GWD-I

dfdl-wg@gridforum.org
Category: INFORMATIONAL

GGF Data Format Description Language Working Group
2005-05-27

Data Format Description Language (DFDL)

Scoping Proposal
Status of This Memo

This memo is a working draft constructed by the editor. It is not an official committee work product and may not reflect the consensus opinion of the committee.

Copyright Notice

Copyright © Global Grid Forum (2005). All Rights Reserved.

Revision History

	Latest entry at the top please

	Version
	Author/Contributor
	History
	Date(yyyy-mm-dd)

	001
	David Loose
	Created
	2005-05-26

Contents

1Data Format Description Language (DFDL)

1Scoping Proposal

1Revision History

1Contents

31.
Introduction

31.1
Out of scope: selectors

31.2
Out of scope: non-native attributes

32.
Configurations

42.1
Named Configurations

42.2
Anonymous Configurations

43.
Scoping and Property Resolution

6Author Information

6Intellectual Property Statement

6Full Copyright Notice

1. Introduction
This document proposes a method by which the values of DFDL representation properties can be resolved. In particular, it describes how sets of these properties, called configurations, are named and applied to components in DFDL Schemas.
Out of scope: selectors
There may be multiple configurations in a schema. For example one may describe both a binary Cobol-style format and a textual format for the same schema. In these cases, each configuration will be decorated with a “selector” that will be used to choose which configuration is valid in the current context. The subject of selectors is beyond the scope of this document.
Out of scope: non-native attributes

We do not consider the use of non-native attributes in this memo. That is use of attributes in the DFDL namespace but on elements in the XML Schema namespace. Rather, we focus on DFDL appinfo annotations which define representation properties.
2. Configurations

Configurations are the mechanism by which representation properties are associated with DFDL components. Configurations can be renamed for reuse or they may be anonymous. An example of each method is shown below (Examples 1 and 2). All configurations are said to be “complete”, meaning that they contain a value for every representation property defined by the DFDL.

Every configuration declared in a DFDL schema can, and must, extend one other named configuration. This extension is achieved by specifying the name of the configuration to extend as the value of the base attribute of a dfdl:dataFormat element. The root configuration, “dfdl:default”, specifies a default value for each representation property and is the only configuration that does not extend another configuration. This extension is done to ensure that all configurations are complete.

The value specified for a given property in a configuration overrides the value specified by the configuration it extends. By using the base attribute, a rich, single-inheritance hierarchy of configurations can be constructed.
	<xs:schema>

 <dfdl:dataFormat name=”myConfig”
 base=”someOtherConfig”

 repType=”text”
 separator=”,”>
 </dfdl:dataFormat>
</xs:schema>

	Example 1: Declaring a named configuration.

	<xs:element name=”foo”>

 <xs:annotation>

 <xs:appinfo source=”http://dataformat.org/”>

 <xs:dataFormat base=”someOtherConfig”
 repType=”text”
 separator=”,”/>
 </xs:appinfo>

 </xs:annotation>

</xs:element>

	Example 2: Declaring an anonymous configuration.

2.1 Named Configurations

Named configurations may only appear at the top-level of a DFDL schema (i.e., they must be the child of an xs:schema element). They are declared using the dfdl:dataFormat tag with the name attribute. The value of the name attribute is an XML QName. If no namespace is specified, the configuration will be a member of the schema’s target namespace.
Named configurations are not associated with, and have no effect upon, DFDL schema components. This association is created through the use of anonymous configurations.

2.2 Anonymous Configurations

Anonymous configurations are declared on the schema component to which they apply. The syntax of an anonymous configuration is exactly the same as that of named configurations, except anonymous configurations do not specify a name. Anonymous configurations behave as if they were pulled out to top level, named, and referenced via the base attribute from the original location.
3. Scoping and Property Resolution
Using the configuration paradigm described in the previous section, it is fairly easy to resolve the value of a property on any given DFDL component:
1. Determine if the component has a configuration associated with it in an xs:appinfo annotation. If it does, use the value it specifies for the property.
2. If the component is not associated with a configuration, walk up its containment hierarchy until a component that does specify a configuration is found. Use the value it specifies for the property.
3.
In Example 3, the author of the storedLengthString type has intentionally omitted the configuration for the length element. To correctly parse the value of this element, the DFDL processor must look up the containment hierarchy to find its configuration. This means that each of the three occurrences of the length element will be parsed differently:
· foo/length – The element foo declares an anonymous configuration that extends “ebcdicRep”, which specifies a charset and inherits the value of repType from its parent configuration. The anonymous configuration specifies that the comma character denotes the end of a field. The net result is that the value of foo/length will be the integer interpretation of an EBCDIC string. The DFDL processor will know the string is complete when a comma is encountered. Notice that the repLength specified on the element top does not effect the parsing of foo/length. Since foo specifies an anonymous configuration, the values specified on top are overridden by the base specified which is ”ebcdicRep”.
· bar/length – The bar element also specifies an anonymous configuration, but it extends the default configuration instead of “ebcdicRep”. This will cause bar/length to be parsed as a 32-bit, binary, little-endian integer.
· baz/length – The baz element does not specify a configuration so the DFDL processor will walk up the containment hierarchy once more. The container of baz is top, which does declare an anonymous configuration. This configuration extends “ebcdicRep”, stipulating that the field will have a repLength of 2. Thus, the value baz/length will be the integer interpretation of an EBCDIC string consisting of 2 characters.
	<xs:annotation><xs:appinfo source=”http://dataformat.org/”>

 <dfdl:dataFormat name=”textRep” base=”dfdl:default” repType=”text”/>
</xs:appinfo></xs:annotation>

<xs:annotation><xs:appinfo source=”http://dataformat.org/”>
 <dfdl:dataFormat name=”ebcdicRep base=”textRep”
 charset=”ebcdic-cp-us”/>
</xs:appinfo></xs:annotation>

<xs:complexType name=”storedLengthString”>
 <xs:sequence>

 <xs:element name=”length” type=”xs:int”/>

 <xs:element name=”value” type=”xs:string”>

 <xs:annotation><xs:appinfo source=”http://dataformat.org/”>

 <dfdl:dataFormat base=”ebcdicRep”/>

 </xs:appinfo></xs:annotation>

 </xs:element>

 </xs:sequence>
</xs:complexType>
<xs:element name=”top”>
 <xs:annotation><xs:appinfo source=”http://dataformat.org/”>
 <dfdl:dataFormat base=”ebcdicRep” repLength=”2”/>
 </xs:appinfo></xs:annotation>

 <xs:complexType>

 <xs:sequence>
 <xs:element name=”foo” type=”storedLengthString”>

 <xs:annotation><xs:appinfo source=”http://dataformat.org/”>
 <dfdl:dataFormat base=”ebcdicRep” terminator=”,”/>
 </xs:appinfo></xs:annotation>

 </xs:element>

 <xs:element name=”bar” type=”storedLengthString”>
 <xs:annotation><xs:appinfo source=”http://dataformat.org/”>

 <dfdl:dataFormat extends=”dfdl:default”
 repType=”binary”
 byteOrder=”littleEndian”/>

 </xs:appinfo></xs:annotation>

 </xs:element>
 <xs:element name=”baz” type=”storedLengthString”/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

	Example 3: Demonstrates the dynamic scoping of representation properties.

Author Information
David T. Loose, IBM Software Group, 50 Washington St. Westborough, MA 01581, USA
Intellectual Property Statement

The GGF takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the GGF Secretariat.

The GGF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to practice this recommendation. Please address the information to the GGF Executive Director.

Full Copyright Notice

Copyright (C) Global Grid Forum (2005). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the GGF or other organizations, except as needed for the purpose of developing Grid Recommendations in which case the procedures for copyrights defined in the GGF Document process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the GGF or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and THE GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

File name: ggf-dfdl-proposed-scoping-001.doc

 Page 2 of 6
Last saved: 2005-05-27T16:04:00 (ET.US)

http://forge.gridforum.org/projects/dfdl-wg/

