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1. Introduction
This document proposes a method by which the values of DFDL representation properties can be resolved. In particular, it describes how sets of these properties, called configurations, are named and applied to components in DFDL Schemas. 
Out of scope: selectors
There may be multiple configurations in a schema. For example one may describe both a binary Cobol-style format and a textual format for the same schema. In these cases, each configuration will be decorated with a “selector” that will be used to choose which configuration is valid in the current context. The subject of selectors is beyond the scope of this document.
Out of scope: non-native attributes

We do not consider the use of non-native attributes in this memo. That is use of attributes in the DFDL namespace but on elements in the XML Schema namespace. Rather, we focus on DFDL appinfo annotations which define representation properties. 
2. Configurations

Configurations are the mechanism by which representation properties are associated with DFDL components. Configurations can be renamed for reuse or they may be anonymous. An example of each method is shown below (Examples 1 and 2). All configurations are said to be “complete”, meaning that they contain a value for every representation property defined by the DFDL. 

Every configuration declared in a DFDL schema can, and must, extend one other named configuration. This extension is achieved by specifying the name of the configuration to extend as the value of the base attribute of a dfdl:dataFormat element. The root configuration, “dfdl:default”, specifies a default value for each representation property and is the only configuration that does not extend another configuration. This extension is done to ensure that all configurations are complete.

The value specified for a given property in a configuration overrides the value specified by the configuration it extends. By using the base attribute, a rich, single-inheritance hierarchy of configurations can be constructed.
	<xs:schema>

  <dfdl:dataFormat name=”myConfig” 
                   base=”someOtherConfig”

                   repType=”text” 
                   separator=”,”>
  </dfdl:dataFormat>
</xs:schema>

	Example 1: Declaring a named configuration.


	<xs:element name=”foo”>

  <xs:annotation>

    <xs:appinfo source=”http://dataformat.org/”>

      <xs:dataFormat base=”someOtherConfig” 
                     repType=”text” 
                     separator=”,”/>
    </xs:appinfo>

  </xs:annotation>

</xs:element>

	Example 2: Declaring an anonymous configuration.


2.1 Named Configurations

Named configurations may only appear at the top-level of a DFDL schema (i.e., they must be the child of an xs:schema element). They are declared using the dfdl:dataFormat tag with the name attribute. The value of the name attribute is an XML QName. If no namespace is specified, the configuration will be a member of the schema’s target namespace.
Named configurations are not associated with, and have no effect upon, DFDL schema components. This association is created through the use of anonymous configurations.




2.2 Anonymous Configurations

Anonymous configurations are declared on the schema component to which they apply. The syntax of an anonymous configuration is exactly the same as that of named configurations, except anonymous configurations do not specify a name. Anonymous configurations behave as if they were pulled out to top level, named, and referenced via the base attribute from the original location.
3. Scoping and Property Resolution
Using the configuration paradigm described in the previous section, it is fairly easy to resolve the value of a property on any given DFDL component:
1. Determine if the component has a configuration associated with it in an xs:appinfo annotation. If it does, use the value it specifies for the property.
2. If the component is not associated with a configuration, walk up its containment hierarchy until a component that does specify a configuration is found. Use the value it specifies for the property.
3. 
In Example 3, the author of the storedLengthString type has intentionally omitted the configuration for the length element. To correctly parse the value of this element, the DFDL processor must look up the containment hierarchy to find its configuration. This means that each of the three occurrences of the length element will be parsed differently:
· foo/length – The element foo declares an anonymous configuration that extends “ebcdicRep”, which specifies a charset and inherits the value of repType from its parent configuration. The anonymous configuration specifies that the comma character denotes the end of a field. The net result is that the value of foo/length will be the integer interpretation of an EBCDIC string. The DFDL processor will know the string is complete when a comma is encountered. Notice that the repLength specified on the element top does not effect the parsing of foo/length. Since foo specifies an anonymous configuration, the values specified on top are overridden by the base specified which is ”ebcdicRep”.
· bar/length –  The bar element also specifies an anonymous configuration, but it extends the default configuration instead of “ebcdicRep”. This will cause bar/length to be parsed as a 32-bit, binary, little-endian integer.
· baz/length –  The baz element does not specify a configuration so the DFDL processor will walk up the containment hierarchy once more. The container of baz is top, which does declare an anonymous configuration. This configuration extends “ebcdicRep”, stipulating that the field will have a repLength of 2. Thus, the value baz/length will be the integer interpretation of an EBCDIC string consisting of 2 characters.
	<xs:annotation><xs:appinfo source=”http://dataformat.org/”>

   <dfdl:dataFormat name=”textRep” base=”dfdl:default” repType=”text”/>
</xs:appinfo></xs:annotation>

<xs:annotation><xs:appinfo source=”http://dataformat.org/”>
   <dfdl:dataFormat name=”ebcdicRep base=”textRep” 
                    charset=”ebcdic-cp-us”/>
</xs:appinfo></xs:annotation>








<xs:complexType name=”storedLengthString”>
  <xs:sequence>

    <xs:element name=”length” type=”xs:int”/>

    <xs:element name=”value” type=”xs:string”>

      <xs:annotation><xs:appinfo source=”http://dataformat.org/”>

        <dfdl:dataFormat base=”ebcdicRep”/>


      </xs:appinfo></xs:annotation>

    </xs:element>

  </xs:sequence>
</xs:complexType>
<xs:element name=”top”>
  <xs:annotation><xs:appinfo source=”http://dataformat.org/”>
    <dfdl:dataFormat base=”ebcdicRep” repLength=”2”/>
  </xs:appinfo></xs:annotation>




  <xs:complexType>

    <xs:sequence>
      <xs:element name=”foo” type=”storedLengthString”>

        <xs:annotation><xs:appinfo source=”http://dataformat.org/”>
          <dfdl:dataFormat base=”ebcdicRep” terminator=”,”/>
        </xs:appinfo></xs:annotation>

      </xs:element>





      <xs:element name=”bar” type=”storedLengthString”>
        <xs:annotation><xs:appinfo source=”http://dataformat.org/”>

          <dfdl:dataFormat extends=”dfdl:default”
                           repType=”binary”
                           byteOrder=”littleEndian”/>

        </xs:appinfo></xs:annotation>

      </xs:element>
      <xs:element name=”baz” type=”storedLengthString”/>




    </xs:sequence>

  </xs:complexType>

</xs:element>

	Example 3: Demonstrates the dynamic scoping of representation properties.
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