review

	infod:SubscriptionDescription
	Watch for animations requiring review

	Infod:SubscriberEntryReference
	The EPR of the boss as subscriber

	infod:Data_Constraint
	Rendering_Jobs_Inventory: SHOW (Designer Name, email, job name, Animation_EPR) FOR Project = Toy Story 3, Status = Completed

	infod:Property_Constraint
	None

	Infod:DynamicConsumerConstraint
	None

Table 2‑7: Reviewers monitoring animation jobs subscription.
	Subscription
	Values

	infod:SubscriptionName
	Find a designer.

	infod:SubscriptionDescription
	Watch for available designers.

	Infod:SubscriberEntryReference
	The EPR of the boss as subscriber

	infod:Data_Constraint
	Employee_Inventory: SHOW (Name, Email) FOR Type = Designer, Rendering_Software = 3D Studio Max, Hourly rate < x £ per hour, Availability ∩ [25/12/2005:27/12/2005] = true

	infod:Property_Constraint
	Employees Organisation:
BBB_Rating > 3

	Infod:DynamicConsumerConstraint
	None

Table 2‑8: Boss watching for available designers’ subscription.

2.3.3 Joining the media community
Each appropriate Boss needs to enroll themselves and the Designers and Reviewers that they manage into the INFOD Registry. They (or an Administrator at one of the organizations) also need to add the relevant vocabularies and subscriptions.

[image: image29.jpg]Mecia Use Case diagram - Joring the community)

INFOD Registry

<< subsorber =

Jain Commurity

Boss

<< publisher »=

Rendering Serice

Desingers, Revievers

‘<< BaseRegtrationManager =

‘<< BaseVocabularyManager »>
Register Vocahularies

‘<< BaseSubsciberManager ==
i Subseriber

‘<< BasePublsherManager »=
i Publisher

‘<< BaseConsumerManager >>
i Cansumer

‘<< BaseSubseripionManager =
#d Subscriptions

‘<< BaseassociationManager ==
#d Associtions

Created with Poseidon for

L Cormmunty

Figure 2‑1: Use case diagram for joining the media community.

A summary of these steps is as follows:

1. Boss (or Organization Admin) registers the vocabularies with the INFOD registry.

2. Rendering Service adds itself as a publisher.

3. Boss adds himself into the INFOD registry as a subscriber.

4. Boss adds their designers and reviewers as consumers.

5. Boss creates associations between the publisher and the data vocabulary.
6. Boss creates instances of the relevant property vocabularies for the publisher, subscriber and consumers, identifying for example the designer and reviewer from roles and job characteristics defined in their employee property vocabulary.
7. Boss adds the relevant subscriptions to the INFOD registry.

2.3.4 Designer and Reviewer Subscription

Designer and Reviewer want to be informed as soon as each animation is completed.

[image: image1.jpg]Mecia use case diagram - Revever subscrption

Exeoute Job
Rendering Serice

i . Uprite Job Status.

Submitjob

Exarine Subsctptions
Designer o

Query registry
<< Gelhetadsta >>

<< Cansume >»
DeliverMessage.

Consume message

Reviever INFOD Registry

Created with Poseidon for UML Comrmunity Edition. Not for Commercial Use.

Figure 2‑2: Use case diagram for a designer or reviewer subscription.

Note that the steps in italics (and also shown in grey in Figure 2‑2) take place outside of the INFOD framework.

1. Designer submits an animation job to the Rendering Service, which adds the job to its inventory.
2. The job completes (i.e. Job Status = “Completed”) and the rendered animation is stored by the Rendering Service.
3. The Rendering Service examines the associated subscriptions which it has been notified of by the INFOD Registry.

4. The Rendering Service generates messages for the relevant consumers.

2.3.5 Examples of XML messages

The following text gives an example of part of the XML messages that would be sent to and from the INFOD registry when each of the relevant interfaces is called:

Step 1: Register the vocabularies with the INFOD registry.

a) Registration of Animation (Data) Vocabulary

Request message:
<infod:CreateDataVocabulary>
<infod:VocabularyName>NextGridAnimationDataVocab </infod:VocabularyName>

<infod:VocabularyLanguage>XML Schema(Namespace/URI of DataFormat) </infod:VocabularyLanguage>

<infod:VocabularyBody>

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:ident="http://www.w3.org/INFOD/Entity"

 targetNamespace="http://www.w3.org/INFOD/Entity">

<xsd:element name = “DesignerName” type = “xs:string”/>

<xsd:element name = “RenderingJobName” type = “xsd:string”/>

<xsd:element name = “JobStart” type = “xsd:time”/>

<xsd:element name = “JobStatus” type = “xsd:string”/>

</infod:VocabularyBody>

</infod:CreateDataVocabulary>
Response message (for success case):

<infod:CreateDataVocabularyResponse>

<infod:INFODVocabularyIdentifier>

<wsa:Address>http://www.nextgrid.org/NGInfoDRegistry/NextGridAnimationDataVocabEPR</wsa:Address>

</infod:INFODVocabularyIdentifier>

</infod:CreateDataVocabularyResponse>

b) Registration of Rendering Service (Property) Vocabulary

Request message:
<infod:CreatePropertyVocabulary>

<infod:VocabularyName>NextGridRenderingServicePropertyVocab </infod:VocabularyName>

<infod:VocabularyBody>

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:ident="http://www.w3.org/INFOD/Entity"

 targetNamespace="http://www.w3.org/INFOD/Entity">

<xsd:element name = “ServiceName” type = “xsd:string”/>

<xsd:element name = “ServiceAddress” type = “xsd:uri”/>

<xsd:element name = “ServiceOrganization” type = “xsd:string”/>

<xsd:element name = “RenderingSoftware” type = “xsd:complexType”/>

<xsd:element name = “PricingModel” type = “xsd:string”/>

</infod:VocabularyBody>

</infod:CreatePropertyVocabulary>
The response message would be very similar to that for step 1a and would include the EPR of the INFOD vocabulary identifier. In this example the EPR returned is:

http://www.nextgrid.org/NGInfoDRegistry/NextGridRenderingServicePropertyVocabEPR
Similarly request and response messages would be sent for registering the employee and organization property vocabularies.

The graphic in Fig. 3 depicts the relations of INFOD objects.

[image: image2.jpg]InfoD Registry

Outside World

Registrycreation and registration calls
Direct XML reference

Figure 2‑3: Step 1 INFOD Object Relation

Step 2: Rendering Service added as a Publisher.

Request message:
<infod:CreatePublisherEntry>

<infod:WSEntityIdentifier>

<wsa:Address> http://www.nextgrid.org/NextGridRenderingService </wsa:Address>

</infod:WSEntityIdentifier>

<infod:PublisherName>NextGridRenderingService</infod:PublisherName>

<infod:Notification>

TRUE

</infod:Notification>

</infod:CreatePublisherEntry>

Again, there would be a similar response message which would include the EPR of the INFOD entity identifier. In this example the EPR returned is:

http://www.nextgrid.org/NGInfoDRegistry/NextGridRenderingServiceEPR

The graphic in Fig. 4 depicts the relations of INFOD objects.

[image: image3.jpg]Publisher
NextGridRend
eringService

InfoD Registry

Outside World
——— Registy creation and registraton calls:

Direct XML reference

Figure 2‑4: Step 2 INFOD Object Relations

Step 3: Boss added to the INFOD Registry as a Subscriber.

Request message:

<infod:CreateSubscriberEntry>

<infod:SubscriberName>John Boss</infod:SubscriberName>

</infod:CreateSubscriberEntry>
In this example the returned EPR is:

http://www.nextgrid.org/NGInfoDRegistry/JohnBossEPR
The graphic in Fig. 5 depicts the relations of INFOD objects.

[image: image4.jpg]v

Pubiisher
NextGridRend
eringService

InfoD Registry

Outside World

——— Rogisty creation and registaton calls:
Direct XML eference

Figure 2‑5: Step 3 INFOD object relations

Step 4: Add Designer as a Consumer.

Request message:

<infod:CreateConsumerEntry>

<infod:WSEntityIdentifier>

<wsa:Address>http://www.films.tv/PeterDesigner </wsa:Address>

</infod:WSEntityIdentifier>

<infod:ConsumerName>Peter Designer</infod:ConsumerName>

</infod:CreateConsumerEntry>

In this example the returned EPR is:

http://www.nextgrid.org/NGInfoDRegistry/PeterDesignerEPR

The graphic in Fig. 6 depicts the relations of INFOD objects.

[image: image5.jpg]v

Pubiisher
NextGridRend
eringService

Subscrber
John Boss

Consumer
Peter Designer

InfoD Registry

Outside World

——— Rogisty creation and registaton calls:
Direct XML eference

Figure 2‑6: Step 4 INFOD object relations

Step 5: Create Data Sources.

Request message:

<infod:CreateDataSourceEntry>

<infod:DataSourceEntryName>NextGridDataSource

</infod:DataSOurceEntryName>

<infod:DataSourceEntryReference>

<wsa:Address>http://www.nextgrid.org/NGInfoDRegistry/ NextGridRenderingServiceEPR</wsa:Address>

</infod:DataSourceEntryReference>

<infod:VocabularyReference>

<wsa:Address>http://www.nextgrid.org/NGInfoDRegistry/NextGridAnimationDataVocabEPR</wsa:Address>

</infod:VocabularyReference>
</infod: CreateDataSourceEntry>

In this example the returned EPR is:

http://www.nextgrid.org/NGInfoDRegistry/NextGridDtaSourceEPR
The graphic in Fig. 7 depicts the relations of INFOD objects.

[image: image6.jpg]A

Pubiisher
NextGridRend
eringService

Subscrber Consumer
John Boss Peter Designer

“Resociaion
PublisherAnd
DataVocabAss
ociation

InfoD Registry

Outside World

——— Rogisty creation and registaton calls:
Direct XML eference

Figure 2‑7: Step 5 INFOD object relations

Step 6: Create instances of the relevant property vocabularies for the publisher, subscriber and consumers.

Request message:

<infod:CreatePropertyVocabularyInstance>

 <infod:EntryReference>

 <wsa:Address>

 http://www.nextgrid.org/NGInfoDRegistry/NextGridRenderingServiceEPR
 </wsa:Address>

 </infod:EntryReference>

 <infod:PropertyVocabularyReference>

 <wsa:Address>

 http://www.nextgrid.org/NGInfoDRegistry/

 NextGridRenderingServicePropertyVocabEPR

 </wsa:Address>

 </infod:PropertyVocabularyReference>

 <infod:PropertyVocabularyInstanceBody>

 <?xml version="1.0"?>

 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:ident="http://www.w3.org/INFOD/Entity"

 targetNamespace="http://www.w3.org/INFOD/Entity">

 <ServiceName>NextGrid Rendering Service</ServiceName>

 <ServiceOrganisation>SuperInc</ServiceOrganization>

 <ServiceAddress>

 http://www.nextgrid.org/NextGridRenderingService

 </ServiceAddress>

 <RenderingSoftware>3D Max</RenderingSoftware>

 <PricingModel>myPricingModel</PricingModel>

 </infod:PropertyVocabularyInstanceBody>

</infod:CreatePropertyVocabularyInstance>

In this example the returned EPR is:

http://www.nextgrid.org/NGInfoDRegistry/PublisherVocabInstanceEPR
Similar messages would be sent for creating the instances of the subscriber and consumer property vocabularies.

The graphic in Fig. 8 depicts the relations of INFOD objects.

[image: image7.jpg]A
“Rssoctaton
Consumer PublisherAnd
Peter Designer DataVocabAss
ociation

Vocabulary
Instance

Publisher
NextGridRend
eringService

Vocabulary
Insiance

Insiance

Outside World
——— Rogisty creation and registaton calls:

Direct XML eference

Figure 2‑8: Step 6 INFOD object relations

Step 7: Boss adds the relevant subscriptions to the INFOD registry.

Request message:

<infod:CreateSubscription>

 <infod:SubscriptionName>

 DesignerMonitoringJobsSubscription

 </infod:SubscriptionName>

 <infod:SubscriptionDescription>

 Designer monitoring animation jobs subscription
 </infod:SubscriptionDescription>

 <infod:SubscriberEntryReference>

 <wsa:Address>
 http://www.nextgrid.org/NGInfoDRegistry/JohnBossEPR

 </wsa:Address>

 </infod:SubscriberEntryReference>

 <infod:DataConstraint>

 for $data in doc(“http://www.nextgrid.org/NGInfoDRegistry/
 datavocabularies/AnimationDataVocabEPR”)

 where

 $data/DesignerName = $StaticConsumers/EmployeeName
 $data/Status = “Completed”

 $data/Project= “Toy Story 3”

 return

 $data/Project

 $data/JobName

 $data/DesignerName

 $data/Status

 </infod:DataConstraint>

 <infod:DynamicConsumerConstraint>

 for $employees in doc(“http://www.nextgrid.org/NGInfoDRegistry/
 propertyvocabularyinstances/EmployeeVocabEPR”)

 for $consumers in

 doc(“http://www.nextgrid.org/NGInfoDRegistry/consumers

 /infodConsumer”)

 where

 $employees/EntityReference = GetEPR($consumers)

 return

 $consumers/WSEntityIdentifier

 </infod:DynamicConsumerConstraint>

</infod:CreateSubscription>

In this example the returned EPR is:

http://www.nextgrid.org/NGInfoDRegistry/MonitoringJobsSubscriptionEPR
Similar request messages would be sent for the other subscriptions.
The graphic in Fig. 9 depicts the relations of INFOD objects.

[image: image8.jpg]A
“Rssoctaton
Consumer DesignerMonit PublisherAnd =
Peter Designer oringJobsSub DataVocabAss Conmmntfosa
scription ociation e

Publisher
NextGridRend
eringService

Vocabulary

FropEy
Vocabulary
Insiance
SubscriberVoc

abinstanceEPR

PropEry
Vocabulary
Insiance
PublisherVoca
binstanceEPR

InfoD Registry.

Outside World

——— Rogisty creation and registaton calls:
Direct XML eference

Figure 2‑9: Step 7 INFOD object relations

Step 8: INFOD registry sends Subscription Notification to Rendering Service
The text below gives an example XML for the notification message body.

<Body>

<infod:PublisherNotification>

<infod:SubscriptionReference>

<wsa:Address> http://www.nextgrid.org/NGInfoDRegistry/MonitoringJobsSubscriptionEPR
<wsa:Address>

</infod:SubscriptionReference>
<infod:StaticConsumers>

<wsa:Address>
http://www.nextgrid.org/NGInfoDRegistry/PeterDesignerEPR
<wsa:Address>
</infod:StaticConsumers>
<infod:DataConstraint>

for $data in doc(“http://www.nextgrid.org/NGInfoDRegistry/ datavocabularies/AnimationDataVocabEPR”)

where

 $data/DesignerName = $StaticConsumers/EmployeeName

$data/Status = “Completed”

 $data/Project= “Toy Story 3”

return

$data/Project

$data/JobName

$data/DesignerName

$data/Status

</infod:DataConstrain>

</infod:PublisherNotification>

</Body>
Step 9: The Rendering Service generates messages for the relevant consumers.

Output message to consumers:

The text below gives some example XML for a message body. The structure of the message is as defined in WS-BaseNotification.
<wsnt:Notify>

 <wsnt:NotificationMessage>

 <wsnt:SubscriptionReference>

<wsa:Address> http://www.nextgrid.org/NGInfoDRegistry/MonitoringJobsSubscriptionEPR
<wsa:Address>

 </wsnt:SubscriptionReference>
 <wsnt:ProducerReference>

<wsa:Address> http://www.nextgrid.org/NextGridRenderingService </wsa:Address>

 </wsnt:ProducerReference>
 <wsnt:Message>

 <Type>XML</Type>
 <Length>196</Length>

 <Data>

 <ProjectName>Toy Story 3</ProjectName>
 <JobName>AnimationJobID12345</JobName>
 <DesignerName>Peter Designer</DesignerName>
 <Status>Completed</Status>
 </Data>

 <Flag>1</Flag>

<Transform>None</Transform>

 </wsnt:Message>

 </wsnt:NotificationMessage>
</wsnt:Notify>
The following diagram shows the entities and vocabularies that have been defined and the relations between them – see Figure 2‑10: Relationships between entities and vocabularies.

[image: image9.png]RegsterDataVocabulary
Createx.

PropertyVocabulary
Pubiisher
NextGridRender
ngSenice

Subscriber
John Boss

1
’gm
/
Swworgion | 1 £5
e |53
Montoring Jobs |~ % &
Sucipon ', 5§ Instintiates
35

Instanlates
Consumer
Peler Designer

Indtance creation of Enty thraugh Propery Vacabulry.

InfoD Registry

Outside World

Messags\ocab(derived
from DataVocabulary)

Figure 2‑10: Relationships between entities and vocabularies

Security

Security would be very important for a film that is currently in production say. As well as the need to authenticate the identities of designers, reviewers & rendering services, one may also want job submission data and returned animations (MPEGs) to be encrypted.
But it is assumed that no additional security requirements would be needed beyond the security common to the entire set of scenarios.

2.4 Performance
Response times of around a few seconds would be required but this is unlikely to be beyond the typical performance requirements common to many of the use cases.
2.5 Requirements Implied

	R1
	Constraints, which restrict the flow of messages from publishers to consumers, must be composable.
	The constraints contained in subscriptions must be composed with the constraints specified by the rendering services and designers.

	R2
	Publishers should be able to describe their available messages, events and states in terms of a vocabulary.
	Rendering services need to define the information about rendering jobs that consumers can receive.

	R3
	Subscribers must be able to constrain messages based on message content and publisher information.
	Designers, acting as their own subscribers, must be able to select publishers based on their properties.

	R4
	Publishers must be able to choose what messages to publish based on consumer and subscriber information.
	Rendering services must be able to restrict consumers according to their policies (constraints on designers etc).

	R5
	Consumers must be able to constrain messages based on message content, publisher information and subscriber information.
	Designers and reviewers need to define the messages they receive from which rendering services.

	R6
	Any component can request that it be notified by the registry, via WSN, of changes that the component considers interesting.
	Rendering services need to know which subscriptions are relevant to them and of any changes or additions that occur.

3 Car Dealer Use Case
Introduction

Car buyers like to be aware of all cars of interest from those dealers who are located close by and who have good BBB and service ratings. Instead of receiving pre-canned information buyers like to specify which information is relevant to them.

Car dealer too like to put restrictions on potential buyers; they like to communicate only with those buyers who have good credit rating and do not live too far away.

Car dealers as well as buyers dealers like to specify their interest and constraints in a terminology that is meaningful to the car buyer and seller community and does not require any IT terminology.

Actors

The actors are car dealers (acting as publishers) and car buyers (acting as subscribers and consumers).

It is assumed that car dealers and car buyers form a (virtual) community. This community is described through community vocabularies, the car dealers (buyers) by the car dealer (buyer) vocabulary respectively.

Scenarios

The scenario requires the following activities:

· The creation of the Car Dealer and a Car Buyer community

· Joining and leaving the car dealer community

· Joining and leaving the car buyer community

· Subscribing to (the inventory of) car dealers

· Publishing Information

· Consuming Information

XML schema and data are presented in tables; Operations are provided in each sub-section.

3.1.1 Creating the Car Dealer/Buyer Communities

The (ideal) car dealer community consists of all car dealers independent of the place of business; this community is described by the Car_Dealer vocabulary. Here is an example of a Car_Dealer property vocabulary.

	Car Dealer Vocabulary
	Comment

	Name
	Name of dealer

	Location
	Address of dealer

	Phone
	Phone number of dealer

	E-mail
	E-mail address of dealer

	Web-site
	URL

	Open_since
	Year founded

	BBB_rating
	A number between 1 and 5 –

this information must contain a source reference

	Service_Rating
	A number between 1 and 12 – this information must contain a source reference

Table 3‑3‑1: Car_Dealer Vocabulary

The (ideal) car buyer community consists of all people or organizations interested in buying cars; this community could be defined by the Car_Buyer property vocabulary. Here is an example of a Car_Buyer vocabulary:

	Car Buyer Vocabulary
	Comment

	Name
	Name of car buyer

	Location
	Address of car buyer

	Phone
	Phone number of car buyer

	E-mail
	An e-mail address of car buyer

	Credit_Rating
	A number between 360 and 720 – this information must contain a source reference

	Interest
	Optional expression describing interest of the buyer; could be used to create subscriptions

Table 3‑3‑2: Car_Buyer Vocabulary

Car dealers and buyers also need a data vocabulary to describe and select the item of their shared interest - the cars in the inventory of the car dealers. Here is an example of a Car_Inventory.

	Car Inventory Vocabulary
	Comment

	Inventory number
	Inventory number

	Make
	Brand name

	Model
	Model

	Year
	Model year

	Type
	Type of car

	External Color
	External color

	Internal Color
	Internal color

	Dealer
	Dealer – this could be a reference

	Price
	Amount $

Table 3‑3‑3: Car_Inventory Vocabulary

The Car_Inventory data vocabulary is an XML schema. As a consequence XQuery can be used the select cars of interest. The specific query is part of the subscription. Since the consumer is interested in relevant changes the specified query will be re-evaluated whenever there is a change of the car inventory
. If there is a new result set either the new results set or the changes will be disseminated to the consumer (depending on the subscription directives).

[image: image10.jpg]Creating the Car DeslerBuyer Community J

<< publisher »=

‘<< BaseRegistationManager =
Register Car Dealer Vocabulary

ACar Desler P e
g ~
<< BaseRegistationManager =
Create Communties - DealerfEuyer
N 7
<< Subsriber = = -

<< BaseRegtrationManager =
Register Car Invertory Yocabulary

<< BaseRegistationManager =
Register Car Buyer Vocabulary

A Car Buyer

Created with Poseidon for UML Comrmunity Edtion. Not for Commercial Use.

Figure 3‑3‑1: Creating Car Dealer / Buyer Communities

3.1.2 Joining/Leaving the Car Dealer Community

In order to join the car dealer community, a car dealership has to represent itself as a publisher and as a car dealer.

Here is an example of a car dealer represented as publisher (representing the IT perspective) and as a dealer (representing the community perspective):

	Publisher Entry
	Values

	Infod:WSReference
	EPR of Web Service

	infod:PublisherName
	Frontier Ford

	infod:PublisherDescription
	Oldest Ford Dealer in SFO Bay Area Featuring also fine Italian Cars

	infod:PropertyConstraint
	Consumer: Buyer (Distance to customer < 30 miles, Credit rating > 700)

	Infod:Notification
	TRUE

Table 3‑3‑4: Car Dealer as Publisher

	Car Dealer Instance
	Values

	EntryReference
	The EPR of the publisher entity:

	PropertyVocabularyReference
	The EPR of the dealer vocabulary

	Name
	Frontier Ford

	Location
	101 Auto Row, Redwood city, CA 94065

	Phone
	+1-650-000-0000

	E-mail
	Info@Frontier_Ford .com

	Web-site
	www.Frontier_Ford.com

	Open_since
	1953

	BBB_rating
	5

	Service_Rating
	10

Table 3‑3‑5: Car Dealer as Member of Car Dealer Community
Publishers (dealers) can specify if they should be notified about new, Replaced, and deleted subscriptions. In order to get these notifications the publisher (dealer) has to support the consume interface and must be able to process notification regarding subscriptions.

The publishers (dealers) have to indicate that they have instances based on the car vocabulary. Creating a data source entry does this. There are no user properties associated to the data source entry.

	Car_Inventory as Data Source
	Values

	infod:DataSourceEntryName
	Car_Inventory

	Infod:DataSourceEntryDescription
	Cars on sale by Frontier Ford

	Infod:DataSourceEntryReference
	Publisher1 (EPR of publisher entry)

	Infod:DataVocabulrayReference
	CarVocab (EPR of vocabulary entry)

	Infod:PropertyConstraint
	None

Table 3‑3‑6: Inventory Data of Frontier Ford

It is assumed that all the cars of the large set of dealers are contained in one collection. So the dealer has to describe which part of the selection represents his cars.

[image: image11.jpg][Joining (and Leaving) Car Dester Community

‘<< BaseRegistationManager =
Create Publiher

<< Publisher »>

<< BaseRegstrationManager =
Jain & Leave Car Dealer Communty

<< BaseRegistationManager =

Create Car Desler

CarDeer

‘<< BaseRegistationManager =
Creats Vocabulary Assocition

Created with Poseidon for UML Community Edtion. Not for Commercial Use

Figure 3‑2: Joining (and Leaving) Car Dealer Community

3.1.3 Joining/Leaving the Car Buyer Community

In order to join the car buyer community, a car buyer has present him/herself as a consumer and as a car buyer.

Here is an example of a car buyer represented as consumer (representing the IT perspective) and as a buyer (representing the community perspective):

	Consumer Entry
	Values

	Infod:WSReference
	EPR for Web service of Consumer

	Infod:ConsumerName
	Susan Maria Callas

	Infod:ConsumerDescription
	Buyer of fancy cars

	Infod:PropertyConstraint
	Dealer: Years in business > 10 years, BBB rating > 3, Service rating > 10

	Infod:Notification
	TRUE

Table 3‑3‑7: Car Buyer as Consumer

	Car Buyer Instance
	

	EntryReference
	EPR of consumer entry (Consumer1 - see below)

	PropertyVocabularyReference
	EPR of vocabulary (BuyerVocab – see above)

	Name
	Susan Maria Callas

	Location
	15998 Portola Off Road, Portola Valley, CA

	Phone
	+1-650-000-000

	E-mail
	callas@opera.music

	Credit_Rating
	700

	Interest
	Cars: Make = ‘Italian’ and Model = ‘Sport’ cars’ and Year < 1995 and Exterior Color ‘Red’

Table 3‑3‑8: Car Buyer as Member of Car Buyer Community

[image: image12.jpg]Jining (and Leaving) Car Buyer Commurity)

‘<< BaseRegistationManager =
sy Create Cansumer
<< BaseRegstrationManager =
Jain (& Leave) Car Buyer Commurity

‘<< BaseRegistationManager =
Create Car Buyer

Car Buyer

Created with Poseidon for UML Community Edition. Not for Cammercial Use.

Figure 3‑3‑2: Joining (and Leaving) Car Buyer Community

[image: image13.png]CarBuyersetun)

Maria_CallasCarBuyer

Consumert:INFOD Consumer

Carbun

er_tinfovocabulary

Subsoriber INFOD_Subseriber

1) newgrConsunert :

Created with Poseidon for UML Comrmunity Edtion. Not for Commercial Use.

Figure 3‑4: Joining (and Leaving) Car Buyer Community (interaction diagram)
3.1.4 Subscribing to the Inventory of Car Dealer

The consumer (car buyer), acting as subscriber, has to specify which cars are of interest. Specifying a subscription does this: Before this can be done the car buyer has to register as a consumer and as a subscriber.

	Subscriber Entry
	Values

	Infod:WSReference
	EPR for Web service of Subscriber

	Infod:SubscriberName
	Susan Maria Callas

	Infod:SubscriberDescription
	Subscriber to fancy cars

	Infod:PropertyConstraint
	None

	Infod:Notification
	TRUE

	Subscription
	Values

	Infod:SubscriptionName
	Find a Car

	Infod:SubscriptionDescription
	Watch for car offers

	Infod:SubscriberEntryReference
	EPR for Web service of Consumer

	Infod:DataConstraint
	Make Italian, Price < 250000

	Infod:PropertyConstraint
	Dealer: Distance < 25 miles

	Infod:DynamicConsumerConstraint
	None

Table 3‑3‑9: Subscription

The subscription manager processes the subscription and notifies the relevant publishers (car dealers). Car dealers who are matching the (property) constraint defined by car buyers will be informed if the consumer (buyer) matches their (property) constraint.

The notification to the publisher contains the data constraints, what information is of interest and the consumer reference.

[image: image14.jpg]Subserbing 1o Car Information

<< Subsiber =

‘<< BaseRegistationManager =
Subscibing to Car Information

‘<< BaseRegistationManager =
Create Subsciption

Car Buyer

. with Paseidon for UML Communty Edtion. Not for Cormmercial Use.

Figure 3‑5: Creating a Subscription

[image: image15.png]Subsorenitty)

Maria_CallasCarBuyer Consumert:INFOD Consumer | | Subscrption :INFOD_Subscrition | | Publishert:INFOD_Pubisher

: 1) mewCarBuyart YSubsciptiont

: : <attouter notih)

Created with Poseidon for UML Comrmunity Edtion. Not for Commercial Use.

Figure 3‑6: Creating a Subscription (interaction diagram)
3.1.5 Publishing Information

The publisher publishes information according to the subscription; e.g.; the publications are tailored to the request of the consumer.

After receiving the subscription the publisher sends immediately a message for each car that matches the criteria. Once this is done the publisher sends a message for each car that is either added or removed from the inventory and matches the criteria.

3.1.6 Consuming Information

The consumer receives the messages from the publisher using the consume interface.

3.1.7 Examples of XML messages

The following text gives an example of part of the XML messages that would be sent to and from the INFOD registry when each of the relevant interfaces is called:

Step 1: Register the vocabularies with the INFOD registry.

a) Registration of Car Dealer (Property) Vocabulary

Request message:
<infod:CreatePropertyVocabulary>
<infod:VocabularyName>CarCommunityDealerVocab </infod:VocabularyName>

<infod:PropertyVocabularyDescription>Car vocabulary for car dealers </infod:PropertyVocabularyDescription>

<infod:VocabularyBody>

NOTE: this would need to be encoded correctly (escaped etc.)

e.g. “<” becomes <

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:ident="http://www.w3.org/INFOD/Entity"

 targetNamespace="http://www.w3.org/INFOD/Entity">

<xsd:element name = “DealerName” type = “xsd:string”/>

<xsd:element name = “DealerLocation” type = “xsd:string”/>

<xsd:element name = “DealerPhoneNo” type = “xsd:string”/>
<xsd:element name = “DealerEmail” type = “xsd:string”/>
<xsd:element name = “DealerURL” type = “xsd:string”/>
<xsd:element name = “DealerOpened” type = “xsd:int”/>
<xsd:element name = “DealerBBBRating” type = “xsd:int”/>

<xsd:element name = “DealerServiceRating” type = “xsd:int”/>

</infod:VocabularyBody>

</infod:RCreatePropertyVocabulary>
Response message (for success case):

<infod:CreatePropertyVocabularyResponse>

<infod:INFODVocabularyIdentifier>

<wsa:Address>http://www.carcommunity.com/CCInfoDRegistry/CarCommunityDealerVocabEPR</wsa:Address>

</infod:INFODVocabularyIdentifier>

</infod:CreatePropertyVocabularyResponse>

b) Registration of Car Buyer (Property) Vocabulary

Request message:
<infod:CreatePropertyVocabulary>
<infod:VocabularyName>CarCommunityBuyerVocab </infod:VocabularyName>

<infod:PropertyVocabularyDescription>Vocabulary for car buyers </infod:PropertyVocabularyDescription>

<infod:VocabularyBody>

NOTE: this would need to be encoded correctly (escaped etc.)

e.g. “<” becomes <

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:ident="http://www.w3.org/INFOD/Entity"

 targetNamespace="http://www.w3.org/INFOD/Entity">

<xsd:element name = “BuyerName” type = “xsd:string”/>

<xsd:element name = “BuyerLocation” type = “xsd:string”/>

<xsd:element name = “BuyerPhoneNo” type = “xsd:string”/>
<xsd:element name = “BuyerEmail” type = “xsd:string”/>
<xsd:element name = “BuyerCRRating” type = “xsd:int”/>

<xsd:element name = “BuyerInterest” type = “xsd:string”/>

</infod:VocabularyBody>

</infod:CreatePropertyVocabulary>
Response message (for success case):
<infod:CreatePropertyVocabularyResponse>

<infod:INFODVocabularyIdentifier>

<wsa:Address>:http://www.carcommunity.com/CCInfoDRegistry/CarCommunityBuyerVocabEPR</wsa:Address>

</infod:INFODVocabularyIdentifier>

</infod:CreatePropertyVocabularyResponse>

c) Registration of Car (Data) Vocabulary

Request message:
<infod:CreateDataVocabulary>
<infod:VocabularyName>CarCommunityCarVocab </infod:VocabularyName>
<infod:DataVocabularyDescription>Vocabulary for sedans </infod:DataVocabularyDescription>
<infod:VocabularyLanguage>XML Schema(Namespace/URI of DataFormat) </infod:VocabularyLanguage>

<infod:VocabularyBody>

NOTE: this would need to be encoded correctly (escaped etc.)

e.g. “<” becomes <

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:ident="http://www.w3.org/INFOD/Entity"

 targetNamespace="http://www.w3.org/INFOD/Entity">

<xsd:element name = “CarInvNumber” type = “xsd:number”/>

<xsd:element name = “CarMake” type = “xsd:string”/>

<xsd:element name = “CarModel” type = “xsd:string”/>
<xsd:element name = “CarYear” type = “xsd:int”/>
<xsd:element name = “CarType” type = “xsd:string”/>
<xsd:element name = “CarExtColor” type = “xsd:string”/>
<xsd:element name = “CarIntColor” type = “xsd:string”/>

<xsd:element name = “CarDealer” type = “xsd:string”/>

<xsd:element name = “CarPrice” type = “xsd:int”/>

</infod:VocabularyBody>

</infod:CreateDataVocabulary>
Response message (for success case):

<infod:CreateDataPropertyVocabularyResponse>

<infod:INFODVocabularyReference>

<wsa:Address>:http:www.carcommunity.com/CCInfoDRegistry/CarCommunityCarVocabEPR</wsa:Address>
</infod:INFODVocabularyReference>

</infod:CreateDataPropertyVocabularyResponse>

Step 2: Car Dealer added as a Publisher and Community Member

a) Registration of Car Dealer as Publisher

Request message:

<infod:CreatePublisherEntry>

</infod:WSReference>

 wsa:http://www.carcommunity.com/CarDealerServices

</infod:WSReference>

<infod:PublisherName>Frontier Ford
</infod:PublisherName>

<infod:PublisherDescription>Oldest Ford Dealer in SFO Bay Area Featuring also fine Italian Cars</infod:PublisherDescription>

<infod:PropertyConstraint>Car_Buyer (Distance < 30 miles) and CR > 4) </infod:PropertyConstraint>

</infod:CreatePublisherEntry>

Returned EPR:
http://www.carcommunity.com/CCInfoDRegistry/Publisher/Frontier_Ford

b) Registration of Car Dealer as Community Member
Request message:
<infod:CreatePropertyVocabularyInstance>

<infod:EntryReference>

<wsa:Address>:http://www.carcommunity.com/CCInfoDRegistry/Publisher/Frontier_FordEPR</wsa:Address>
</infod:EntryReference>

<infod:PropertyVocabularyReference>

<wsa:Address>:http://www.carcommunity.com/CCInfoDRegistry/CarCommunityDealerVocabEPR</wsa:Address>

</infod:PropertyVocabularyReference>

<infod:PropertyVocabularyInstanceBody>

NOTE: this would need to be encoded correctly (escaped etc.)

e.g. “<” becomes <

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:ident="http://www.w3.org/INFOD/Entity"

 targetNamespace="http://www.w3.org/INFOD/Entity">

<DealerName>Frontier Ford</DealerName>

<DealerLocation>101 Auto Row, Redwood City, CA 94065</DealerLocation>

<DealerPhoneNo>+1-650-000-000</DealerPhoneNo>

<DealerEmail>info@frontier_ford.com</DealerEmail>

<DealerURL>www.frontier_ford.com</DealerURL>

<DealerOpened>1953</DealerOpened>

<DealerBBBRating>5</DealerBBBRating>

<DealerServiceRating>10</DealerServiceRating>

</infod:VocabularyInstanceVocabularyBody>

</infod:PropertyVocabularyInstanceBody>
Returned EPR:

http://www.carcommunity.com/CCInfoDRegistry/CarDealer/Frontier_Ford

Step 3: Car Dealer adds car inventory as Data Source
Request message:
<infod:DataSourceEntry>

<infod:DatSourceEntryName>

CarsAtFrontierFord

</infod:DataSourceEntryName>

<infod: DataSourceEntryDescription>

A full list of cars at Frontier Ford

</infod:DataSourceEntryDescription>

<infod:DataSourceEntryReference>

<wsa:Address>:http://www.carcommunity.com/CCInfoDRegistry/CarCommunityDealerVocabEPR</wsa:Address>

</infod:DataSourceEntryReference>

<infod:DataVocabularyReference>

<wsa:Address>:http://www.carcommunity.com/CCInfoDRegistry/CarCommunityCarVocabEPR<wsa:Address>
</infod:DataVocabularyReference>

</infod:DatSourceEntry>
Returned EPR:

http://www.carcommunity.com/CCInfoDRegistry/DataSource/Frontier_FordCars

Step 4: Car Buyer added as a Consumer and Community Member
a) Registration of Car Buyer as Consumer

Request message:

<infod:CreateConsumerEntry>

</infod:WSReference>

<wsa:Address>http://www.carcommunity.com/CarBuyerEmail</wsa:Address>

</infod:WSReference>

<infod:ConsumerName>Susan Maria Callas</infod: ConsumerName>

<infod:ConsumerDescription>Buyer of fancy cars </infod:ConsumerDescription>

<infod:PropertyConstraint>Car_Dealer (Dealer: Years in business > 10 years, BBB rating > 3, Service rating > 10) </infod:PropertyConstraint>

</infod:CreateConsumerEntry>

Returned EPR:

http://www.carcommunity.com/CCInfoDRegistry/Consumer/Susan_Maria_Callas

b) Registration of Car Buyer as Community Member

Request message:

<infod:CreatePropertyVocabularyInstance>

<infod:EntityReference>

<wsa:Address>http://www.carcommunity.com/CCInfoDRegistry/Consumer/Susan_Maria_Callas</wsa:Address>

</infod:EntityReference>

<infod:PropertyVocabularyReference>

<wsa:Address>http://www.carcommunity.com/CCInfoDRegistry/CarCommunityBuyerVocabEPR</wsa:Address>

</infod:PropertyVocabularyReference>

<infod:PropertyVocabularyInstanceBody>

NOTE: this would need to be encoded correctly (escaped etc.)

e.g. “<” becomes <

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:ident="http://www.w3.org/INFOD/Entity"

 targetNamespace="http://www.w3.org/INFOD/Entity">

<BuyerName>Susan Maria Callas</BuyerName>

<BuyerLocatiom>15998 Portola Off Road, Portola Valley, CA</BuyerLocation>

<BuyerPhoneNo>+1-650-000-0000</BuyerPhoneNo>

<BuyerEmail>callas&opera.music</BuyerEmail>

<BuyerCRRating>705</BuyerCRRating>

<BuyerInterest>Cars (Make = ‘Italian’ and Model = ‘Sport’ and Year < 1995 and ExtColor “Red’) = </BuyerInterest>

</infod:PropertyVocabularyInstanceBody>

</infod:CreatePropertyVocabularyInstance>
Returned EPR:

http://www.carcommunity.com/CCInfoDRegistry/CarBuyerr/Susan_Maria_Callas
Step 5: Car Buyer added as a Subscriber
Request message:

<infod:CreateSubscriberEntry>

</infod:WSReference>

<wsa:Address>http://www.carcommunity.com/CarBuyerEmail</wsa:Address>

</infod:WSReference>

<infod:SubscriberName>Susan Maria Callas</infod:SubscriberName>

<infod:SubscriberDescription>Interested in fancy cars </infod:SubscriberDescriptionEntry>

</infod:CreateSubscriberEntry

Returned EPR:

http://www.carcommunity.com/CCInfoDRegistry/Subscriber/Susan_Maria_Callas

Step 6: Car Buyer adds Subscription
Request message:
<infod:CreateSubscription>

<infod:SubscriptionName>

SusanMariaCallasFancyCars

</infod:SubscriptionName>

<infod:SubscriptionDescription>

Maria Callas is looking for fancy cars

</infod:SubscriptionDescription>

<infod:SubscriberReference>

<wsa:Address>http://www.carcommunity.com/CCInfoDRegistry/Subscriber/Susan_Maria_Callas</wsa:Address>

</infod:SubscriberReference>
<infod:DataConstraint>

CarCommunityCarVocabEPR.Make = ‘Italian’

CarCommunityCarVocabEPR.Price = < 250000

</infod:DataConstraint>

<infod:PropertyConstraint>

Distance (CarCommunityDealerVocabEPR.Location, http://www.carcommunity.com/CCInfoDRegistry/CarBuyerr/Susan_Maria_Callas) < 25</infod:PropertyConstraint>

</infod:CreateSubscription>

Returned EPR:

http://www.carcommunity.com/CCInfoDRegistry/Subscription/SusanMariaCallasFancyCars

Subscribers could determine the information they like to see; this has been omitted in order to reduce complexity

Step 7: INFOD registry sends Subscription Notification to Car Dealers
The text below gives an example XML for a message body. The type of the body is infoDMsg:BodyType

<Body>

<infod:PublisherNotification>

<infod:SubscriptionReference>

<wsa:Address>http://www.carcommunity.com/CCInfoDRegistry/Subscription/SusanMariaCallasFancyCars<wsa:Address>

</infod:SubscriptionReference>
<infod:ConsumerEntryReference>

<wsa:Address>http://www.carcommunity.com/CCInfoDRegistry/Consumer/Susan_Maria_Callas<wsa:Address>
</infod:ConsumerEntryReference>
<infod:DataConstraint>

fn:doc('INFODRegistry.xml')/datavocabularies/infodDataVocabulary/CarCommunityCarVocab(Make =‘Italian’ andPrice = < 250000)

</infod:DataConstraint>

</infod:PublisherNotification>
</Body>

Step 8: Car Dealer sends Message to Buyer
The car dealer receives the message using the CONSUME operation. It has the same forma as the WS-Notification; the consumer could use NOTIFY as alias.
Step 9: Car Dealer sends Message to Buyer
The text below gives an example XML for a message body delivered by the car dealer (publisher) to the car buyer (consumer). The type of the body is infoDMsg:BodyType
<Body>

<Type>XML</Type>

<Length>as calculated</Length>

<Data>

<CarMake>Ferrari</CarMake>

<CarModel>Roma</CarModel>

<CarYear>1990</CarYear>

<CarType>Sports</CarType>

<CarExtColor>Red</CarExtColor>

<CarIntColor>White</CarIntColor>

<CarDealer>Frontier Ford</CarDealer>

<CarPrice>$150000</CarPricer>

</Data>

</Body>

Step 10: Car Buyer receives Message from Car Dealer
The car buyer receives the message using the CONSUME operation. It has the same forma as the WS-Notification; the consumer could use NOTIFY as alias.

Security

Existing security technology allows the protection of the data.

A message is only delivered when the consumer has the right to see (access) the data.

Performance

Matching publishers and buyers in large communities such as the car dealer/buyer may require the mutual filtering of a large set of constraints. Creating efficient indices for constraints will be very important.

The performance of the actual message traffic between publisher and consumers and not impacted by the INFOD registry.

Requirements Implied

	R1
	Constraints, which restrict the flow of messages from publishers to consumers, must be composable.
	The constraints contained in subscriptions must be composed with the constraints specified by the car dealers and car buyers

	R2
	Publishers should be able to describe their available messages, events and states in terms of a vocabulary.
	Car dealers need to define what information about cars is available and what information people can receive.

	R3
	Subscribers must be able to constrain messages based on message content and publisher information.
	Car buyers, acting as their own subscribers, must be able to select publishers based on their properties.

	R4
	Publishers must be able to choose what messages to publish based on consumer and subscriber information.
	Car dealers must be able to restrict consumers according to their policies (constraints on car buyers)

	R5
	Consumers must be able to constrain messages based on message content, publisher information and subscriber information.
	Car buyers, acting as their own subscribers, need to define which message they receive from which car dealer.

	R6
	Any component can request that it be notified by the registry, via WSN, of changes that the component considers interesting.
	Car dealers need to know which subscriptions are relevant to them.

4 Sensor Networks Use Case
Introduction
We describe the requirement and use for data dissemination for Sensor
 networks and applications that run on them. A sensor is typically a piece of hardware that detects an aspect of the environment. A sensor may also be a software module that acts as a source of data. Examples of sensors include radiation detectors, cameras, etc.. The sensors we consider here have a means of communicating with Nodes (also known as Sensor Data Hubs) which are compute entities that aggregate, dispatch, and receive data over a network connection. We consider the Node as the publisher of the data since it acts as a proxy for sensors.

Applications are the computational processing modules that operate on sensor network data. Applications model the intelligence that produces utility from the sensor network. Although the usage of the term applications may include a broader function in the sensor network, for purposes of this use case we use the term application for a single software module with well-defined inputs and outputs. Examples of applications include modules that perform data archiving, alert detection, and chemical concentration analysis.

The sensor networks we consider here have sufficient computing power and network bandwidth to participate in a middleware that supports data exchange and sharing.
Actors

Actors are the Nodes (equivalent in functionality are the SDH), Applications (the AlertListener), and the INFOD registry.

Sensors are the producers of data and consumers of commands and data.

Nodes are publishers of data in the sensor network. Nodes may also consume directives such as commands and data from applications (not illustrated here).

Applications are consumers of data from the publishers. Applications also publish data consumed by the Nodes as well as other Applications, and so they will appear in the sensor network as publishers as well. We focus on an alert listener application
The INFOD registry manages the vocabularies and subscriptions etc.
Scenarios
The scenario focuses narrowly on the following activities:

· The creation of the publishing entity.

· An application subscribing to sensor alerts

· A Node publishing Information

· An application consuming Information

XML schema and data are presented in tables; Operations are provided in each sub-section;

Figure 1 describes the scenario pictorially. We consider here the scenario of a Node sending a message to an application that consumes it (for recording and displaying alerts). We do not discuss the production and consumption of data between individual Sensors and Nodes in this use case. (The relationship between the Sensors and the Nodes is also a publisher and consumer type relationship with the Sensor publishing data and the Node consuming based on certain filters that the Node may impose on the data that it receives.)

[image: image16]
Figure 4‑1: Sensor Network Component Diagram

4.1.1 Sensor and Applications – Common Vocabulary of the Community

	Name of Predicate
	Comment

	Id
	Sensor Source unique identification

	Name
	Org. Name

	Spatio-temporal Location
	X, Y, Z, t

	(Feature)Type
	Type of data source

	Data Ranges
	Range of detection

	Owner
	Sensor or Org. Owner

	Data schema EPR
	Pointer to data-schema itself

	Confidence level
	Accuracy

	Functional label
	For case-based access

Table 4‑1: Community Vocabulary

	Name of Predicate
	Comment

	ID
	IP address of SDH

	Name
	Name of SDH

	StateChange1
	Describes a type of Event that is published by the SDH.

Example could be:

ChemSpill

Temperature Change

ZoneChangeEvent

ZoneAccessException

SecurityAlert

These events contain a pointer to the relevant data schemas

	StateChange2…
	

Table 4‑2: SDH Community Vocabulary

We assume that there is a vocabulary registered for the Gamma Radiation Sensor and others like it as well as a community vocabulary for each of the SDH StateChanges. Also, a vocabulary for Chemicals is required in this case which contains the MSDS (Material Safety Data Sheet) information detailing the chemical components and safety procedures. In this example, the MSDS information is published as a standard web-service accessible for every federal facility. As soon as a new chemical product is released, the MSDS information is made available. Each INFOD entity requiring information from that source is responsible to deploy a web service to this source (but could also cache it since its stale data)

4.1.2 Sensor Characteristics

	Publisher Entry

	INFOD Parameter
	Values

	Infod:WSReference
	EPR of Web Service representing the publisher

	infod:PublisherName
	Name = Gamma Radiation Sensor

	infod:PublisherDescription
	Nuc Safe Technologies

	infod:PropertyConstraint
	Spatio-temporal Location = [X,Y,Z,t]

	Infod:PropertyConstraint
	Owner = dhs.tn.rad.nucsafe.*

	Infod:PropertyConstraint
	Functional label = first_responder

	Infod:PropertyConstraint
	Confidence level = 10%

	Infod:Notification
	TRUE

Table 4‑3: Node/Sensor as Publisher

4.1.3 Data Sources
	Data Source Entry
	Values

	infod:DataSourceVocabularyName
	SensorObservation_Inventory

	Infod:DataSourceVocabularyDescription
	Sensor Observation Data

	Infod:DataSourceEntryReference
	Publisher1 (EPR of publisher entry)

	Infod:VocabularyReference
	SensorVocab (EPR of vocabulary entity)

	Infod:PropertyConstraint
	None

Table 4‑4: Data Sources
4.1.4 Application Subscription

	Subscription

	INFOD Component
	Value

	Infod:SubscriptionName
	AlertListener

	Infod:SubscriptionDescription
	Retrieve all current alerts

	Infod:DataConstraint
	Reading > C

	Infod:PropertyConstraint
	Sensors’s X, Y, Z, t values within requested range

	Infod:PropertyConstraint
	wisinfod_Name == Gamma Radiation Sensor

	Infod:PropertyConstraint
	infod_vocabulary==Required_EPR of sensor community vocabulary

Table 5‑4: Application Subscription

	Subscription

	INFOD Component
	Values

	Infod:SubscriptionName
	ChemSpillDetection

	Infod:SubscriptionDescription
	Detection of Chemical Spills

	Infod:DataConstraint
	SensorObservation_Inventory: SHOW (Chemical(Obs.SensorReading.Data), Obs.SensorReading.Time) FOR Obs.SensorReading.SubType = SPILL

	Infod:PropertyConstraint
	Obs.SensorReading.Type = RFID Sensor

	Infod:DynamicConsumerConstraint
	Authorized to receive Spill Information && Inventory(Chemical).Organization == Consumer.Organization

Figure 5-4: SDH Subscription to detect Chemical Spills

	Subscription

	INFOD Component
	Value

	Infod:SubscriptionName
	MyChemSpills

	Infod:SubscriberEntryReference
	The EPR of the subscriber

	Infod:SubscriptionDescription
	Notify me of Chemical Spills in my Zone

	Infod:DataConstraint
	Chemical_Spill.RFID.Zone=My Current Zone &&

Chemical_Spill.Chemical.HazardLevel > 3 &&

Chemical_Spill.time = within working hours

	Infod:PropertyConstraint
	Publisher: Name = NASA SDH

	Infod:PropertyConstraint
	infod_vocabulary==Required_EPR of Chemical & Chemical_Spill community (static, enabled through other web services)

Figure 5-5: End-user / application Subscription for ChemSpill to SDH

4.1.5 Scenario Steps

Nodes/SDH (Publishers) and AlertListener (Subscriber and Consumer) registers the vocabularies with the INFOD registry.

Node adds itself as a publisher.

AlertListener adds itself into the INFOD registry as a subscriber.

AlertListener adds itself as a consumer.

Nodes and AlertListeners add the relevant subscriptions to the INFOD registry.

Nodes creates associations between the instances and the data vocabulary.
4.1.6 Examples of XML messages

The following text gives an example of part of the XML messages that would be sent to and from the INFOD registry when each of the relevant interfaces is called:

Step 1: Register the vocabularies with the INFOD registry.

a) Registration of Sensor Vocabulary

Request message:
<infod:CretaeDataVocabulary>
<infod:VocabularyName>SensorDataVocabulary </infod:VocabularyName>

<infod:VocabularyLanguage>XML Schema(Namespace/URI of DataFormat) </infod:VocabularyLanguage>

<infod:VocabularyBody>

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:ident=http://www.w3.org/INFOD/Entity

xmlns:sn=http://infod.sensornetwork.com/snschema

 targetNamespace="http://www.w3.org/INFOD/Entity">

<xsd:element name = “ID” type = “xsd:string”/>

<xsd:element name = “Name” type = “xsd:string”/>

<xsd:element name = “Type” type = “xsd:time”/>

<xsd:element name = “SpatioTemporalLocation” type = “sn:coordinates1”/>

<xsd:element name = “DataRange” type = “sn:range”/>
 <xsd:element name = “StateChange” type = “xsd:string” />
</infod:VocabularyBody>

</infod:CreateDataVocabulary>

Response message (for success case):
<infod:CreateDataVocabularyResponse>

<infod:INFODVocabularyIdentifier>

<wsa:Address>http://infod.sensornetwork.com/vocabEPR </wsa:Address>

</infod:INFODVocabularyIdentifier>

</infod:CreateDataVocabularyResponse>

b) Registration of Application (Alert Subscriber) Vocabulary

Request message:

<infod:CreatePropertyVocabulary>

<infod:VocabularyName>AlertSubscriberVocabulary </infod:VocabularyName>

<infod:VocabularyBody>

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:ident="http://www.w3.org/INFOD/Entity"

 targetNamespace="http://www.w3.org/INFOD/Entity">

<xsd:element name = “ApplicationType” type = “xsd:string”/>

<xsd:element name = “Name” type = “xsd:uri”/>

<xsd:element name = “ListenSourcesType” type = “xsd:string”/>
</infod:VocabularyBody>

</infod:CreatePropertyVocabulary>

The response message would be very similar to that for the previous step and would include the EPR of the INFOD vocabulary identifier. In this example the EPR returned is:

http://infod.sensornetwork.com/alertlistenervocabEPR
Step 2: Node added as a Publisher.

Request message:

<infod:CreatePublisherEntry>

<infod:WSIdentifier>

<wsa:Address> http://infod.sensornetwork.com/publisher/node1 </wsa:Address>

</infod:WSIdentifier>

<infod:PublisherName>Node1</infod:PublisherName>

</infod:CreatePublisherEntry>

Again, there would be a similar response message which would include the EPR of the INFOD entity identifier. In this example the EPR returned is:

http://infod.sensornetwork.com/publisherEPR/node1
Step 3: Alert Listener added to the INFOD registry as a Subscriber.

Request message:

<infod:CreateSubscriberEntry>

<infod:SubscriberName>AlertListener1 </infod:SubscriberName>

</infod:CreateSubscriberEntry>

In this example the returned EPR is:

http://infod.sensornetwork.com/subscriberEPR/AlertListener1
Step 4: Alert Listener also added as a Consumer.

Request message:

<infod:CreateConsumerEntry>

<infod:WSIdentifier>

<wsa:Address>http://infod.sensornetwork.com/consumer/A lertListener1 </wsa:Address>

</infod:WSIdentifier>

<infod:ConsumerName>AlertListener1</infod:ConsumerName>

</infod:CreateConsumerEntry>

In this example the returned EPR is:

http://infod.sensornetwork.com/consumerEPR/AlertListener1
Step 5: Alert Listener adds the relevant subscriptions to the INFOD registry.

Request message:

<infod:CreateSubscription>

<infod:SubscriptionName>

GetNodeSDHAlerts

</infod:SubscriptionName>

<infod:SubscriptionDescription>

Listening for Node and SDH Alerts

</infod:SubscriptionDescription>

<infod:SubscriberReference>

<wsa:Address> http://infod.sensornetwork.com/subscriberEPR/AlertListener1

</wsa:Address>

</infod:SubscriberReference>

<infod:DataConstraint>

http://infod.sensornetwork.com/vocabEPR.StateChange = “TemperatureChange”

</infod:DataConstraint>

<infod:PropertyConstraint>

http://infod.sensornetwork.com/vocabEPR.Type=”Thermometer”

</infod:PropertyConstraint>

</infod:CreateSubscription>

In this example the returned EPR is:

http://infod.sensornetwork.com/subscriptions/AlertListener1
Step 6: Node/SDH creates associations between the publisher and the data vocabulary.

Request message:

<infod:CreateDataSourceEntry>

<infod:DataSOurceEntryName>PublisherAndDataVocabAssociation </infod:DataSOurceEntryName>

<infod:DataSourceEntryReference>

<wsa:Address> http://infod.sensornetwork.com/publisherEPR/node1 </wsa:Address>

</infod:DataSourceEntryReference>

<infod:VocabularyReference>

<wsa:Address> http://infod.sensornetwork.com/vocabEPR </wsa:Address>

</infod:VocabularyReference>

</infod:CreateDataSourceEntry>
Step 7: Node/SDHs create instances of the relevant property vocabularies for the publisher, subscriber and consumers.

Request message:

<infod:CreatePropertyVocabularyInstance>

<infod:EntryReference>

<wsa:Address> </wsa:Address>

</infod:EntryReference>

<infod:PropertyVocabularyReference>

<wsa:Address> http://infod.sensornetwork.com/vocabEPR </wsa:Address>

</infod:PropertyVocabularyReference>

<infod:PropertyVocabularyInstanceBody>

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:ident="http://www.w3.org/INFOD/Entity"

 targetNamespace="http://www.w3.org/INFOD/Entity">

<xsd:element name = “ID” type = “xsd:string”/>
 <ID>uuidAA298320</ID>

<Name>node1</Name>

 <Type>chemicalAggregator</Type>

<SpatioTemporalLocation><lat>85.2</lat><long>-50</long>

 </SpatioTemporalLocation>

<DataRange><low>0</low><high>124</high></DataRange>

</infod:PropertyVocabularyInstanceBody>

</infod:CreatePropertyVocabularyInstance>

In this example the returned EPR is:

http://infod.sensornetwork.com/vocabinstances/PublisherVocabInstanceEPR

Step 8: The AlertListener examines possible publishers.

Request message:

The format of the request message for a GetMetadata operation that finds out types of publishers with a certain type is:

<infod:GetMetadata>

<infod:INFODQueryExpression Dialect=”SQL”>

InfodRegistry: SHOW (InfodRegistry.Entities.*) FOR Entity.Type = Publisher AND http://infod.sensornetwork.com/vocabEPR.Type=”Thermometer”
</infod:INFODQueryExpression>

</infod:GetMetadata>

Step 9: The Publisher generates messages for the relevant consumers.

Output message to consumers:

The text below gives some example XML for a message body. The type of the body is infoDMsg:BodyType

<Body>

<Type>XML</Type>

<Length>100</Length>

<Data type=”StateChange”>

 <Source>SourceEPR</Source>

 <Type>TemperatureChange</Type>

</Data>

</Body>

Security

The registration of the subscription should be authenticated against the application. This can appear as a service outside INFO-D. A certificate infrastructure enables applications to create their subscriptions in the registry.

Once a sensor publishes data of interest (e.g., a data element that satisfies a subscription) the data will need to be transmitted securely to the correct consumer application. This means that the pub-sub (or dissemination) channel needs to support privacy, and authentication, and non-repudiation – this will be provided outside INFO-D. There is a need for a way of specifying the security requirement to the publisher and consumer when the registry finds that a publisher’s data matches a subscription.

Performance
The typical requirement on alert messages is a detection and dispatch in under a second.
Requirements Implied
	R1
	Constraints, which restrict the flow of messages from publishers to consumers, must be composable.
	Subscriptions can compose vocabulary elements.

	R2
	Publishers should be able to describe their available messages, events and states in terms of a vocabulary.
	Nodes and SDH devices describe their available data as a vocabulary.

	R3
	Subscribers must be able to constrain messages based on message content and publisher information.
	Subscriptions can select based on vocabulary instances.

	R4
	Publishers must be able to choose what messages to publish based on consumer and subscriber information.
	Nodes and SDH can impose publish constraints based on receiver vocabulary (not illustrated in above use-case)

	R5
	Consumers must be able to constrain messages based on message content, publisher information and subscriber information.
	Shown similar to R3.

	R6
	Any component can request that it be notified by the registry, via WSN, of changes that the component considers interesting.
	Nodes and Alert Listeners can talk directly to the registry (not illustrated in above use-case).

5 3rd Party Delivery of Query Results Use Case
Introduction

Clients of databases may be interested in disseminating query results to a set of consumers. Therefore, it should be possible to send query results to selected consumers; consumers should also be able to receive query results as they become available.

Actors

3rd party delivery of query results requires the following actors:

· (Database) clients as providers of queries-

· Owners of tables/files/collections as publishers of query results; the tables/files/collections become associations
· Clients as recipients of query results

· Owners of tables/files/collections or clients in the role of subscribers as providers of Continuous Queries

Scenarios

3rd party delivery can leverage the INFOD infrastructure on various levels. The INFOD registry can be used to identify the proper publishers and consumers by using the getMetaData operation.

Continuous Queries can be treated like subscriptions and handled by the INFOD registry directly. The Continuous Queries can be issued by clients or owners.

These scenarios will be covered:

· Publishers identified by Clients, Consumers identified by Publishers - a client uses the INFOD registry to identify publishers, sends a query request to the publisher along with consumer constraints. The publisher uses the INFOD registry to determine the proper consumers. The model allows publishers to determine consumers based on query results.

· Publishers and Consumers identified by Clients - a client uses the INFOD registry to identify the proper publishers and consumers. The query request with the list of consumers is directed to the selected publishers.

· Continuous Queries - a client or an owner of a table/file/collection acting as subscriber sends a Continuous Query to the INFOD registry; the INFOD registry evaluates the request and notifies each publisher along with the list of consumers. The INFO registry notifies effected databases of any changes. This scenario obviously assumes support for Continuous Queries.

These scenarios, like any other scenario, require the specification of vocabularies and the creation of entities and communities.

Consumers will only receive messages if they are entitled to do so according to the security settings.

Note: In it simplest case, the client knows the publisher and the consumers, 3rd party delivery does not require any INFOD support.

Details of the following steps will not be described; they are covered in the proceeding use cases.

5.1.1 Creating Data Vocabularies

Data vocabularies are best created by importing vocabularies of participating data bases into an INFOD registry. We will assume that data base repositories are able to (automatically) create, modify and drop data vocabularies as a result of operations involving vocabularies.

5.1.2 Creating Property Vocabularies

Property vocabularies have to be added if the creation of communities is required. This is done – as described in previous use cases – by defining property vocabularies and creating instances that are associated to INFOD entities.

5.1.3 Creating Entries (except Data Source Entries)
The description of entities can be driven by the database repository (repositories) or by using directly the INFOD operations. The owner of tables/files/collections can become publishers; all or a subsets of the clients can become consumers and subscribers. Obviously, consumers and publishers that are not in database registries can be added.

5.1.4 Creating Data Source Entries
One more step is required; data source entires need to be created and associated to publishers and data vocabularies. This can be done by the database registries by associating the owners of tables/files/collections to the appropriate data vocabulary.

[image: image17.jpg]Creating the Car DeslerBuyer Community J

<< Subsiber =

et acting as a subscriber

<< publisher == 0,
ClassiferRole_1
f / << BaseRegtrationManager =
& Create Communties for 3d party delivery
detebase adinistator ~_

<< Consumer =

S

Aconsumer

<< BaseRegstrationManager =
Registr relevart vossbuary

Created with Poseidon for UML Community Edition. Not for Cammercial Use.

Figure 5‑1: 3rd Party Delivery Use Case - Creating Communities
5.1.5 Examples of XML Messages

The examples are constructed following the discussion in Appendix B.

Case 1: Publishers identified by Clients, Consumers identified by Publisher
Step 1: Client identifies Publishers

The setup from the Car Use Case is used to formulate the getMetaData the following XQuery statement.

for $CD in doc('www.carcommunity.com.xml')//CarDealers
$Dsrc in doc('www.carcommunity.com.xml')//DataSources
$Voc in doc('www.carcommunity.com.xml')//Vocabularies

$Pub in doc('www.carcommunity.com.xml')//PublisherEntries

where

$CD/DealerOpened < 1996 and $CD/DealerBBBRating > 3 and $CD/DealerServiceRating >10 and fn:WithinDist($CD/DealerLocation, ‘15998 Portola Off Road, Portola Valley, CA’) < 25 and

$Voc/infod:VocabularyName = ‘CarCommunityCarVocab’ and
$CD/infod:VocabularyInstanceEntryReference=$Dsrc/infod:AssociateEntityIdentifier and

$CD/infod:VocabularyInstanceEntryReference = fn:GetEPR($Pub) and

$Dsrc/infod:VocabularyInstanceEntryReference = fn:GetEPR($Voc)

return

($Pub/infod:WSEntityIdentifier)

Step 2: Client sends Requests to Publishers

This is the same request as specified in the Car Use Case, see Step 7: INFOD registry sends Subscription Notification to Car Dealers .

Step 3: Publishers identify Consumers

The setup from the Car Use Case is used to formulate the getMetaData the following XQuery statement.

for $CB in doc('www.carcommunity.com.xml')//CarBuyer

$Con in doc('www.carcommunity.com.xml')//ConsumerEntries
where

$CB/BuyerCRRating > 700 and fn:WithinDist($CB/BuyerLocation, ‘101 Auto Row, Redwood City, CA 94065’) and

$CB/infod:VocabularyInstanceEntryReference = fn:GetEPR/($Con)

return

($Con/infod:WSEntityIdentifier)

Note: This XQuery is added to show how publishers can find consumers; in this specific use case there is one specific consumer.
Step 4: Publishers send Results to Consumers

This step has been covered by the previous use cases.

Case 2: Publishers and Consumers identified by Clients
Step 1: Client identifies Publishers and Consumers

The setup from the Car Use Case is used to formulate the getMetaData the following XQuery statement.

for $Pub in doc('www.carcommunity.com.xml')//PublisherEntries,

$Con in doc('www.carcommunity.com.xml')//ConsumerEntries,

$Voc in doc('www.carcommunity.com.xml')//Vocabularies,

$Dsrc in doc('www.carcommunity.com.xml')//DataSources,

$CD in doc('www.carcommunity.com.xml')//CarDealers,

$CB in doc('www.carcommunity.com.xml')//CarBuyers,

where

fn:WithinDist($CD/DealerLocation, ‘15998 Portola Off Road, Portola Valley, CA ’) < 25 and

$Voc/infod:VocabularyName = ‘CarCommunityCarVocab’ and

fn:evaluate($Pub/PublisherPropertyConstraint, $CB) = 1 and
fn:evaluate($Con/ConsumerPropertyConstraint, $CD) = 1 and

$CD/infod:VocabularyInstanceEntryReference = $Dsrc/infod:VocabularyInstanceEntryReference and

$Dsrc/infod:VocabularyInstanceEnrtyReference = fn:GetEPR/($voc)

$CB/infod:VocabularyInstanceEntryReference = Fn:GetEPR/($con)

return

 <PublisherRecipientMapping>
 {
 $Pub, $Con
 }
 </PublisherRecipientMapping>

Note: This XQuery is more complex than necessary to show mutual filtering between publishers and consumers; in this specific use case there is one specific consumer.
Step 2: Client sends Request to Publishers

This is the same request as specified in the Car Use Case, see Step 7: INFOD registry sends Subscription Notification to Car Dealers see page 63.
Step 3: Publishers send Results to Consumers

This is the same request as specified in previous use case.
Case 3: Continuous Queries
Step 1: Client sends Requests to INFOD registry

This is the same request as specified in the Car Use Case see Step 6: Car Buyer adds Subscription.
Step 2: INFOD identifies Publishers and Consumers and notifies Publishers

This is the same request as specified in the Car Use Case, see Step 7: INFOD registry sends Subscription Notification to Car Dealers .on page 36.

Note: The INFOD registry will inform any publisher if any change in the registry changes the respective consumer list.

Step 3: Publishers send Results to Consumers

This step has been covered by the previous use cases.

Security

If consumers of query results are database clients, the database (fine grain) security can be used to ensure that data are only distributed to those consumers that are entitled to receive the query results.

If consumers are not database clients the constraint information in the INFOD registry will be used to ensure that data are only distributed to those consumers that are entitled to receive the query results.
Performance

The identification of the databases and consumers with an INFOD registry has to be added to the response time. The performance of such a request is highly dependent on the implementation of that registry.

The performance of the creation of the query result and the notification of the clients depends on the databases acting as query engine and as publisher.
Requirements Implied

	R1
	Constraints, which restrict the flow of messages from publishers to consumers, must be composable.
	The constraints contained in queries must be composed with the constraints related to security

	R2
	Publishers should be able to describe their available messages, events and states in terms of a vocabulary.
	Depending on the support of the database, there may be access to messages, events, and states. The focus is the access to a single state.

	R3
	Subscribers must be able to constrain messages based on message content and publisher information.
	N/A - clients acting as subscribers determine the content of the message.

	R4
	Publishers must be able to choose what messages to publish based on consumer and subscriber information.
	N/A – databases acting as publishers react only to requests of clients

	R5
	Consumers must be able to constrain messages based on message content, publisher information and subscriber information.
	Consumers must be able to reject messages based on content and client acting as subscriber.

	R6
	Any component can request that it be notified by the registry, via WSN, of changes that the component considers interesting.
	If a database shares a repository with other databases it needs to be informed of changes. These changes are of special importance if the database offers Continuous Query support.

6 Editor and Contributor Information
Vijay Dialani

IBM Corporation

Almaden Research Center

650 Harry Road,

San Jose, CA 95120-6099

vdialani@us.ibm.com
Steven Davey

EPCC,

University of Edinburgh,

James Clerk Maxwell Building,

Mayfield Road,

Edinburgh EH9 3JZ,

United Kingdom.

sdavey@nesc.ac.uk
Ronny Fehling

Oracle Corporation

600 Blvd. de Maisonneuve Ouest

Montreal

Quebec H3A 3J2

Canada

Steve Fisher

Rutherford Appleton Laboratory (CCLRC)

Chilton

Didcot

Oxon OX11 0QX, UK

s.m.fisher@rl.ac.uk
Dieter Gawlick

Oracle Corporation

500 Oracle Parkway

Redwood Shores

CA 94065

dieter.gawlick@oracle.com
Christopher Kantarjiev

Oracle Corporation

500 Oracle Parkway

Redwood Shores

CA 94065

chris.kantarjiev@oracle.com
Cecile Madsen

IBM Silicon Valley Laboratory

555 Bailey Avenue

San Jose, CA 95141

madsen@us.ibm.com
Susan Malaika,

IBM Corporation,

Silicon Valley Laboratory,

555 Bailey Avenue,

San Jose, CA 95141,

USA.
malaika@u.ibm.com
Shailendra Mishra

Oracle Corporation

500 Oracle Parkway

Redwood Shores

CA 94065

shailendra.mishra@oracle.com
Mallikarjun Shankar

Oak Ridge National Laboratory

Oak Ridge

TN 37831

shankarm@ornl.gov
7 Acknowledgements

The INFOD Working Group of the Open Grid Forum has benefited from many people contributing to discussions within the group.
8 Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the OGF Secretariat.
The OGF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to practice this recommendation. Please address the information to the OGF Executive Director.

9 Full Copyright Notice

Copyright (C) Open Grid Forum (2006, 2007). All Rights Reserved.
This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the OGF or other organizations, except as needed for the purpose of developing grid Recommendations in which case the procedures for copyrights defined in the OGF Document process must be followed, or as required to translate it into languages other than English.
The limited permissions granted above are perpetual and will not be revoked by the OGF or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE OPEN GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."
10 References

[EVAL]

Dieter Gawlick, Dmitry Lenkov, Aravind Yalamanchi, Lucy Chernobrod, Applications for Expression Data in Relational Database Systems, ICDE, p. 609, 20th International Conference on Data Engineering (ICDE'04), 2004
[INFOD]

S. Davey, V. Dialani, A. Djaoui, R. Fehling, S. Fisher, D. Gawlick, C. Kantarjiev, C. Madsen, S. Malaika, S. Mishra, M. Shankar, Information Dissemination in the Grid Environment http://forge.gridforum.org/sf/go/doc13627?nav=1
 [OGSA]

I. Foster (Ed), H. Kishimoto (Ed), A. Savva (Ed), D. Berry, A. Djaoui, A. Grimshaw, B. Horn, F. Maciel, R. Subramaniam, J. Treadwell, J. Von Reich. The Open Grid Services Architecture, Version 1.0. Global Grid Forum. GFD-I.030. 29 January 2005. http://forge.gridforum.org/projects/ggf-editor/document/GFD.30/en/1.
[OGSA Glossary]

J. Treadwell, Open Grid Services Architecture Glossary of Terms, GFD-I.044, January 25th 2005. http://forge.gridforum.org/projects/ggf-editor/document/GFD.44/en/1.

11 Appendix A – INFOD Patterns of Interaction

11.1 Introduction

INFOD is designed to support a variety of information dissemination patterns. The following patterns have been identified.

[image: image18.wmf]Publisher

Consumer

Registry

Figure 11‑1: Base INFOD Service

· No subscriptions – publishers send messages to consumers of their choice. The following sub-pattern are identified:

· Publishers use an INFOD registry to find consumers

· Consumers use an INFOD registry to filter publishers

· Publishers and consumers use an INFOD registry to share vocabularies

· Subscriptions managed by an INFOD registry – subscribers send subscriptions to an INFOD registry. The INFOD registry identifies publishers (and consumers) and sends subscriptions to publishers

· Different publishers/consumers have different WS references specified (reference different web services)

· A set of publishers/consumers share the same WS reference

· Subscription based publications - publishers create and deliver messages according to subscription requests.

11.2 Description of Patterns

11.2.1 No Subscriptions

The patterns of this section represent the basic form of disseminating information: publishers send messages to consumers of their choice.

The following information in the INFOD registry provides the context for this pattern:

· User data vocabularies - optional

· Publishers and consumers - optional

· Data Sources - optional

· User property vocabularies - optional

· User properties - optional

The following functionality is available:

· Publishers query the INFOD registry to find matching consumers – requires consumer and optionally property vocabulary entries in INFOD registry.

Publishers should avoid querying the INFOD registry for each single message. Instead, publishers should group messages into classes and associated consumers to these classes and additionally cache the consumer information.

If requested, changes of the result set of any query trigger notification of the publisher. These notifications contain updated information about consumers.

· Consumer filter messages based on publishers properties - requires publisher and optionally property vocabulary entries in INFOD registry.

Consumers can query the INFOD registry to find information about publisher using the information about publishers in the manifest section of the INFOD message.

Consumers should avoid querying the INFOD registry for each single message. Consumers have to obtain and cache relevant information.

If requested, changes to the result set of any query will trigger notification of the consumers. These notifications contain updated information about publishers.

· Publishers and consumers use vocabulary information in the INFOD registry before sending/consuming a message - requires user data vocabulary entries in INFOD registry.

Publishers and consumers should avoid querying the INFOD registry for each message. Both, publishers and consumers, should obtain and the cache relevant vocabulary information.

If requested, changes to the result set of any query will trigger notification of the publishers and consumers respectively. These notifications contain updated information about vocabularies.

Note: Publishers and consumers use only limited set services of the INFOD registry; e.g., publishers and consumers are not matched by the INFOD registry but do so using the GetMetaData interface.

11.2.2 Subscriptions - Managed by Registry

The association of publishers and consumers to a subscription is the responsibility of the INFOD registry.

The following information in the INFOD registry provides the context for this pattern:

· User data vocabularies - mandatory

· Publishers and consumers - mandatory

· Subscribers - mandatory

· Subscriptions - mandatory

· Data Sources - mandatory

· User property vocabularies – optional

· User properties - optional

The following functionality is available:

· Subscribers manage subscriptions using the Create/Replace/DropSubscription operation.

The INFOD registry determines which publishers are offering messages of interest using the vocabulary and vocabulary association information. The evaluation of all constraints that may limit the selection of publishers and consumers follows. The INFOD registry will make adjustment if subscriptions, publishers or consumers are created, replaced or dropped.

If requested, changes that impact subscriptions will trigger notification of the publishers. These notifications contain updated information about subscriptions.

11.2.3 Subscription Based Publications

Publishers are often not able to determine which messages are of interest to consumers. Therefore, publishers must support the creation of messages based on subscription referencing events or states.

The following information in the INFOD registry provides the context for this pattern:

· User data vocabularies - mandatory

· Publishers and consumers - mandatory

· Subscribers - mandatory

· Subscriptions - mandatory

· Data Sources - mandatory

· User property vocabularies – optional

· User properties - optional

The following functionality is available:

· Subscribers specify what messages are published in reaction to events or state changes.

Publishers have to support vocabularies that include events or even allow the specification of events. The associated language must allow filtering of events and also include the ability to define what messages need to be created to reaction to events and state changes respectively.

The difference between this and the previous patterns is the functionality of the data source. In the previous patterns, publishers use vocabularies that represent messages; using this pattern publishers offer access to events and state transitions. Messages are created when an event satisfies certain constraints or when a state transition results in certain constraint becoming true.

If requested, changes that impact subscriptions will trigger notification of INFOD registry to publishers, subscribers and consumers.

· A publisher (P) out sources the dissemination of messages to other publishers (D) – D stands for disseminator. This pattern allows the creation of simple publishers using the services of other publishers.
Publisher P can do this by specifying publisher D’s WS-address for notification by the INFOD registry. D uses the notification to disseminate messages on behalf of P. Data constraints can be processed either by P or by D.

If P processes the data constraints P has to be awrae of the data constraints od subscriptions – this has to be done through a private protocol established by P and D. If there are data to publish p delivers these data and a reference to the subscription to D.

 If only D is aware of the subscription only P has to deliver all data to D; e.g., D own the data sources even if it is not visible in the directory. This could also be achieved by associating the P’s data sources to D.
· A consumer C out sources the consumption of messages to a consumer P – P stands for POBox. More precisely P receives the messages - through the consume interface - and C processes them. This pattern allows the creation of simple consumers using the services of other consumers.
Consumer C can do this by specifying consumer P’s WS-address for notification by the INFOD registry and by publishers. D may not only receive the messages but also verify whether publishers actually adhere to the property constraints specified in the subscriptions.
C has various ways to receive data from P; WS-Notification, email, continuous queries and period pull are some of the choices.
11.3 Outline of Operations

11.3.1 No Subscriptions

The following functionality is available:

· Publishers find relevant consumers in INFOD registry

[image: image19.wmf]Publisher

Consumer

Publication

Registry

Consumers

Consumer

Selection

Figure 11‑2 Base INFOD Service - No Subscription, Consumer Selection

Tasks:

· Manage consumer information in INFOD registry with

· Create/Replace/DropConsumerEntry operation – mandatory
· CreatePropertyVocabulary operation – optional

· Create/DropPropertyVocabularyInstance operation - optional

· Drop/PropertyVocabulary operation - optional

· Publishers select consumers using the GetMetaData operation

· If requested, publishers receive update notifications from the INFOD registry reflecting changes of consumer information

· Publishers create and send messages using WS-Notification message structure.

The INFOD registry provides up-to-date information about consumers.

· Consumers filter messages based on publishers properties

[image: image20.wmf]Publisher

Consumer

Publication

Registry

Publishers

Publisher

Filtering

Figure 11‑3 Base INFOD Service - No Subscription, Publisher Filtering

Tasks:

· Manage publisher information in INFOD registry with

· Create/Replace/DropPublisherEntry operation - mandatory

· CreatePropertyVocabulary operation – optional
· Create/DropPropertyVocabularyInstance operation - optional

· DropPropertyVocabulary - optional

· Consumers find publisher information using the GetMetaData operation

· If requested, consumers receive update notifications form the INFOD registry reflecting changes of publisher information

· Publishers create and send messages using WS-Notification message structure

· Consumers verifies publishers and consumes message

The INFOD registry provides up-to-date information about publishers.

· Consumer can filter message based on message content

[image: image21.wmf]Publisher

Consumer

Publication

Registry

Vocabularies

Data Vocabulary

Inquiry

Data Vocabulary

Inquiry

Figure 11‑4 Base INFOD Service - Vocabulary Inquiry

Tasks:

· Manage vocabulary information in INFOD registry with

· CreateDataVocabulary
 operation - mandatory

· DropDataVocabulry operation - optional

· Publishers find vocabularies using the GetMetaData operation

· If requested, publishers receive update notifications reflecting changes of vocabularies

· Consumers find vocabularies using the GetMetaData operation

· If requested, consumers receive update notifications reflecting changes of vocabularies

· Publishers create and send messages using WS-Notification message structure with a payload according to a vocabulary

· Consumers interprets message using vocabulary information and processes it

The INFOD registry provides up-to-date information about data vocabularies.

11.3.2 Subscriptions - Managed by Registry

Publishers create and publish messages according to subscription directives

[image: image22.wmf]Publisher

Consumer

Registry

Vocabularies

Publisher

Consumer

Subscriptions

Data Sources

Disseminate

Subscriptions

Subscription

Operation

Figure 11‑5 Base INFOD Service - Subscription Managed by INFOD registry

Tasks:

· Manage information in INFOD registry with

· Create/Replace/DropPublisherEntry operation – mandatory

· Create/Replace/DropSubscriberEntry operation – mandatory

· Create/Replace/DropConsumerEntry operation – mandatory

· Create/Replace/DropSubscription operation – mandatory

· Create/DropPropertyVocabulary operation – optional

· Create/DropPropertyVocabularyInstance operation - optional

· Create/DropDataVocabulry operation – mandatory

· Create/DropDataSourceEntry operation - mandatory

· Subscribers direct subscribe request to INFOD registry

· INFOD registry determines relevant publishers

· INFOD registry checks all constraints

· INFOD registry notifies publishers/consumers about new/replaced/deleted subscriptions – these notifications reflect any change in the INFOD registry that impacts a given publisher/consumer
· INFOD registry notifies subscribers about changes effecting subscriptions – these notification reflect changes in the INFOD registry that impact any subscription from a given subscriber
· Publishers receive and process subscription request
· Publishers create and send messages to all relevant consumers using WS-Notification message structure

· Consumers receive messages using the consume operation

By directing subscription request to the INFOD registry, subscribers can direct the INFOD registry to find relevant publishers, check all the constraints, and create a tailored subscription to each of the appropriate publishers. Furthermore, the INFOD registry informs publishers if changes in the directory information require changes in the subscription. This includes that a publication is retracted from some publisher while other publishers are added.

Publisher P creates messages, publisher D publish messages according to subscription directives

[image: image23.wmf]Publisher D

Consumer

Registry

Vocabularies

Publisher

Consumer

Subscriptions

Data Sources

Disseminate

Subscriptions

Subscription

Operation

Publisher

P

Figure 11‑6: Base INFOD Service – Subscribers cooperate
Tasks:

· Manage information in INFOD registry with

· Create/Replace/DropPublisherEntry operation – mandatory

· Create/Replace/DropSubscriberEntry operation – mandatory

· Create/Replace/DropConsumerEntry operation – mandatory

· Create/Replace/DropSubscription operation – mandatory

· Create/DropPropertyVocabulary operation – optional

· Create/DropPropertyVocabularyInstance operation - optional

· Create/DropDataVocabulry operation – mandatory

· Create/DropDataSourceEntry operation - mandatory

· Subscribers direct subscribe request to INFOD registry

· INFOD registry determines relevant publishers

· INFOD registry checks all constraints

· INFOD registry notifies publishers/consumers about new/replaced/deleted subscriptions – these notifications reflect any change in the INFOD registry that impacts a given publisher/consumer

· INFOD registry notifies subscribers about changes effecting subscriptions – these notification reflect changes in the INFOD registry that impact any subscription from a given subscriber

· Publishers - D is this case - receive and process subscription request, and may forward information to other publishers being registrered with the same external EPR – P in this case
· Publishers (P) create messages and make them available to other publishers (D)

· Publishers (D) send messages to all relevant consumers using WS-Notification message structure

· Consumers receive message using the consume operation

By directing subscription request to the INFOD registry, subscribers can direct the INFOD registry to find relevant publishers, check all the constraints, and create a tailored subscription to each of the appropriate publishers. Furthermore, the INFOD registry informs publishers if changes in the directory information require changes in the subscription. This includes that a publication is retracted from some publisher while other publishers are added.

The cooperation between publishers P and D is not visible to the registry.

There could be many publishers P using the external EPR of D.

Consumer P receives (and filters) messages, consumer C consumes messages

[image: image24.wmf]Publisher

Consumer P

Registry

Vocabularies

Publisher

Consumer

Subscriptions

Data Sources

Disseminate

Subscriptions

Subscription

Operation

Consumer C

Figure 11‑7 Base INFOD Service - Base INFOD Service – Consumers cooperate
Tasks:

· Manage information in INFOD registry with

· Create/Replace/DropPublisherEntry operation – mandatory

· Create/Replace/DropSubscriberEntry operation – mandatory

· Create/Replace/DropConsumerEntry operation – mandatory

· Create/Replace/DropSubscription operation – mandatory

· Create/DropPropertyVocabulary operation – optional

· Create/DropPropertyVocabularyInstance operation - optional

· Create/DropDataVocabulry operation – mandatory

· Create/DropDataSourceEntry operation - mandatory

· Subscribers direct subscribe request to INFOD registry

· INFOD registry determines relevant publishers

· INFOD registry checks all constraints

· INFOD registry notifies publishers/consumers about new/replaced/deleted subscriptions – these notifications reflect any change in the INFOD registry that impacts a given publisher/consumer

· INFOD registry notifies subscribers about changes effecting subscriptions – these notification reflect changes in the INFOD registry that impact any subscription from a given subscriber

· Publishers create and send messages to all relevant consumers using WS-Notification message structure

· Consumers (P) receive (and filter) messages using the consume operation

· Consumers (C) receive messages from (P) using-Notification or any mechanism of choice.
By directing subscription request to the INFOD registry, subscribers can direct the INFOD registry to find relevant publishers, check all the constraints, and create a tailored subscription to each of the appropriate publishers. Furthermore, the INFOD registry informs consumers (P) if changes in the directory information require changes in the subscription. This includes that a publication is retracted from some publisher while other publishers are added.

The cooperation between consumers P andC is not visible to the registry.

There could be many consumers C using the external EPR of P.

11.3.3 Subscription Based Publications

The only difference to the previous pattern is the structure and the language support for selected user data vocabularies. The subscriber chooses vocabularies, which support the creation of messages based on events or even supports the definition of events.

· Publishers create and publish messages according to subscription directives

[image: image25.wmf]Publisher

Consumer

Registry

Vocabularies

Publisher

Consumer

Subscriptions

Vocabulary Associations

Publications

Subscriptions

Subscription

Operation

Figure 11‑8 Base INFOD Service - Subscription Managed by INFOD registry - Messages and Events Specified by Subscriber

Tasks:

· Manage information in INFOD registry with

· Create/Replace/DropPublisherEntry operation – mandatory

· Create/Replace/DropSubscriberEntry operation – mandatory

· Create/Replace/DropConsumerEntry operation – mandatory

· Create/Replace/DropSubscription operation – mandatory

· Create/DropPropertyVocabulary operation – optional

· Create/DropPropertyVocabularyInstance operation - optional

· Create/DropDataVocabulary operation - mandatory

· Create/DropDataSourceEntry operation - mandatory
· Subscribers direct subscribe request to INFOD registry

· INFOD registry determines relevant publishers

· INFOD registry checks all constraints

· INFOD registry notifies publisher about new subscriptions – these subscription requests reflect constraints in the INFOD registry

· INFOD registry notifies publishers/consumers about new/replaced/deleted subscriptions

· INFOD registry notifies subscribers about changes effecting subscriptions
· Publishers receive and process subscription request

· Publishers create and send messages to all relevant consumers using the WS-Notification message structure

· Consumers receive message using the consume operation

12 Appendix B – Accessing the INFOD Registry
The use of XQuery to access the information in the INFOD registry to described in this appendix. It is expected that providers of INFOD will provide tools automating steps and hiding details of the implementation from the INFOD users.

The first step is to describe publishers, consumers and subscriptions as seen in a specific context.

12.1 The Publisher View

Given a context, publishers are best described by an XML document called PublisherEntryView – in a real application the name should reflect the context.

Here is a generic example – the boxes of the picture represent entities and property instances expressed with the named XML schema:

[image: image26.emf]Publisher

Entry

Instance

(PVocE1)

DataSource

Instance

(PVocE2)

Instance

(PVocA1)

Vocabulary

(DVoc)

PublisherEntryView

:

PublisherEntry

Instance (PVocE1)

Instance (PVocE2)

Data Source

Vocabulary Name

Instance (PVocA1)

Figure 12‑1: PublisherEntryView

The PublisherEntryView document can be created with the following XQuery statements:

for
$Pub

in fn:collection(’$$infodPubliahers')

$PVocE1
in fn:collection(‘PVocE1epr’),

$PVocE2
in fn:collection(‘PVocE2epr’),

$Dsrc
in fn:collection(‘$$infodDataSources’),

$DVoc
in fn:collection(‘$$infodDataVocabularies’),

$PVocA1
in fn:collection(‘PVocA1epr’)
where

 $PVocE1/infod:VocabularyInstanceEntryReference = fn:GetEPR($Pub) and
 $PVocE2/infod:VocabularyInstanceEntryReference = fn:GetEPR($Pub) and
 Dsrc/infod:VocabularyReference = fn:GetEPR($DVoc) and

 $PVocA1/infod:VocabularyInstanceEntryReference = fn:GetEPR($Dsrc)
return

<PublisherEntryView>

 {$Pub, $PVoc1, $PVoc2, $Dsrc, $DVoc//wsinfod.VocabularyName, $AVoc1}

</PublisherEntryView>

12.2 The Consumer View

The same idea can be applied to the consumer; there is, however, no reference to associations.

[image: image27.emf]Consumer

Entry

Instance

(CVocE1)

Instance

(CVocE2)

ConsumerEntryView

:

ConsumerEntry

Instance (CVocE1)

Instance (CVocE2)

Figure 12‑2: ConsumerEntryView

The XQuery statements for ConsumerEntryView are constructed following the patterns of PublisherEntryView. Please note that one arrow goes from instances of CVocE1 to optional instances of CVocE11.

for

$Con

in fn:collection(‘$$infodConsumers’),

$CVocE1
in fn:collection(‘CVocE1epr’),

$CVocE2
in fn:collection(‘CVocE2epr’)
where

$CVocE1/infod:VocabularyInstanceEntityReference = fn:GetEPR($Con) and

$CVocE2/infod:VocabularyInstanceEntityReference = fn:GetEPR($Con)

return

<ConsumerEntryView>

 {$Con, $CVoc1, PVocE2,}

</ConsumerEntryView>

12.3 The Subscription View

The next step is to include the subscription information. One could also discuss the subscriber view; but that view is generally not so important.
The same idea can be applied to the consumer; there is, however, no reference to associations.

[image: image28.emf]Subscription

Subscriber

Instance

(SrVocE1)

Instance

(SrVocE2)

Subscription View

:

Subscription

Subscriber

Instance (SrVocE1)

Instance (SrvocE2)

Instance (SnVocE2)

Instance

(SnVocE1)

Figure 12‑3: SubsciptionView

The XQuery statements for SubView are constructed following the patterns of PubView or ConView.

for
$Sub

in fn:collection(‘$$infodSubscriptions’),

$Subr

in fn:collection(‘$$infodSubscribers’),

$SrVocE1
in fn:collection(‘SrVocE1epr’),

$SrVocE2
in fn:collection(‘SrVocE2epr’),

$SnVocE1
in fn:collection(‘SnVocE1epr’)
Where

$Sub/infod:SubscriptionSubscriberReference = fn:GetEPR($Subr) and

$SrVocE1/infod:VocabularyInstanceEntryReference = fn:GetEPR($Subr) and

$SrVocE2/infod:VocabularyInstanceEntryReference = fn:GetEPR($Subr) and

$SnVocE1/infod:VocabularyInstanceEntryReference = fn:GetEPR($Sub)

return

<SubsriptionView>

 {$Sub, $Subr, $SrVocE1, $SrVocE2, $SnVocE1}

</SubscriptionView>

12.4 The Consumer/PublisherEntry View

The next step is to create a special community to enable the interaction between publishers and consumers. This requires the inclusion of constraints.

Let us use assume the following (XPATH) constraints exist:

· Publisher constraints are referencing CVocE2 – limits publishers interest in consumers

· Data Source constraints are referencing CVocE1 – limits consumers access to data source
· Consumer constraints are referencing PVocE1 – limits consumers interest in publishers

Applying these constraints would describe which consumer would be acceptable to which publisher.

for

$Pub

in fn:collection(‘$$infodPublishers),
$PvocE1
in fn:collection(‘PVocE1epr’),

$Dsrc
in fn:collection(‘$$infodDataSources’),

$DVoc
in fn:collection(‘$$infodDataVocabularies’),

$PVocA1
in fn:collection(‘PVocA1epr’),
$Con

in fn:collection(‘$$infodConsumers’),

$CVocE1
in fn:collection(‘CVocE1epr’),

$CVocE2
in fn:collection(‘CVocE2epr’)

where

$PVocE1/infod:VocabularyInstanceEntryReference = fn:GetEPR($Pub) and
$PVocE2/infod:VocabularyInstanceEntryReference = fn:GetEPR($Pub) and
$Dsrc/infod:VocabularyReference = fn:GetEPR($DVoc) and

$PVocA1/infod:VocabularyInstanceEntryReference = fn:GetEPR($Dsrc) and
$CVocE1/infod:VocabularyInstanceEntityReference = fn:GetEPR($Con) and

$CVocE2/infod:VocabularyInstanceEntityReference = fn:GetEPR($Con) and
fn:evaluate(fn:collection(‘CVocE2epr’),
 fn:collection(‘$$infoPublishers’)/infodPropertyConstraints) = 1 and
fn:evaluate(fn:collection(‘CvocE1epr’),
 fn:collection(‘$$infoDataSources’)/infodPropertyConstraints) = 1 and

fn:evaluate(fn:collection(‘PvocE1epr’),
 fn:collection(‘$$infoConsumers’)/infodPropertyConstraints) = 1

return

<PublisherConsumerEntryView>

$Pub, $Sub

</PublisherConsumerEntryView>

12.5 The Publisher/ConsumerEntry View

Changing the return clause would describe which publisher would be acceptable to which consumer

return

 <ConsumerPublisherView>

$Con, $Pub

 </ConsumerPublisherView>

12.6 Other Important Views

The following views/functions are of interest:

· SubsriptionPublisherEntryView – publisher organized by subscription

· SubsriptionConsumerEntryView – consumers organized by subscription

· SubsriptionPublisherConsumerEntryView - consumers organized by subscription and publishers

· SubsriptionConsumerPublisherEntryView – publishers organized by subscriptions and consumers
Note: Details will be added if reviews indicate a need.
Applications

Node

Node

Sensors produce data and consume data from Node

Applications

Applications

…

Registry

Applications

Use-case scenario focus

� It is assumed that a performing implementation does not require a full evaluation of each query after each change.

� We use the term sensor networks to refer to both sensor and actuator networks that cover a feedback loop of sense, response, and actuation. Actuators are entities that have the inverse behavior of sensors, that is, they effect actions on the environment (e.g., a camera turn, or change in a sensitivity setting of a sensor).

� INFOD does not manage user data

� The term VIEW is borrowed from the SQL world; there is no XML VIEW construct

� The evaluate function [EVAL} is one way to process multiple constraints as part of an XML statement.

INFOD Base Use Case Scenarios

Page 1 of 73

_1197802351.ppt

Publisher

Consumer

Publication

Registry

Vocabularies

Data Vocabulary

Inquiry

Data Vocabulary

Inquiry

_1251270856.ppt

Publisher

Consumer P

Registry

Vocabularies

Publisher

Consumer

Subscriptions

Data Sources

Disseminate

Subscriptions

Subscription

Operation

Consumer C

_1251527397.ppt

Publisher D

Consumer

Registry

Vocabularies

Publisher

Consumer

Subscriptions

Data Sources

Disseminate

Subscriptions

Subscription

Operation

Publisher P

_1236760567.ppt

Publisher

Entry

Instance

(PVocE1)

DataSource

Instance

(PVocE2)

Instance

(PVocA1)

Vocabulary

(DVoc)

PublisherEntryView :

PublisherEntry

 Instance (PVocE1)

 Instance (PVocE2)

 Data Source

 Vocabulary Name

 Instance (PVocA1)

_1251269695.ppt

Publisher

Consumer

Registry

Vocabularies

Publisher

Consumer

Subscriptions

Data Sources

Disseminate

Subscriptions

Subscription

Operation

_1236760616.ppt

Consumer

Entry

Instance

(CVocE1)

Instance

(CVocE2)

ConsumerEntryView :

ConsumerEntry

 Instance (CVocE1)

 Instance (CVocE2)

_1197802459.ppt

Publisher

Consumer

Registry

Vocabularies

Publisher

Consumer

Subscriptions

Vocabulary Associations

Publications

Subscriptions

Subscription

Operation

_1208936397.ppt

Subscription

Subscriber

Instance

(SrVocE1)

Instance

(SrVocE2)

Subscription View:

Subscription

 Subscriber

 Instance (SrVocE1)

 Instance (SrvocE2)

 Instance (SnVocE2)

Instance

(SnVocE1)

_1197802121.ppt

Publisher

Consumer

Publication

Registry

Consumers

Consumer

Selection

_1197802288.ppt

Publisher

Consumer

Publication

Registry

Publishers

Publisher

Filtering

_1197801584.ppt

Publisher

Consumer

Registry

