

INTERNATIONAL TELECOMMUNICATION UNION

ITU-T X.694
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(01/2004)

SERIES X: DATA NETWORKS AND OPEN SYSTEM
COMMUNICATIONS
OSI networking and system aspects – Abstract Syntax
Notation One (ASN.1)

 Information technology – ASN.1 encoding
rules – mapping W3C XML schema definitions
into ASN.1

CAUTION !
PREPUBLISHED RECOMMENDATION

This prepublication is an unedited version of a recently approved Recommendation.
It will be replaced by the published version after editing. Therefore, there will be
differences between this prepublication and the published version.

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of
ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing
Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these
topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU [had/had not] received notice of intellectual
property, protected by patents, which may be required to implement this Recommendation. However,
implementors are cautioned that this may not represent the latest information and are therefore strongly urged
to consult the TSB patent database.

 ITU 2004

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

ITU-T Rec. X.694 (01/2004) – Prepublished version 1

INTERNATIONAL STANDARD 8825-5
ITU-T RECOMMENDATION X.694

INFORMATION TECHNOLOGY –
ASN.1 ENCODING RULES –

MAPPING W3C XML SCHEMA DEFINITIONS INTO ASN.1

Summary

This Recommendation | International Standard defines rules for mapping an XSD Schema (a schema
conforming to the W3C XML Schema specification) to an ASN.1 schema in order to use ASN.1
encoding rules such as the Basic Encoding Rules (BER), the Distinguished Encoding Rules (DER),
the Packed Encoding Rules (PER) or the XML Encoding Rules (XER) for the transfer of
information defined by the XSD Schema.

The use of this Recommendation | International Standard with the ASN.1 Extended XML Encoding
Rules (EXTENDED-XER) provides the same XML representation of values as that defined by the
original XSD Schema.

ITU-T Rec. X.694 (01/2004) – Prepublished version 2

CONTENTS

Introduction ..5

1 Scope...6

2 Normative references ...6
2.1 Identical Recommendations | International Standards... 6
2.2 Additional references.. 7

3 Definitions ..7
3.1 Imported definitions ... 7
3.2 Additional definitions ... 8

4 Abbreviations..8

5 Notation ..8

6 Purpose and extent of standardization..8

7 Mapping XSD Schemas ...9

8 Ignored schema components and properties...11

9 The ASN.1 module and namespaces ...12

10 Name conversion...12
10.1 General... 12
10.2 Generating ASN.1 type definitions that are references to ASN.1 type assignments 13
10.3 Generating identifiers and type reference names... 13
10.4 Order of the mapping ... 15

11 Mapping uses of XSD built-in datatypes..16

12 Mapping facets..18
12.1 The length, minLength, and maxLength facets .. 18
12.2 The pattern facet .. 19
12.3 The whiteSpace facet .. 19
12.4 The enumeration facet .. 19
12.5 Other facets.. 21

13 Mapping simple type definitions ...22

14 Mapping element declarations ...24

15 Mapping attribute declarations ..25

16 Mapping values of simple type definitions..25

17 Mapping model group definitions ...25

18 Mapping model groups ..25

ITU-T Rec. X.694 (01/2004) – Prepublished version 3

19 Mapping particles..26

20 Mapping complex type definitions ..27

21 Mapping wildcards..29

22 Mapping attribute uses ..29

23 Mapping uses of simple and complex type definitions (general case)29

24 Mapping special uses of simple and complex type definitions (substitutable)................30

25 Mapping special uses of simple and complex type definitions (substitutable, nillable) .32

26 Mapping special uses of simple type definitions (nillable)...33

27 Mapping special uses of complex type definitions (nillable) ...33

28 Mapping special uses of element declarations (head of element substitution group)35

29 Generating special ASN.1 type assignments for element declarations35

30 Generating special ASN.1 type assignments for type definitions ..36

31 Generating special ASN.1 type assignments for element substitution groups37

Annex A ASN.1 type definitions corresponding to XSD built-in datatypes38

Annex B Assignment of object identifier values...43

Annex C Examples of mappings ...44
C.1 A Schema using simple type definitions .. 44
C.2 The corresponding ASN.1 definitions ... 45
C.3 Further examples .. 46

C.3.1 Schema documents with import and include element information items ..46
C.3.2 Mapping simple type definitions ...47

C.3.2.1 simple type definition derived by restriction...47
C.3.2.2 simple type definition derived by list ..47
C.3.2.3 simple type definition derived by union..47
C.3.2.4 Mapping type derivation hierarchies for simple type definitions ..48

C.3.3 Mapping facets...48
C.3.3.1 length, minLength, and maxLength ...48
C.3.3.2 pattern ..49
C.3.3.3 whiteSpace ..49
C.3.3.4 minInclusive, minExclusive, maxInclusive, and maxExclusive ...49
C.3.3.5 totalDigits and fractionDigits ...50
C.3.3.6 enumeration ..50
C.3.3.7 enumeration in conjunction with other facets ...50

C.3.4 Mapping element declarations ...51
C.3.4.1 element declarations whose type definition is a user-defined top-level simple type definition or
complex type definition ..51
C.3.4.2 element declarations whose type definition is an anonymous simple type definition or complex
type definition ..51
C.3.4.3 element declarations which are the head of an element substitution group52
C.3.4.4 element declarations with a value constraint that is a default value ..52
C.3.4.5 element declaration with a value constraint that is a fixed value ...53
C.3.4.6 element declarations that are nillable ...54

C.3.5 Mapping attribute uses and attribute declarations...56
C.3.6 Mapping model group definitions ...57
C.3.7 Mapping particles...57
C.3.8 Mapping complex type definitions..59
C.3.9 Mapping wildcards...64

Annex D Use of the mapping to provide binary encodings for W3C XML Schema........................67

ITU-T Rec. X.694 (01/2004) – Prepublished version 4

D.1 Encoding XSD Schemas ... 67
D.2 Transfer without using the XSD Schema for Schemas.. 67
D.3 Transfer using the XSD Schema for Schemas.. 67

ITU-T Rec. X.694 (01/2004) – Prepublished version 5

Introduction
This Recommendation | International Standard specifies a mapping from a W3C XML Schema
definition (an XSD Schema) into an ASN.1 schema. The mapping can be applied to any XSD
Schema. It specifies the generation of one or more ASN.1 modules containing type definitions,
together with ASN.1 XER encoding instructions. These are jointly described as an ASN.1 schema
for XML documents.

This ASN.1 schema, when used with the ASN.1 Extended XML Encoding Rules (EXTENDED-
XER), can be used to generate and to validate the same set of W3C XML 1.0 documents as the
original XSD Schema. The resulting ASN.1 types and encodings support the same semantic content
as the XSD Schema. Thus ASN.1 tools can be used interchangeably with XSD tools for the
generation and processing of the specified XML documents.

Other standardized ASN.1 encoding rules, such as the Distinguished Encoding Rules (DER) or the
Packed Encoding Rules (PER), can be used in conjunction with this standardized mapping.

The combination of this Recommendation | International Standard with ASN.1 Encoding Rules
provides fully-standardized and vendor-independent compact and canonical binary encodings for
data defined using an XSD Schema.

The ASN.1 schema provides a clear separation between the specification of the information content
of messages (their abstract syntax) and the precise form of the XML document (for example, use of
attributes instead of elements). This results in both a clearer and generally a less verbose schema
than the original XSD Schema.

Annex A forms an integral part of this Recommendation | International Standard, and is an ASN.1
module containing a set of ASN.1 type assignments that correspond to each of the XSD built-in
datatypes. Mappings of XSD Schemas into ASN.1 schemas either import the type reference names
of those type assignments or include the type definitions in-line.

Annex B does not form an integral part of this Recommendation | International Standard, and
summarizes the object identifier values assigned in this Recommendation | International Standard.

Annex C does not form an integral part of this Recommendation | International Standard, and gives
examples of the mapping of XSD Schemas into ASN.1 schemas.

Annex D does not form an integral part of this Recommendation | International Standard, and
describes the use of the mapping defined in this Recommendation | International Standard, in
conjunction with standardized ASN.1 Encoding Rules, to provided compact and canonical encodings
for data defined using an XSD Schema.

http://www.w3.org/TR/1999/REC-xml-names-19990114
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/

ITU-T Rec. X.694 (01/2004) – Prepublished version

6

INTERNATIONAL STANDARD 8825-5
ITU-T RECOMMENDATION X.694

INFORMATION TECHNOLOGY –
ASN.1 ENCODING RULES –

MAPPING W3C XML SCHEMA DEFINITIONS INTO ASN.1

1 Scope
This Recommendation | International Standard specifies a mapping from any XSD Schema into an
ASN.1 schema. The ASN.1 schema supports the same semantics and validates the same set of
XML documents.

This Recommendation | International Standard specifies the final XER encoding instructions that
are to be applied as part of the defined mapping to ASN.1 types, but does not specify which
syntactic form is to be used for the specification of those final XER encoding instructions, or the
order or manner of their assignment.

NOTE – Implementers of tools generating these mappings may choose any syntactic form or order of assignment that results in
the specified final XER encoding instructions being applied. Examples in this Recommendation | International Standard
generally use the type prefix form, but use of an XER Encoding Control Section may be preferred for the mapping of a complete
XSD Schema, as a matter of style.

There are different ways (syntactically) of assigning XER encoding instructions for use in
EXTENDED-XER encodings (for example, use of ASN.1 type prefix encoding instructions or use
of an XER encoding control section). The choice of these syntactic forms is a matter of style and is
outside the scope of this Recommendation | International Standard.

2 Normative references
The following Recommendations | International Standards and W3C specifications contain
provisions which, through reference in this text, constitute provisions of this Recommendation |
International Standard. At the time of publication, the editions indicated were valid. All
Recommendations, International Standards and W3C specifications are subject to revision, and
parties to agreements based on this Recommendation | International Standard are encouraged to
investigate the possibility of applying the most recent edition of the Recommendations,
International Standards and W3C specifications listed below. Members of IEC and ISO maintain
registers of currently valid International Standards. The Telecommunication Standardization
Bureau of the ITU maintains a list of currently valid ITU-T Recommendations. The W3C
maintains a list of currently valid W3C specifications.

2.1 Identical Recommendations | International Standards
NOTE – The complete set of ASN.1 Recommendations | International Standards are listed below, as they can all be applicable in
particular uses of this Recommendation | International Standard. Where these are not directly referenced in the body of this
Recommendation | International Standard, a † symbol is added to the reference.

– ITU-T Recommendation X.680 (2002) | ISO/IEC 8824-1:2002, Information technology – Abstract
Syntax Notation One (ASN.1): Specification of basic notation.

– ITU-T Recommendation X.681 (2002) | ISO/IEC 8824-2:2002, Information technology – Abstract
Syntax Notation One (ASN.1): Information object specification. †

– ITU-T Recommendation X.682 (2002) | ISO/IEC 8824-3:2002, Information technology – Abstract
Syntax Notation One (ASN.1): Constraint specification.

– ITU-T Recommendation X.683 (2002) | ISO/IEC 8824-4:2002, Information technology – Abstract
Syntax Notation One (ASN.1): Parameterization of ASN.1 specifications. †

ITU-T Rec. X.694 (01/2004) – Prepublished version

7

– ITU-T Recommendation X.690 (2002) | ISO/IEC 8825-1:2002, Information technology – ASN.1
encoding Rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER), and
Distinguished Encoding Rules (DER). †

– ITU-T Recommendation X.691 (2002) | ISO/IEC 8825-2:2002, Information technology – ASN.1
encoding rules: Specification of Packed Encoding Rules (PER). †

– ITU-T Recommendation X.692 (2002) | ISO/IEC 8825-3:2002, Information technology – ASN.1
encoding rules: Encoding Control Notation (ECN) for ASN.1. †

– ITU-T Recommendation X.693 (2002) | ISO/IEC 8825-4:2002, Information technology – ASN.1
encoding rules: Specification of XML Encoding Rules (XER).

– ITU-T Recommendation X.693 (2002) / Amd.1 (2003) | ISO/IEC 8825-4:2002/Amd.1: 2003, Information
technology – ASN.1 encoding rules: XML Encoding Rules (XER) – Amendment 1: XER Encoding
Instructions and EXTENDED-XER.

2.2 Additional references
– ISO 8601:2000, Data elements and interchange formats – Information interchange – Representation of

dates and times.
– ISO/IEC 10646-1:2000, Information technology – Universal Multiple-Octet Coded Character Set (UCS)

– Part 1: Architecture and Basic Multilingual Plane.
– W3C XML 1.0:2000, Extensible Markup Language (XML) 1.0 (Second Edition), W3C Recommendation,

Copyright © [6 October 2000] World Wide Web Consortium, (Massachusetts Institute of Technology,
Institut National de Recherche en Informatique et en Automatique, Keio University),
http://www.w3.org/TR/2000/REC-xml-20001006.

- W3C XML Namespaces:1999, Namespaces in XML, W3C Recommendation, Copyright © [14 January
1999] World Wide Web Consortium, (Massachusetts Institute of Technology, Institut National de
Recherche en Informatique et en Automatique, Keio University), http://www.w3.org/TR/1999/REC-xml-
names-19990114.

– W3C XML Information Set:2001, XML Information Set, W3C Recommendation, Copyright © [24
October 2001] World Wide Web Consortium (Massachusetts Institute of Technology, Institut National de
Recherche en Informatique et en Automatique, Keio University), http://www.w3.org/TR/2001/REC-xml-
infoset-20011024/.

– W3C XML Schema:2001, XML Schema Part 1: Structures, W3C Recommendation, Copyright © [2 May
2001] World Wide Web Consortium, (Massachusetts Institute of Technology, Institut National de
Recherche en Informatique et en Automatique, Keio University), http://www.w3.org/TR/2001/REC-
xmlschema-1-20010502/

– W3C XML Schema:2001, XML Schema Part 2: Datatypes, W3C Recommendation, Copyright © [2 May
2001] World Wide Web Consortium, (Massachusetts Institute of Technology, Institut National de
Recherche en Informatique et en Automatique, Keio University), http://www.w3.org/TR/2001/REC-
xmlschema-2-20010502/

NOTE – When the reference "W3C XML Schema" is used in this Recommendation | International Standard, it
refers to W3C XML Schema Part 1 and W3C XML Schema Part 2.

– IETF RFC 2396 (1998), Uniform Resource Identifiers (URI): Generic Syntax.
– IETF RFC 1766 (1995) Tags for the Identification of Languages.

NOTE – The reference to a document within this Recommendation | International Standard does not give it, as a
stand-alone document, the status of a Recommendation or International Standard.

3 Definitions

3.1 Imported definitions
3.1.1 This Recommendation | International Standard uses the terms defined in ITU-T Rec. X.680
| ISO/IEC 8824-1 and in ITU-T Rec. X.693 | ISO/IEC 8825-4.

NOTE – In particular, the terms "final XER encoding instructions", "type prefix" and "XER encoding control section" are
defined in these Recommendations | International Standards.

3.1.2 This Recommendation | International Standard also uses the terms defined in W3C XML
Schema and W3C XML Information Set.

http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/1999/REC-xml-names-19990114
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/

ITU-T Rec. X.694 (01/2004) – Prepublished version

8

NOTE 1 – It is believed that these terms do not conflict with the terms referenced in 3.1.1. If such a conflict occurs, the
definition of the term in 3.1.1 applies.
NOTE 2 – In particular, the terms "schema component" and "property (of a schema component)" are defined in W3C XML
Schema, and the term "element information item" is defined in W3C XML Information Set.

3.2 Additional definitions
For the purposes of this Recommendation | International Standard, the following additional
definitions apply.

3.2.1 XSD namespace: A namespace with a URI of "http://www.w3.org/2001/XMLSchema"

3.2.2 XSI namespace: A namespace with a URI of "http://www.w3.org/2001/XMLSchema-instance"

3.2.3 XML namespace: A namespace with a URI of "http://www.w3.org/XML/1998/namespace"

4 Abbreviations
For the purposes of this Recommendation | International Standard, the following abbreviations
apply:

ASN.1 Abstract Syntax Notation One
BER ASN.1 Basic Encoding Rules
DER ASN.1 Distinguished Encoding Rules
PER ASN.1 Packed Encoding Rules
URI IETF Uniform Resource Identifier
XER ASN.1 XML Encoding Rules
XML W3C Extensible Markup Language
XSD W3C XML Schema

5 Notation
5.1 This Recommendation | International Standard references the notation defined by ITU-T
Rec. X.680 | ISO/IEC 8824-1, ITU-T Rec. X.682 | ISO/IEC 8824-3, W3C XML 1.0 and W3C XML
Schema.

5.2 When it is necessary in the body of this Recommendation | International Standard to
specify, either formally or in examples, the assignment of XER encoding instructions, the type
prefix notation is generally used (but see 6.3 and 6.4). In Annex A, an XER encoding control
section is used.

5.3 In this Recommendation | International Standard, bold Courier is used for ASN.1 notation
and bold Arial is used for XSD notation and for XSD terms and concepts.

5.4 The XSD Schemas used in the examples in this Recommendation | International Standard
use the prefix xsd: to identify the XSD namespace.

6 Purpose and extent of standardization
6.1 The mapping to ASN.1 that is specified in this Recommendation | International Standard
ensures that:

a) any resulting ASN.1 modules generated by tools conforming to this Recommendation | International
Standard (from the same XSD Schema) define the same (structured) abstract values;

b) all BASIC-XER, CXER, EXTENDED-XER, and binary encodings of that resulting ASN.1 specification
will produce the same encodings (subject to encoder's options); and

c) all XML documents that conform to the source XSD Schema are valid EXTENDED-XER encodings of
abstract values of that ASN.1 specification.

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/XML/1998/namespace

ITU-T Rec. X.694 (01/2004) – Prepublished version

9

6.2 There are many aspects of an ASN.1 definition (such as the use of white-space, or of
encoding control sections or type prefixes) that affect neither the abstract values being defined nor
the XER or binary encodings of those values. Such aspects of the ASN.1 definition are generally
not standardized in this Recommendation | International Standard.

6.3 There are many different ways in ASN.1 of assigning an XER encoding instruction to a
type, including:

a) use of a type prefix for every encoding instruction to be assigned; or
b) use of an encoding control section, with a separate encoding instruction for each required assignment; or
c) use of an encoding control section, with a single encoding instruction making a global assignment,

possibly supplemented by use of a negating encoding instruction for specific types.

6.4 This Recommendation | International Standard specifies when a final XER encoding
instruction shall be present, and uses the syntax of 6.3 a) in most of its examples. However, the use
of the different options in 6.3 is not standardized, and conforming implementations of the mapping
may choose any syntactic form (or a mixture of syntactic forms) for the assignment of final XER
encoding instructions.

NOTE – The choice among these options does not affect the final binary or XML encodings.

6.5 A formal specification of the required mapping is not provided.
6.6 This Recommendation | International Standard is concerned only with the mapping of XSD
Schemas that conform to W3C XML Schema.

NOTE – Such conformance can be either by the provision of one or more W3C XSD schema documents or by other means as
specified in W3C XML Schema.

7 Mapping XSD Schemas
7.1 A mapping is based on a source XSD Schema, which is a set of schema components (see
W3C XML Schema Part 1, 2.2). No particular representation of schema components or sets of
schema components is required or assumed for the mapping, although it is expected that the source
XSD Schema will usually be provided as one or more XML schema documents (see W3C XML
Schema Part 1, 3.15.2).

NOTE 1 – Since the mapping is defined in terms of schema components (and not in terms of their XML representation), it is not
affected by details of the XML representation, such as the use of multiple schema documents linked by xsd:include and
xsd:redefine element information items, the placement of element information items in one or another schema documents, the
order of xsd:attribute element information items within a xsd:complexType element information item, and so on.
NOTE 2 – Two sets of schema documents that differ in many aspects but represent the same set of schema components generate
the same set of ASN.1 type assignments, with the same final encoding instructions assigned to them and to their components to
any depth.

7.2 The source XSD Schema shall meet all the constraints imposed by the XSD specification.
If the source XSD Schema is represented (in part or all) as a set of XML schema documents, each
schema document shall be valid according to the XSD Schema for Schemas (see W3C XML
Schema Part 1, Appendix A).

7.3 At least one ASN.1 module (see 7.4) shall be generated for each different target namespace
(whether a namespace name or the keyword absent) that is the target namespace of one or more schema
components in the source XSD Schema. Each ASN.1 module shall contain one or more type
assignments corresponding to top-level schema components (see 7.9) that have the same target
namespace. Each ASN.1 module can also contain one or more special ASN.1 type assignments
whose associated ASN.1 type assignments are in the same ASN.1 module (see 7.6).

NOTE –The schema components represented in the multiple schema documents become part of the same XSD Schema through
the use of the xsd:include, xsd:redefine, and xsd:import element information items.

7.4 The number of ASN.1 modules generated for each target namespace (including the keyword
absent) may be more than one, but each ASN.1 module shall not contain type assignments
corresponding to top-level schema components with different target namespaces (including the
keyword absent).

ITU-T Rec. X.694 (01/2004) – Prepublished version

10

7.5 When multiple ASN.1 modules are generated for a given target namespace (including the
keyword absent), all the type assignments present in them shall be generated as if they were being
added to a single ASN.1 module for the purpose of generating distinct type reference names (see
10.3). The type reference names generated from the names of the top-level schema components with
a given target namespace shall be the same type reference names regardless of the number of ASN.1
modules generated for that target namespace and regardless of the way type assignments are divided
among the various ASN.1 modules.

NOTE – This is designed to provide flexibility without compromising interoperability.

7.6 Each special ASN.1 type assignment (see clauses 29, 30, and 31) shall be inserted in the
same ASN.1 module as its associated ASN.1 type assignment (see 29.4, 31.4, and 30.4,
respectively).
7.7 All ASN.1 modules generated by the mapping shall contain (in the XER encoding control
section) a GLOBAL-DEFAULTS MODIFIED-ENCODINGS encoding instruction and a GLOBAL-DEFAULTS

CONTROL-NAMESPACE encoding instruction specifying the XSI namespace.
7.8 A source XSD Schema shall be processed as follows:

a) for each top-level element declaration, an ASN.1 type assignment shall be generated by applying clause
14 to the element declaration;

b) for each top-level attribute declaration, an ASN.1 type assignment shall be generated by applying clause
15 to the attribute declaration;

c) for each user-defined top-level simple type definition, an ASN.1 type assignment shall be generated by
applying clause 13 to the simple type definition;

d) for each top-level complex type definition, an ASN.1 type assignment shall be generated by applying
clause 20 to the complex type definition;

e) for each model group definition whose model group has a compositor of sequence or choice, an ASN.1 type
assignment shall be generated by applying clause 17 to the model group definition.

NOTE 1 - The remaining schema components of the source XSD schema will be processed as a result of mapping these schema
components.
NOTE 2 - The order in which schema components are to be mapped is specified in 10.4. The order of the items of the list above
has no significance for the mapping.

7.9 Column 1 of Table 1 lists schema components. Column 2 gives the reference to the clause
in W3C XML Schema that defines the schema component. Column 3 lists the clause that defines
the mapping of those schema components into ASN.1.

Table 1: Mapping of XSD schema components

XSD schema component

W3C XML Schema reference Mapping defined by

attribute declaration Part 1, 3.2 Clause 15
element declaration Part 1, 3.3 Clause 14

complex type definition Part 1, 3.4 Clause 20
attribute use Part 1, 3.5 Clause 15

attribute group definition Part 1, 3.6 not mapped as such
model group definition Part 1, 3.7 Clause 17

model group Part 1, 3.8 Clause 18
particle Part 1, 3.9 Clause 19
wildcard Part 1, 3.10 Clause 21

ITU-T Rec. X.694 (01/2004) – Prepublished version

11

identity-constraint definition Part 1, 3.11 ignored by the mapping
notation declaration Part 1, 3.12 ignored by the mapping

annotation Part 1, 3.13 ignored by the mapping
simple type definition Part 1, 3.14 Clauses 11, 13

schema Part 1, 3.15 Clause 9
ordered Part 2, 4.2.2.1 ignored by the mapping
bounded Part 2, 4.2.3.1 ignored by the mapping

cardinality Part 2, 4.2.4.1 ignored by the mapping
numeric Part 2, 4.2.5.1 ignored by the mapping
length Part 2, 4.3.1.1 Clause 12

minLength Part 2, 4.3.2.1 Clause 12
maxLength Part 2, 4.3.3.1 Clause 12

pattern Part 2, 4.3.4.1 Clause 12
enumeration Part 2, 4.3.5.1 Clause 12
whiteSpace Part 2, 4.3.6.1 Clause 12

maxInclusive Part 2, 4.3.7.1 Clause 12
maxExclusive Part 2, 4.3.8.1 Clause 12
minExclusive Part 2, 4.3.9.1 Clause 12
minInclusive Part 2, 4.3.10.1 Clause 12

totalDigits Part 2, 4.3.11.1 Clause 12
fractionDigits Part 2, 4.3.12.1 Clause 12

8 Ignored schema components and properties
8.1 The mapping shall ignore the schema components and properties that are listed in this
clause.
8.2 All annotations (see W3C XML Schema Part 1, 3.13) shall be ignored.

NOTE – All attribute information items in a schema document with names qualified with namespaces other than the XSD
namespace (see W3C XML Schema Part 1, 3.13.1) are a property of annotations, and are ignored.

8.3 All identity-constraint definitions (see W3C XML Schema Part 1, 3.11) shall be ignored .
NOTE – The identity-constraint definition provides mechanisms for specifying referential constraints that can be required in a
valid instance. ASN.1 currently has no concept of such constraints, and such constraints cannot be mapped into a formal ASN.1
specification, but they may be included as normative comments that are binding on an application implementation.

8.4 All notation declarations (see W3C XML Schema Part 1, 3.12) shall be ignored.

8.5 All schema components that are the fundamental facets (ordered, bounded, cardinality, numeric) of
simple type definitions (see W3C XML Schema Part 2, 4.2) shall be ignored.

8.6 The properties identity-constraint definitions, substitution group exclusions and disallowed substitutions of
element declarations shall be ignored.

8.7 The properties final, abstract, and prohibited substitutions of complex type definitions shall be ignored.

8.8 The property process contents of wildcards shall be ignored.
NOTE – There is no support in ASN.1 for any action other than skip.

ITU-T Rec. X.694 (01/2004) – Prepublished version

12

8.9 The properties fundamental facets and final of simple type definitions shall be ignored.

8.10 All value constraints that are present on any element declarations or attribute declarations whose type
definition is either xsd:QName or a simple type definition derived from xsd:QName or xsd:NOTATION shall be
ignored.
8.11 All attribute group definitions shall be ignored.

NOTE – The attribute uses in an attribute group definition become part of the attribute uses of the complex type definitions whose XML
representation contains a reference to the attribute group definition.

9 The ASN.1 module and namespaces
NOTE – A full description of the relationship between the namespace concept of W3C XML Namespaces and naming in ASN.1
is provided in ITU-T Rec. X.693 | ISO/IEC 8825-4, clause 16. Type reference names and identifiers defined in an ASN.1 module
are assigned a namespace by means of a NAMESPACE encoding instruction, and otherwise do not have a namespace. The
mapping generates NAMESPACE encoding instructions as appropriate.

9.1 The mapping generates one or more ASN.1 modules corresponding to all schema
components in the Schema that have the same target namespace.

9.2 The ASN.1 "ModuleIdentifier" (see ITU-T Rec. X.680 | ISO/IEC 8824-1, clause 12) to be
generated by the mapping is not standardized. Where IMPORTS statements are used, the ASN.1
module names and module identifiers in the IMPORTS statements shall be those generated for the
ASN.1 modules generated by the mapping.

NOTE – The choice of "ModuleIdentifier" does not affect the encodings in any of the standard encoding rules.

9.3 The ASN.1 modules shall have a "TagDefault" of AUTOMATIC TAGS.

9.4 In each ASN.1 module, there shall be an ASN.1 IMPORTS statement importing the ASN.1
type reference names in the module named XSD specified in Annex A that are referenced in the
ASN.1 module.

9.5 The IMPORTS statement shall also import the ASN.1 type reference names of type
assignments that have been placed (as a result of the mapping) in other ASN.1 modules but are
referenced in this ASN.1 module.

9.6 There shall be no EXPORTS statement.
NOTE – This means that all ASN.1 type reference names in the ASN.1 module can be imported into other modules.

10 Name conversion

10.1 General
10.1.1 This Recommendation | International Standard specifies the generation of:

a) ASN.1 type reference names corresponding to the names of model group definitions, top-level element
declarations, top-level attribute declarations, top-level complex type definitions, and user-defined top-level
simple type definitions;

b) ASN.1 identifiers corresponding to the names of top-level element declarations, top-level attribute
declarations, local element declarations, and local attribute declarations;

c) ASN.1 identifiers for the mapping of certain simple type definitions with an enumeration facet (see 12.4.1
and 12.4.2);

d) ASN.1 type reference names of special type assignments (see clauses 29, 30, and 31); and
e) ASN.1 identifiers of certain sequence components introduced by the mapping (see clause 20).

10.1.2 All of these ASN.1 names are generated by applying 10.3 either to the name of the
corresponding schema component, or to a member of the value of an enumeration facet, or to a
specified character string, as specified in the relevant clauses of this Recommendation |
International Standard.

ITU-T Rec. X.694 (01/2004) – Prepublished version

13

10.2 Generating ASN.1 type definitions that are references to ASN.1 type assignments
10.2.1 This subclause applies as explicitly invoked by other clauses of this Recommendation |
International standard to generate an ASN.1 type definition that is a reference (a "DefinedType") to
an ASN.1 type assignment.

10.2.2 If an ASN.1 type definition (R, say) that is a "DefinedType" is to be inserted in an ASN.1
module (M, say) other than the ASN.1 module where the referenced ASN.1 type assignment (TA,
say) is being inserted, and the type reference name of TA is identical to either the type reference
name of another ASN.1 type assignment being inserted in module M or to another type reference
name being imported into module M, then R shall be an "ExternalTypeReference" (constructed as
appropriate for module M) for TA, otherwise it shall be a "typereference" for TA.

10.3 Generating identifiers and type reference names
10.3.1 This subclause applies as explicitly invoked by other clauses of this Recommendation |
International standard to generate an ASN.1 type reference name or identifier.

10.3.2 Names of attribute declarations, element declarations, model group definitions, user-defined top-level simple
type definitions, and top-level complex type definitions can be identical to ASN.1 reserved words or can
contain characters not allowed in ASN.1 identifiers or in ASN.1 type reference names. In addition,
there are cases in which ASN.1 names are required to be distinct where the names of the
corresponding XSD schema components (from which the ASN.1 names are mapped) are allowed to
be identical.

10.3.3 The following transformations shall be applied, in order, to each character string being
mapped to an ASN.1 name, where each transformation (except the first) is applied to the result of
the previous transformation:

the characters " " (SPACE), "." (FULL STOP), and "_" (LOW LINE) shall all be replaced by a "-"
(HYPHEN-MINUS); and

any characters except "A" to "Z" (LATIN CAPITAL LETTER A to LATIN CAPITAL LETTER
Z), "a" to "z" (LATIN SMALL LETTER A to LATIN SMALL LETTER Z), "0" to "9" (DIGIT
ZERO to DIGIT NINE), and "-" (HYPHEN-MINUS) shall be removed; and

a sequence of two or more HYPHEN-MINUS characters shall be replaced with a single
HYPHEN-MINUS; and

HYPHEN-MINUS characters occurring at the beginning or at the end of the name shall be
removed; and

if a character string that is to be used as a type reference name starts with a lower-case letter, the
first letter shall be capitalized (converted to upper-case); if it starts with a digit (DIGIT ZERO to
DIGIT NINE), it shall be prefixed with an "X" (LATIN CAPITAL LETTER X) character; and

if a character string that is to be used as an identifier starts with an upper-case letter, the first letter
shall be uncapitalized (converted to lower-case); if it starts with a digit (DIGIT ZERO to DIGIT
NINE), it shall be prefixed with an "x" (LATIN SMALL LETTER X) character; and

if a character string that is to be used as a type reference name is empty, it shall be replaced by "X"
(LATIN CAPITAL LETTER X); and

if a character string that is to be used as an identifier is empty, it shall be replaced by "x" (LATIN
SMALL LETTER X).

10.3.4 Depending on the kind of name being generated, one of the three following subclauses
applies.

10.3.4.1 If the name being generated is the type reference name of an ASN.1 type assignment and
the character string generated by 10.3.3 is identical to the type reference name of another ASN.1

ITU-T Rec. X.694 (01/2004) – Prepublished version

14

type assignment previously generated in the same ASN.1 module or in another ASN.1 module with
the same namespace (including absence of a namespace), or is one of the reserved words specified
in ITU-T Rec. X.680 | ISO/IEC 8824-1, 11.27, then a suffix shall be appended to the character
string generated by 10.3.3. The suffix shall consist of a HYPHEN-MINUS followed by the
canonical lexical representation (see W3C XML Schema Part 2, 2.3.1) of an integer. This integer
shall be the least positive integer such that the new name is different from the type reference name
of any other ASN.1 type assignment previously generated in any of those ASN.1 modules.

10.3.4.2 If the name being generated is the identifier of a component of a sequence, set, or choice
type, and the character string generated by 10.3.3 is identical to the identifier of a previously
generated component of the same sequence, set, or choice type, then a suffix shall be appended to
the character string generated by 10.3.3. The suffix shall consist of a HYPHEN-MINUS followed
by the canonical lexical representation (see W3C XML Schema Part 2, 2.3.1) of an integer. This
integer shall be the least positive integer such that the new identifier is different from the identifier
of any previously generated component of that sequence, set, or choice type.

10.3.4.3 If the name being generated is the "identifier" in an "EnumerationItem" of an enumerated
type, and the character string generated by 10.3.3 is identical to the "identifier" in another
"EnumerationItem" previously generated in the same enumerated type, then a suffix shall be
appended to the character string generated by 10.3.3. The suffix shall consist of a
HYPHEN-MINUS followed by the canonical lexical representation (see W3C XML Schema Part 2,
2.3.1) of an integer. This integer shall be the least positive integer such that the new identifier is
different from the "identifier" in any other "EnumerationItem" already present in that ASN.1
enumerated type.

10.3.5 For an ASN.1 type reference name (or identifier) that is generated by applying this
subclause 10.3 to the name of an element declaration, attribute declaration, top-level complex type definition or
user-defined top-level simple type definition, if the type reference name (or identifier) generated is
different from the name, a final NAME encoding instruction shall be assigned to the ASN.1 type
assignment with that type reference name (or to the component with that identifier) as specified in
the three following subclauses.

10.3.5.1 If the only difference is the case of the first letter (which is upper-case in the type reference
name and lower-case in the name), then the "Keyword" in the NAME encoding instruction shall be
UNCAPITALIZED.

10.3.5.2 If the only difference is the case of the first letter (which is lower-case in the identifier and
upper-case in the name), then the "Keyword" in the NAME encoding instruction shall be CAPITALIZED.

10.3.5.3 Otherwise, the "NewName" in the NAME encoding instruction shall be the name.

EXAMPLE – The top-level complex type definition:
 <xsd:complexType name="COMPONENTS">

 <xsd:sequence>
 <xsd:element name="Elem" type="xsd:boolean"/>
 <xsd:element name="elem" type="xsd:integer"/>
 <xsd:element name="Elem-1" type="xsd:boolean"/>
 <xsd:element name="elem-1" type="xsd:integer"/>
 </xsd:sequence>
</xsd:complexType>

is mapped to the ASN.1 type assignment:
COMPONENTS-1 ::= [NAME AS "COMPONENTS"] SEQUENCE {

elem [NAME AS CAPITALIZED] BOOLEAN,
elem-1 [NAME AS "elem"] INTEGER,
elem-1-1 [NAME AS "Elem-1"] BOOLEAN,
elem-1-2 [NAME AS "elem-1"] INTEGER }

10.3.6 For an ASN.1 type reference name (or identifier) that is generated by applying this
subclause 10.3 to the name of an element declaration, attribute declaration, top-level complex type definition or

ITU-T Rec. X.694 (01/2004) – Prepublished version

15

user-defined top-level simple type definition, if the target namespace of the schema component is not absent,
then a final NAMESPACE encoding instruction shall be assigned to the ASN.1 type assignment with
that type reference name (or to the named type with that identifier) and shall specify the target
namespace of the schema component.

10.3.7 For an ASN.1 identifier that is generated by this subclause 10.3 for the mapping of a simple
type definition with an enumeration facet where the identifier generated is different from the
corresponding member of the value of the enumeration facet, a final TEXT encoding instruction shall be
assigned to the ASN.1 enumerated type, with qualifying information specifying the "identifier" in
the "EnumerationItem" of the enumerated type. One of the two following subclauses applies.

10.3.7.1. If the only difference is the case of the first letter (which is lower case in the identifier
and upper case in the member of the value of the enumeration facet), then the "Keyword" in the TEXT
encoding instruction shall be CAPITALIZED.

10.3.7.2 Otherwise, the "NewName" in the TEXT encoding instruction shall be the member of the
value of the enumeration facet.

10.4 Order of the mapping
10.4.1 An order is imposed on the top-level schema components of the source XSD Schema on
which the mapping is performed. This applies to model group definitions, top-level complex type definitions,
user-defined top-level simple type definitions, top-level attribute declarations, and top-level element declarations.

NOTE - Other top-level schema components are not mapped to ASN.1, and XSD built-in datatypes are mapped in a special way.

10.4.2 The order is specified in the three following subclauses.

10.4.2.1 Top-level schema components shall first be ordered by their target namespace, with the absent
namespace preceding all namespace names in ascending lexicographical order.

10.4.2.2 Within each target namespace, top-level schema components shall be divided into four sets
ordered as follows:

a) element declarations;
b) attribute declarations;
c) complex type definitions and simple type definitions;
d) model group definitions.

10.4.2.3 Within each set (see 10.4.2.2), schema components shall be ordered by name in ascending
lexicographical order.

10.4.3 The mapping generates some ASN.1 type assignments that do not correspond directly to
any XSD schema component. These are:

a) choice types (with a final USE-TYPE encoding instruction) corresponding to a type derivation hierarchy;
the type reference names of these types have a "-derivations" suffix (see clause 29);

b) choice types (with a final USE-TYPE encoding instruction on the type and a final USE-NIL encoding
instruction on each alternative) corresponding to a type derivation hierarchy where the user-defined top-
level simple type definition or complex type definition that is the root of the derivation hierarchy is used as
the type definition of one or more element declarations that are nillable; the type reference names of these
types have a "-deriv-nillable" suffix (see clause 29);

c) choice types (with a final USE-TYPE encoding instruction on the type and a final DEFAULT-FOR-EMPTY
encoding instructions on each alternative) corresponding to a type derivation hierarchy where the user-
defined top-level simple type definition or complex type definition that is the root of the derivation hierarchy
is used as the type definition of one or more element declarations that are not nillable and have a value
constraint that is a default value; the type reference names of these types have a "-deriv-default-"
suffix (see clause 29);

d) choice types (with a final USE-TYPE encoding instruction on the type and a final DEFAULT-FOR-EMPTY
encoding instructions on each alternative) corresponding to a type derivation hierarchy where the user-
defined top-level simple type definition or complex type definition that is the root of the derivation hierarchy

ITU-T Rec. X.694 (01/2004) – Prepublished version

16

is used as the type definition of one or more element declarations that are not nillable and have a value
constraint that is a fixed value; the type reference names of these types have a "-deriv-fixed-" suffix
(see clause 29);

e) choice types (with a final USE-TYPE encoding instruction on the type and final USE-NIL and DEFAULT-
FOR-EMPTY encoding instructions on each alternative) corresponding to a type derivation hierarchy
where the user-defined top-level simple type definition or complex type definition that is the root of the
derivation hierarchy is used as the type definition of one or more element declarations that are nillable and
have a value constraint that is a default value; the type reference names of these types have a
"-deriv-nillable-default-" suffix (see clause 29);

f) choice types (with a final USE-TYPE encoding instruction on the type and final USE-NIL and DEFAULT-
FOR-EMPTY encoding instructions on each alternative) corresponding to a type derivation hierarchy
where the user-defined top-level simple type definition or complex type definition that is the root of the
derivation hierarchy is used as the type definition of one or more element declarations that are nillable and
have a value constraint that is a fixed value; the type reference names of these types have a
"-deriv-nillable-fixed-" suffix (see clause 29);

g) choice types (with a final UNTAGGED encoding instruction) corresponding to an element substitution
group; the type reference names of these types have a "-group" suffix (see clause 31);

h) sequence types (with a final USE-NIL encoding instruction) corresponding to the use of a user-defined
top-level simple type definition or complex type definition as the type definition of one or more element
declarations that are nillable; the type reference names of these types have a "-nillable" suffix (see
clause 30).

10.4.4 All ASN.1 type assignments that correspond directly to the XSD schema components in the
source XSD Schema shall be generated before all ASN.1 type assignments listed in 10.4.3 (if any).

10.4.5 ASN.1 type assignments that correspond directly to the XSD schema components shall be
generated in the order of the corresponding XSD schema components (see 10.4.1). ASN.1 type
assignments listed in 10.4.3 (if any) shall be generated in the order of the XSD schema components
(see 10.4.1) corresponding to the "associated type assignment" (see clauses 29, 30, and 31).

10.4.6 For 10.4.3 c) to f), if the simple type definition or complex type definition that is the root of the
derivation hierarchy is used as the type definition of multiple element declarations that have different values
in the value constraint, the ASN.1 type assignments shall be generated in ascending lexicographical
order of the canonical lexical representation (see W3C XML Schema Part 2, 2.3.1) of the value in
the value constraint.

11 Mapping uses of XSD built-in datatypes
11.1 This clause applies as explicitly invoked by other clauses of this Recommendation |
International standard to generate an ASN.1 type definition corresponding to the use of an XSD
built-in datatype.

11.2 A use of an XSD built-in datatype shall be mapped to an ASN.1 type definition in
accordance with Table 2. The table gives the ASN.1 type definition to be used. The notation
"XSD.Name" indicates that the ASN.1 type definition shall be the ASN.1 type definition (a
"DefinedType") generated by applying 10.2 to the corresponding ASN.1 type assignment present in
the XSD module.

Table 2 –ASN.1 type definitions corresponding to uses of XSD built-in datatypes

XSD built-in datatype ASN.1 type definition

anyURI XSD.AnyURI

anySimpleType XSD.AnySimpleType

anyType XSD.AnyType

ITU-T Rec. X.694 (01/2004) – Prepublished version

17

XSD built-in datatype ASN.1 type definition

base64Binary [BASE64] OCTET STRING

boolean BOOLEAN

byte INTEGER (-128..127)

date XSD.Date

dateTime XSD.DateTime

decimal XSD.Decimal

double XSD.Double

duration XSD.Duration

ENTITIES XSD.ENTITIES

ENTITY XSD.ENTITY

float XSD.Float

gDay XSD.GDay

gMonth XSD.GMonth

gMonthDay XSD.GMonthDay

gYear XSD.GYear

gYearMonth XSD.GYearMonth

hexBinary OCTET STRING

ID XSD.ID

IDREF XSD.IDREF

IDREFS XSD.IDREFS

int XSD.Int

integer INTEGER

language XSD.Language

long XSD.Long

Name XSD.Name

NCName XSD.NCName

negativeInteger INTEGER (MIN..-1)

NMTOKEN XSD.NMTOKEN

NMTOKENS XSD.NMTOKENS

nonNegativeInteger INTEGER (0..MAX)

ITU-T Rec. X.694 (01/2004) – Prepublished version

18

XSD built-in datatype ASN.1 type definition

nonPositiveInteger INTEGER (MIN..0)

normalizedString XSD.NormalizedString

NOTATION XSD.NOTATION

positiveInteger INTEGER (1..MAX)

QName XSD.QName

short XSD.Short

string XSD.String

time XSD.Time

token XSD.Token

unsignedByte INTEGER (0..255)

unsignedInt XSD.UnsignedInt

unsignedLong XSD.UnsignedLong

unsignedShort XSD.UnsignedShort

12 Mapping facets
This clause applies as explicitly invoked by other clauses of this Recommendation | International
Standard to map a facet of a simple type definition. A facet of a simple type definition STD is mapped to an
ASN.1 constraint applied to the ASN.1 type definition corresponding to STD, unless STD has an
enumeration facet that is being mapped to an ASN.1 "Enumeration" (see 12.4.1 and 12.4.2). In this
case, no ASN.1 constraint is generated from the facet (see 12.1.2, 12.2.1, 12.3.1, and 12.5.1).

12.1 The length, minLength, and maxLength facets
12.1.1 The length, minLength, and maxLength facets shall be ignored for the XSD built-in datatypes
xsd:QName and xsd:NOTATION and for any simple type definitions derived from these by restriction.

12.1.2 If a length, minLength, or maxLength facet belongs to a simple type definition that has also an
enumeration facet being mapped to an ASN.1 "Enumeration" (see 12.4.1 and 12.4.2), then no
"EnumerationItem"s shall be included in the "Enumeration" for the members (if any) of the value of
the enumeration facet that do not satisfy the length, minLength, or maxLength facet..

12.1.3 Otherwise, the length, minLength, and maxLength facets of the simple type definition shall be mapped
to an ASN.1 size constraint according to Table 3.

Table 3 – ASN.1 size constraints corresponding to the length, minLength, and maxLength
facets

XSD facet ASN.1 size constraint

length=value (SIZE(value))

minLength=min (SIZE(min .. MAX))

maxLength=max (SIZE(0 .. max))

ITU-T Rec. X.694 (01/2004) – Prepublished version

19

minLength=min maxLength=max (SIZE(min .. max))

12.2 The pattern facet
12.2.1 If a pattern facet belongs to a simple type definition that has also an enumeration facet being mapped
to an ASN.1 "Enumeration" (see 12.4.1 and 12.4.2), then no "EnumerationItem"s shall be included
in the "Enumeration" for the members (if any) of the value of the enumeration facet that do not satisfy
the pattern facet.

12.2.2 Otherwise, the pattern facet shall be mapped to a user-defined constraint. One of the two
following subclauses applies.

12.2.2.1 If the value of the pattern facet is a single regular expression, the user-defined constraint shall
be:

 (CONSTRAINED BY {/* XML representation of the XSD pattern "xyz" */})

where "xyz" is the XML representation of the value of the pattern facet, except that if the substring "*/"
appears in the value of the pattern facet, it shall be replaced by the character string "*/".

12.2.2.2 If the value of the pattern facet is a conjunction of unions of regular expressions (the general
case), the user-defined constraint is not specified (but see 12.5.5).

12.3 The whiteSpace facet
12.3.1 If a whiteSpace facet with a value of replace or collapse belongs to a simple type definition that has also
an enumeration facet being mapped to an ASN.1 "Enumeration" (see 12.4.1 and 12.4.2), then no
"EnumerationItem"s shall be included in the "Enumeration" for the members (if any) of the value of
the enumeration facet that contain any of the characters HORIZONTAL TABULATION, NEWLINE
or CARRIAGE RETURN, or (in the case of collapse) contain leading, trailing, or multiple
consecutive SPACE characters.

12.3.2 Otherwise, at most one of the three following subclauses applies:

12.3.2.1 If the value of the whiteSpace facet is preserve, then the whiteSpace facet shall be ignored.

12.3.2.2 If the value of the whiteSpace facet is replace and the ASN.1 type definition corresponding to the
simple type definition is an ASN.1 restricted character string type, then a permitted alphabet constraint
shall be added to the ASN.1 type definition to remove HORIZONTAL TABULATION,
NEWLINE, and CARRIAGE RETURN characters. A final WHITESPACE REPLACE encoding
instruction shall be assigned to the ASN.1 type definition. The following or an equivalent permitted
alphabet constraint shall be used:

(FROM ({0, 0, 0, 32} .. {0, 16, 255, 255}))

12.3.2.3 If the value of the whiteSpace facet is collapse and the ASN.1 type definition corresponding to
the simple type definition is an ASN.1 restricted character string type, then both a permitted alphabet
constraint as specified in 12.3.2.2 and a pattern constraint that forbids leading, trailing, and multiple
consecutive SPACE characters shall be added to the ASN.1 type definition. A final WHITESPACE
COLLAPSE encoding instruction shall be assigned to the ASN.1 type definition. The following or an
equivalent pattern constraint shall be used:

(PATTERN "([^]([^]| [^])*)?").

12.4 The enumeration facet
12.4.1 An enumeration facet belonging to a simple type definition with a variety of atomic that is derived by
restriction (directly or indirectly) from xsd:string shall not be mapped to an ASN.1 constraint.
Instead, the facet shall be mapped to the "Enumeration" of the ASN.1 enumerated type
corresponding to the simple type definition (see 13.5) as specified in the three following subclauses.

ITU-T Rec. X.694 (01/2004) – Prepublished version

20

12.4.1.1 For each member of the value of the enumeration facet, an "EnumerationItem" that is an
"identifier" shall be added to the "Enumeration" (subject to 12.1.2, 12.2.1, 12.3.1, and 12.5.1).

12.4.1.2 Each "identifier" shall be generated by applying 10.3 to the corresponding member of the
value of the enumeration facet.

12.4.1.3 The members of the value of the enumeration facet shall be mapped in ascending
lexicographical order and any duplicate members shall be discarded.

12.4.2 An enumeration facet belonging to a simple type definition with a variety of atomic that is derived by
restriction (directly or indirectly) from xsd:integer shall not be mapped to an ASN.1 constraint.
Instead, the facet shall be mapped to the "Enumeration" of the ASN.1 enumerated type
corresponding to the simple type definition (see 13.6) as specified in the three following subclauses.

12.4.2.1 For each member of the value of the enumeration facet, an "EnumerationItem" that is a
"NamedNumber" shall be added to the "Enumeration" (subject to 12.1.2, 12.2.1, 12.3.1, and 12.5.1).

12.4.2.2 The "identifier" in each "NamedNumber" shall be generated by concatenating the character
string "int" with the canonical lexical representation (see W3C XML Schema Part 2, 2.3.1) of the
corresponding member of the value of the enumeration facet. The "SignedNumber" in the
"NamedNumber" shall be the ASN.1 value notation for the member (an integer number).

12.4.2.3 The members of the value of the enumeration facet shall be mapped in ascending numerical
order and any duplicate members shall be discarded.

12.4.3 Any other enumeration facet shall be mapped to an ASN.1 constraint that is either a single
value or a union of single values corresponding to the members of the value of the enumeration.

NOTE – The enumeration facet applies to the value space of the base type definition. Therefore, for an enumeration of the XSD built-
in datatypes xsd:QName or xsd:NOTATION, the value of the uri component of the [USE-QNAME] SEQUENCE produced as a single
value ASN.1 constraint is determined, in the XML representation of an XSD Schema, by the namespace declarations whose
scope includes the xsd:QName or xsd:NOTATION, and by the prefix (if any) of the xsd:QName or xsd:NOTATION.

EXAMPLE 1 – The following represents a user-defined top-level simple type definition that is a
restriction of xsd:string with an enumeration facet:

<xsd:simpleType name="state">
<xsd:restriction base="xsd:string">
 <xsd:enumeration value="off"/>
 <xsd:enumeration value="on"/>
</xsd:restriction>

 </xsd:simpleType>

It is mapped to the ASN.1 type assignment:

 State ::= [NAME AS UNCAPITALIZED] ENUMERATED {off, on}

EXAMPLE 2 – The following represents a user-defined top-level simple type definition that is a
restriction of xsd:integer with an enumeration facet:

<xsd:simpleType name="integer-0-5-10">
<xsd:restriction base="xsd:integer">
 <xsd:enumeration value="0"/>
 <xsd:enumeration value="5"/>
 <xsd:enumeration value="10"/>
</xsd:restriction>

 </xsd:simpleType>

It is mapped to the ASN.1 type assignment:

Integer-0-5-10 ::= [NAME AS UNCAPITALIZED] ENUMERATED {int0(0), int5(5), int10(10)}

EXAMPLE 3 – The following represents a user-defined top-level simple type definition that is a
restriction of xsd:integer with a minInclusive and a maxInclusive facet:

<xsd:simpleType name="integer-1-10">
<xsd:restriction base="xsd:integer">
 <xsd:minInclusive value="1"/>
 <xsd:maxInclusive value="10"/>
</xsd:restriction>

 </xsd:simpleType>

ITU-T Rec. X.694 (01/2004) – Prepublished version

21

It is mapped to the ASN.1 type assignment:

Integer-1-10 ::= [NAME AS UNCAPITALIZED] INTEGER(1..10)

EXAMPLE 4 – The following represents a user-defined top-level simple type definition that is a
restriction (with a minExclusive facet) of another simple type definition, derived by restriction from
xsd:integer with the addition of a minInclusive and a maxInclusive facet:

<xsd:simpleType name="multiple-of-4">
<xsd:restriction>
 <xsd:simpleType>
 <xsd:restriction base="xsd:integer">
 <xsd:minInclusive value="1"/>
 <xsd:maxInclusive value="10"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:minExclusive value="5"/>
</xsd:restriction>

 </xsd:simpleType>

It is mapped to the ASN.1 type assignment:
 Multiple-of-4 ::= [NAME AS UNCAPITALIZED] INTEGER(5<..10)

EXAMPLE 5 – The following represents a user-defined top-level simple type definition that is a
restriction (with a minLength and a maxLength facet) of another simple type definition, derived by restriction
from xsd:string with the addition of an enumeration facet:

<xsd:simpleType name="color">
<xsd:restriction>
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="white"/>
 <xsd:enumeration value="black"/>
 <xsd:enumeration value="red"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:minLength value="2"/>
 <xsd:maxLength value="4"/>
</xsd:restriction>

 </xsd:simpleType>

It is mapped to the ASN.1 type assignment:

 Color ::= [NAME AS UNCAPITALIZED] ENUMERATED {red}

12.5 Other facets
12.5.1 If a totalDigits, fractionDigits, maxInclusive, maxExclusive, minExclusive, or minInclusive facet belongs to a
simple type definition that has also an enumeration facet being mapped to an ASN.1 "Enumeration" (see
12.4.1 and 12.4.2), then no "EnumerationItem"s shall be included in the "Enumeration" for the
members (if any) of the value of the enumeration facet that do not satisfy the totalDigits, fractionDigits,
maxInclusive, maxExclusive, minExclusive, or minInclusive facet..

12.5.2 If a maxInclusive, maxExclusive, minExclusive, or minInclusive facet belongs to a simple type definition
without an enumeration facet or with an enumeration facet which is not being mapped to an ASN.1
"Enumeration" (see 12.4.1 and 12.4.2), then one of the two following subclauses applies:

12.5.2.1 If the simple type definition is derived by restriction (directly or indirectly) from an XSD built-
in date or time datatype (xsd:date, xsd:dateTime, xsd:duration, xsd:gDay, xsd:gMonth, xsd:gYear, xsd:gYearMonth,
xsd:gMonthDay, or xsd:time), then the maxInclusive, maxExclusive, minExclusive, and minInclusive facets of the
simple type definition shall be mapped to an ASN.1 user-defined constraint (see 12.5.5).

12.5.2.2 Otherwise, the maxInclusive, maxExclusive, minExclusive and minInclusive facets of the simple type
definition shall be mapped to an ASN.1 value range or single value constraint in accordance with
Table 4.

Table 4 – ASN.1 constraints corresponding to the maxInclusive, maxExclusive,
 minExclusive, and minInclusive facets

ITU-T Rec. X.694 (01/2004) – Prepublished version

22

XSD facet ASN.1 constraint

maxInclusive=ub (MIN .. ub)

maxExclusive=ub (MIN .. < ub)

minExclusive=lb (lb <.. MAX)

minInclusive=lb (lb .. MAX)

minInclusive=ub maxInclusive=lb (lb .. ub)

minInclusive=v maxInclusive=v (v)

minInclusive=ub maxExclusive=lb (lb ..< ub)

minExclusive=ub maxInclusive=lb (lb <.. ub)

minExclusive=ub maxExclusive=lb (lb <..< ub)

12.5.4 If a totalDigits or fractionDigits facet belongs to a simple type definition without an enumeration facet or
with an enumeration facet which is not mapped to an ASN.1 "Enumeration" (see 12.4.1 and 12.4.2),
then the totalDigits and fractionDigits facets of the simple type definition shall be mapped to a user-defined
constraint (see 12.5.5).

12.5.5 When a facet is mapped to an ASN.1 user-defined constraint, it is recommended that the
facet and its value appear in an ASN.1 comment in the user-defined constraint. The precise form of
the user-defined constraint is not specified.

13 Mapping simple type definitions
13.1 This clause applies as explicitly invoked by other clauses of this Recommendation |
International standard to generate an ASN.1 type assignment or ASN.1 type definition
corresponding to a. simple type definition.

13.2 This clause specifies the mapping of simple type definitions that are not XSD built-in datatypes.
The set of XSD built-in datatypes are mapped to the predefined ASN.1 module specified in Annex
A (the XSD module), which shall be included in the ASN.1 specifications generated by the mapping.

13.3 A user-defined top-level simple type definition shall be mapped to an ASN.1 type assignment.
The "typereference" in the "TypeAssignment" shall be generated by applying 10.3 to the name of the
simple type definition and the "Type" in the "TypeAssignment" shall be an ASN.1 type definition as
specified in subclauses 13.5 to 13.10.

13.4 An anonymous simple type definition shall be mapped to an ASN.1 type definition as specified
in subclauses 13.5 to 13.10.

13.5 For a simple type definition with a variety of atomic with an enumeration facet that is derived by
restriction (directly or indirectly) from xsd:string, the ASN.1 type definition shall be an ASN.1
enumerated type whose "Enumeration" shall be generated as specified in 12.4.1.

13.6 For a simple type definition with a variety of atomic with an enumeration facet that is derived by
restriction (directly or indirectly) from xsd:integer, the ASN.1 type definition shall be an ASN.1
enumerated type whose "Enumeration" shall be generated as specified in 12.4.2. A final USE-
NUMBER encoding instruction shall be assigned to the ASN.1 enumerated type.

13.7 For any other simple type definition (D, say) with any variety that is derived by restriction
(directly or indirectly) from a user-defined top-level simple type definition, the ASN.1 type definition
shall be generated by applying clause 23 to the user-defined top-level simple type definition (B, say)
such that:

ITU-T Rec. X.694 (01/2004) – Prepublished version

23

a) D is derived by restriction (directly or indirectly) from B; and
b) either B is the base type definition of D, or all intermediate derivation steps from B to D are anonymous

simple type definitions.

Then, for each of the facets of D (if any), an ASN.1 constraint generated by applying clause 12 to the
facet shall be added to the ASN.1 type definition.

13.8 For any other simple type definition (D, say) with a variety of atomic, the ASN.1 type definition
shall be generated by applying clause 23 to the XSD built-in datatype (B, say) such that:

a) D is derived by restriction (directly or indirectly) from B; and
b) either B is the base type definition of D, or all intermediate derivation steps from B to D are anonymous

simple type definitions.

Then, for each of the facets of D, an ASN.1 constraint generated by applying clause 12 to the facet
shall be added to the ASN.1 type definition.
13.9 For any other simple type definition (D, say) with a variety of list, the three following subclauses
apply.

13.9.1 The ASN.1 type definition shall be an ASN.1 sequence-of type whose component shall be a
"Type" generated by applying clause 23 to the item type definition.

13.9.2 For each of the facets of D, an ASN.1 constraint generated by applying clause 12 to the facet
shall be added to the ASN.1 sequence-of type.

13.9.3 A final LIST encoding instruction shall be assigned to the ASN.1 sequence-of type.
EXAMPLE – The following represents a user-defined top-level simple type definition that is a list of xsd:float:

<xsd:simpleType name="list-of-float">
<xsd:list itemType="xsd:float"/>

 </xsd:simpleType>

It is mapped to the ASN.1 type assignment:

List-of-float ::= [LIST] [NAME AS UNCAPITALIZED] SEQUENCE OF XSD.Float

13.10 For any other simple type definition (D, say) with a variety of union, the five following subclauses
apply.

13.10.1 The ASN.1 type definition shall be an ASN.1 choice type with one alternative for each
member of the member type definitions.

13.10.2 For each member of the member type definitions, the "identifier" in the "NamedType" of the
corresponding alternative shall be generated by applying 10.3 either to the name of the member (if
the member is an XSD built-in datatype or a user-defined top-level simple type definition) or to the
character string "alt" (if the member is an anonymous simple type definition), and the "Type" in the
"NamedType" shall be the ASN.1 type definition generated by applying clause 23 to the member of
the member type definitions.

13.10.3 For each member of the member type definitions that is an anonymous simple type definition, the
corresponding "NamedType" shall have a final NAME AS "" encoding instruction.

13.10.4 For each of the facets of D, an ASN.1 constraint generated by applying clause 12 to the facet
shall be added to the ASN.1 choice type.
13.10.5 A final USE-UNION encoding instruction shall be assigned to the ASN.1 choice type.
EXAMPLE – The following represents a user-defined top-level simple type definition that is a union of
two anonymous simple type definitions:

<xsd:simpleType name="decimalOrBinary">
<xsd:union>
 <xsd:simpleType>
 <xsd:restriction base="xsd:decimal"/>
 </xsd:simpleType>
 <xsd:simpleType>

ITU-T Rec. X.694 (01/2004) – Prepublished version

24

 <xsd:restriction base="xsd:float"/>
 </xsd:simpleType>
</xsd:union>

 </xsd:simpleType>

It is mapped to the ASN.1 type assignment:

 DecimalOrBinary ::= [NAME AS UNCAPITALIZED] [USE-UNION] CHOICE {
 alt [NAME AS ""] XSD.Decimal,
 alt-1 [NAME AS ""] XSD.Float }

14 Mapping element declarations
14.1 This clause applies as explicitly invoked by other clauses of this Recommendation |
International standard to generate an ASN.1 type assignment or ASN.1 type definition
corresponding to an element declaration.

NOTE - The presence of a value constraint on an element declaration normally affects the mapping. However, subclause 8.10
implies that an element declaration that has a value constraint and whose type definition is xsd:QName or xsd:NOTATION or a restriction
of these XSD built-in datatypes is mapped as if it had no value constraint.

14.2 A top-level element declaration that is abstract shall be ignored.

14.3 A top-level element declaration that is not abstract shall be mapped to an ASN.1 type assignment.
The "typereference" in the "TypeAssignment" shall be generated by applying 10.3 to the name of the
element declaration and the "Type" in the "TypeAssignment" shall be an ASN.1 type definition as
specified in 14.5.

14.4 A local element declaration shall be mapped to an ASN.1 type definition as specified in 14.5.

14.5 One of the two following subclauses (14.5.1 and 14.5.2) applies.

14.5.1 If the type definition of the element declaration is an anonymous simple type definition or complex type
definition or an XSD built-in datatype (A, say), then one of the two following subclauses applies.

14.5.1.1 If the element declaration is not nillable, then the ASN.1 type definition shall be generated by
applying clause 23 to A.

14.5.1.2 If the element declaration is nillable then the ASN.1 type definition shall be generated by applying
either clause 26 (if A is a simple type definition) or clause 27 (if A is a complex type definition) to A.

14.5.2 If the type definition of the element declaration is a user-defined top-level simple type definition or
complex type definition (T, say), then one of the four following subclauses applies.

14.5.2.1 If the element declaration is not nillable and does not have a substitutable type definition (see 14.6),
then the ASN.1 type definition shall be generated by applying clause 23 to T.

14.5.2.2 If the element declaration is nillable and does not have a substitutable type definition (see 14.6), then
the ASN.1 type definition shall be generated by applying either clause 26 (if T is a simple type
definition) or clause 27 (if T is a complex type definition) to T.

14.5.2.3 If the element declaration is not nillable and has a substitutable type definition (see 14.6), then the
ASN.1 type definition shall be generated by applying clause 24 to T.

14.5.2.4 If the element declaration is nillable and has a substitutable type definition (see 14.6), then the ASN.1
type definition shall be generated by applying clause 25 to T.

14.6 The phrase "has a substitutable type definition", applied to an element declaration, means that the
type definition of the element declaration is a user-defined top-level simple type definition or complex type definition
that occurs as the base type definition of another top-level simple type definition or complex type definition.

ITU-T Rec. X.694 (01/2004) – Prepublished version

25

15 Mapping attribute declarations
15.1 This clause applies as explicitly invoked by other clauses of this Recommendation |
International Standard to generate an ASN.1 type assignment or ASN.1 type definition
corresponding to an attribute declaration.

15.2 A top-level attribute declaration shall be mapped to an ASN.1 type assignment. The
"typereference" in the "TypeAssignment" shall be generated by applying 10.3 to the name of the
attribute declaration, and the "Type" in the "TypeAssignment" shall be an ASN.1 type definition as
specified in 15.4. A final ATTRIBUTE encoding instruction shall be assigned to the ASN.1 type
assignment.

15.3 A local attribute declaration shall be mapped to an ASN.1 type definition as specified in 15.4.

15.4 The ASN.1 type definition shall be generated by applying clause 23 to the type definition of
the attribute declaration.

16 Mapping values of simple type definitions
16.1 This clause applies as explicitly invoked by other clauses of this Recommendation |
International Standard to generate an ASN.1 "Value" corresponding to a value in the value space of
a simple type definition.

16.2 Given a value V in the value space of a simple type definition, and:
a) the ASN.1 type definition mapped from this simple type definition; and
b) the canonical lexical representation (see W3C XML Schema Part 2, 2.3.1) of V,

V shall be mapped to an ASN.1 basic value notation for the abstract value of the ASN.1 type
definition for which, in EXTENDED-XER, the canonical lexical representation is a valid
"ExtendedXMLValue" encoding.

17 Mapping model group definitions
17.1 This clause applies as explicitly invoked by other clauses of this Recommendation |
International Standard to generate an ASN.1 type assignment corresponding to a model group definition.

17.2 A model group definition whose model group has a compositor of sequence or choice shall be mapped to
an ASN.1 type assignment. The "typereference" in the "TypeAssignment" shall be generated by
applying 10.3 to the name of the model group definition and the "Type" in the "TypeAssignment" shall be
generated by applying clause 18 to the model group of the model group definition.

NOTE - Model group definitions whose model group has a compositor of all are not mapped to ASN.1.

18 Mapping model groups
18.1 This clause applies as explicitly invoked by other clauses of this Recommendation |
International Standard to generate an ASN.1 type definition corresponding to a model group.

NOTE - This clause is not invoked for every model group. For example, a model group with a compositor of all is not mapped to
ASN.1, but its particles are mapped as specified in 20.9.

18.2 A model group with a compositor of sequence shall be mapped to an ASN.1 sequence type. For
each particle in the model group in order, a "NamedType" shall be generated by applying clause 19 to
the particle, and that "NamedType" shall be added to the sequence type as one of its components. A
final UNTAGGED encoding instruction shall be assigned to the sequence type.

18.3 A model group with a compositor of choice shall be mapped to an ASN.1 choice type. For each
particle in the model group in order, a "NamedType" shall be generated by applying clause 19 to the
particle, and that "NamedType" shall be added to the choice type as one of its alternatives. A final
UNTAGGED encoding instruction shall be assigned to the choice type.

ITU-T Rec. X.694 (01/2004) – Prepublished version

26

19 Mapping particles
19.1 This clause applies as explicitly invoked by other clauses of this Recommendation |
International Standard to generate an ASN.1 "NamedType" corresponding to a particle.

NOTE - This clause is not invoked for all particles. For example, the (topmost) particle of the content type of a complex type
definition is mapped in a special way if its term is a model group with a compositor of sequence or all (see 20.8).

19.2 The three following subclauses define terms that are used in the remainder of this clause 19.

19.2.1 If both min occurs and max occurs of a particle are one, the particle is called a "mandatory presence
particle".

19.2.2 If min occurs is zero and max occurs is one, then:
a) if the mapping of the particle is to generate a component of an ASN.1 sequence type, the particle is called

an "optional presence particle";
b) otherwise, the particle is called an "optional single-occurrence particle".

19.2.3 If max occurs is two or more, the particle is called a "multiple-occurrence particle".

19.3 A "mandatory presence particle" or "optional presence particle" shall be mapped to a
"NamedType" as specified in the two following subclauses.

19.3.1 The "identifier" in the "NamedType" shall be generated by applying 10.3 to the character
string specified in 19.5 and the "Type" in the "NamedType" shall be generated by applying 19.6 to
the term of the particle.

19.3.2 If the particle is an "optional presence particle", the "NamedType" shall be followed by the
OPTIONAL keyword.

19.4 An "optional single-occurrence particle" or a "multiple-occurrence particle" shall be
mapped to a "NamedType" as specified in the six following subclauses.

19.4.1 The "identifier" in the "NamedType" shall be generated by applying 10.3 to the character
string obtained by appending the suffix "-list" to the character string specified in 19.5. The
"Type" in the "NamedType" shall be a sequence-of type.

19.4.2 If the particle is an "optional single-occurrence particle" or "multiple-occurrence particle", a
size constraint shall be added to the sequence-of type in accordance with Table 5.

19.4.3 If the term of the particle is an element declaration, then the component of the sequence-of type
shall be a "NamedType". The "identifier" in this "NamedType" shall be generated by applying 10.3
to the name of the element declaration and the "Type" in this "NamedType" shall be generated by
applying 19.6 to the term of the particle.

19.4.4 If the term of the particle is a wildcard, then the component of the sequence-of type shall be a
"NamedType". The "identifier" in this "NamedType" shall be elem and the "Type" in this
"NamedType" shall be generated by applying 19.6 to the term of the particle.

19.4.5 If the term of the particle is a model group, then the component of the sequence-of type shall be a
"Type" and shall be generated by applying 19.6 to the term of the particle.

19.4.6 A final UNTAGGED encoding instruction shall be assigned to the sequence-of type.

19.5 The character string used in the generation of the "identifier" in the "NamedType"
corresponding to the particle shall be:

a) if the particle is the content type of a complex type definition, the character string "content";
b) if the term of the particle is an element declaration, the name of the element declaration;
c) if the term of the particle is the model group of a model group definition, the name of the model group

definition;
d) if the term of the particle is a model group with a compositor of sequence unrelated to a model group

definition, the character string "sequence";

ITU-T Rec. X.694 (01/2004) – Prepublished version

27

e) if the term of the particle is a model group with a compositor of choice unrelated to a model group definition,
the character string "choice";

f) if the term of the particle is a wildcard, the character string "elem".

19.6 The "Type" in the "NamedType" corresponding to the particle (see 19.3) or the "Type" in the
"NamedType" in the "SequenceOfType" corresponding to the particle (see 19.4) shall be:

a) if the term of the particle is a top-level element declaration which is not the head of an element substitution
group, the ASN.1 type definition (a "DefinedType") generated by applying 10.2 to the ASN.1 type
assignment generated by applying clause 14 to the element declaration;

b) if the term of the particle is a top-level element declaration which is the head of an element substitution
group, the ASN.1 type definition (a "DefinedType") generated by applying 10.2 to the ASN.1 type
assignment generated by applying clause 31.to the element declaration;

c) if the term of the particle is a local element declaration, the ASN.1 type definition generated by applying
clause 14 to the element declaration;

d) if the term of the particle is the model group of a model group definition, the ASN.1 type definition (a
"DefinedType") generated by applying 10.2 to the ASN.1 type assignment generated by applying clause
17 to the model group definition;

e) if the term of the particle is a model group unrelated to a model group definition, the ASN.1 type definition
generated by applying clause 18 to the model group;

f) if the term of the particle is a wildcard, the ASN.1 type definition generated by applying clause 21 to the
wildcard.

Table 5 – ASN.1 size constraint corresponding to min occurs and max occurs

min occurs and max occurs ASN.1 size constraint

min occurs = n max occurs = n
 n ≥ 2

SIZE (n)

min occurs = min max occurs = max
 max > min and max ≥ 2

SIZE (min .. max)

min occurs = 0 max occurs = 1 SIZE (0 .. 1)

min occurs = min max occurs = unbounded
min ≥ 1

SIZE (min .. MAX)

min occurs = 0 max occurs = unbounded no size constraint

20 Mapping complex type definitions
20.1 This clause applies as explicitly invoked by other clauses of this Recommendation |
International Standard to generate an ASN.1 type assignment or ASN.1 type definition
corresponding to a complex type definition.

20.2 A top-level complex type definition shall be mapped to an ASN.1 type assignment. The
"typereference" in the "TypeAssignment" shall be generated by applying 10.3 to the name of the
complex type definition and the "Type" in the "TypeAssignment" shall be an ASN.1 type definition as
specified in subclauses 20.4 to 20.11.

20.3 An anonymous complex type definition shall be mapped to an ASN.1 type definition as specified
in subclauses 20.4 to 20.11.

20.4 The ASN.1 type definition shall be an ASN.1 sequence type. Zero or more components
shall be added to the ASN.1 sequence type as specified by the following subclauses, in the specified
order.

ITU-T Rec. X.694 (01/2004) – Prepublished version

28

20.5 If the content type of the complex type definition is a mixed content model, then a component shall
be added to the ASN.1 sequence type. The "identifier" in the "NamedType" of this component shall
be embed-values and the "Type" in the "NamedType" shall be a sequence-of type whose component
shall be a "Type" generated by applying clause 23 to the XSD built-in datatype xsd:string. A final
EMBED-VALUES encoding instruction shall be assigned to the ASN.1 sequence type.

20.6 If the content type of the complex type definition is a particle whose term is a model group with a
compositor of all, then a component shall be added to the ASN.1 sequence type. The "identifier" in the
"NamedType" of the component shall be order and the "Type" in the "NamedType" shall be a
sequence-of type whose component shall be an "EnumeratedType". For each particle of the model
group (whose term is always an element declaration), an "EnumerationItem" that is an "identifier" identical
to the "identifier" in the "NamedType" corresponding to each particle shall be added to the
"Enumeration" in order. A final USE-ORDER encoding instruction shall be assigned to the ASN.1
sequence type.

NOTE - The "identifier"s in the "NamedType"s being mapped from the particles are generated (applying 10.3) as each component
is added to the sequence type. Therefore, even though the order component is placed in a position that textually precedes the
positions of those components within the ASN.1 sequence type, the generation of the order component can only be completed
after all the particles have been mapped to sequence components.

20.7 If the complex type definition has attribute uses, then components generated by applying clause 22
to the attribute uses shall be added to the ASN.1 sequence type in an order based on the target namespace
and name of the attribute declaration of each attribute use. The attribute uses shall first be ordered by target
namespace of the attribute declaration (with the keyword absent preceding all namespace names sorted in
ascending lexicographical order) and then by name of the attribute declaration within each target namespace
(also in ascending lexicographical order).

20.8 If the complex type definition has an attribute wildcard, then a component generated from the attribute
wildcard (see 21.3) shall be added to the ASN.1 sequence type.

20.9 If the content type of the complex type definition is a particle, then one of the five following
subclauses applies.

20.9.1 If the term of the particle is a model group with a compositor of sequence whose min occurs and max
occurs are both one, then, for each particle of the model group in order, then a component generated by
applying clause 19 to the particle in the model group shall be added to the ASN.1 sequence type.

20.9.2 If the term of the particle is a model group with a compositor of sequence whose min occurs and max
occurs are not both one, then a component generated by applying clause 19 to the particle in the content
type shall be added to the ASN.1 sequence type.

20.9.3 If the term of the particle is a model group with a compositor of all, then, for each particle of the model
group in order, a component generated by applying clause 19 to the particle of the model group shall be
added to the ASN.1 sequence type. If the particle in the content type of the complex type definition has min
occurs zero, each of the particles of the model group with min occurs one shall be mapped as if it had min
occurs zero.

20.9.4 If the term of the particle is a model group with a compositor of choice, then a component generated
by applying clause 19 to the particle in the content type shall be added to the ASN.1 sequence type.

20.10 If the content type of the complex type definition is a simple type definition, then a component shall be
added to the ASN.1 sequence type. The "identifier" in the "NamedType" of the component shall be
generated by applying 10.3 to the character string "base" and the "Type" in the "NamedType" shall
be the ASN.1 type definition generated by applying clause 23 to the content type. A final UNTAGGED
encoding instruction shall be assigned to the component.

20.11 If the content type of the complex type definition is empty, then no further components shall be
added to the ASN.1 sequence type.

ITU-T Rec. X.694 (01/2004) – Prepublished version

29

21 Mapping wildcards
21.1 This clause applies as explicitly invoked by other clauses of this Recommendation |
International Standard to generate an ASN.1 type assignment or ASN.1 type definition
corresponding to a simple type definition.

21.2 A wildcard that is the term of a particle shall be mapped to the ASN.1 type definition generated
by applying clause 23 to the XSD built-in datatype xsd:string. A final ANY-ELEMENT encoding
instruction shall be assigned to the ASN.1 type definition.

21.3 A wildcard that is the attribute wildcard of a complex type shall be mapped to a "NamedType". The
"identifier" in the "NamedType" shall be generated by applying 10.3 to the character string "attr"
and the "Type" in the "NamedType" shall be a sequence-of type. The component of the sequence-
of type shall be a "Type" generated by applying clause 23 to the XSD built-in datatype xsd:string.
The following user-defined constraint shall be applied to the sequence-of type:

(CONSTRAINED BY
{/* Each item shall conform to the "AnyAttributeFormat" specified in
 ITU-T Rec. X.693 | ISO/IEC 8825-4, clause 18 */})

A final ANY-ATTRIBUTES encoding instruction shall be assigned to the sequence-of type.

21.4 If the wildcard has a namespace constraint, this shall be mapped to a "NameSpaceRestriction" in
the ANY-ELEMENT or ANY-ATTRIBUTES encoding instruction.

22 Mapping attribute uses
22.1 This clause applies as explicitly invoked by other clauses of this Recommendation |
International Standard to generate an ASN.1 "NamedType" corresponding to an attribute use.

22.2 An attribute use shall be mapped to a "NamedType".

22.3 The "identifier" in the "NamedType" shall be generated by applying 10.3 to the name of the
attribute declaration of the attribute use, and the "Type" in the "NamedType" shall be:

a) if the attribute use has a top-level attribute declaration, the ASN.1 type definition (a "DefinedType")
generated by applying 10.2 to the ASN.1 type assignment generated by applying clause 15 to the attribute
declaration;

b) if the attribute use has a local attribute declaration, the ASN.1 type definition generated by applying clause
15 to the attribute declaration.

22.4 If either the attribute use or its attribute declaration has a value constraint, the "NamedType" shall be
followed by the keyword DEFAULT and by a "Value" generated by applying clause 16 either to the
value in the value constraint of the attribute use (if the attribute use has a value constraint), or to the value in
the value constraint of its attribute declaration (otherwise).

22.5 If either the attribute use or its attribute declaration has a value constraint that is a fixed value, then an
ASN.1 single value constraint with a "Value" identical to the "Value" following the DEFAULT
keyword shall be added to the "NamedType".

22.6 If the attribute use is not required and neither the attribute use nor its attribute declaration has a value

constraint, the "NamedType" shall be followed by the keyword OPTIONAL.

22.7 A final ATTRIBUTE encoding instruction shall be assigned to the "Type" in the
"NamedType".

23 Mapping uses of simple and complex type definitions (general case)
23.1 This clause applies as explicitly invoked by other clauses of this Recommendation |
International Standard to generate an ASN.1 type definition corresponding to a use of a simple type
definition or complex type definition. This includes their use as the type definition of element declarations that do

ITU-T Rec. X.694 (01/2004) – Prepublished version

30

not have a substitutable type definition (see 14.6), are not nillable, and may or may not have a value
constraint.
23.2 A use of a top-level simple type definition that is an XSD built-in datatype shall be mapped as
specified in clause 11.

23.3 A use of a user-defined top-level simple type definition shall be mapped to the ASN.1 type
definition (a "DefinedType") generated by applying 10.2 to the ASN.1 type assignment generated
by applying clause 13 to the simple type definition.

23.4 A use of a top-level complex type definition shall be mapped to the ASN.1 type definition (a
"DefinedType") generated by applying 10.2 to the ASN.1 type assignment generated by applying
clause 20 to the complex type definition.

23.5 A use of an anonymous simple type definition is not distinguished from the simple type definition
itself, and shall be mapped as specified in clause 13 for the simple type definition.

23.6 A use of an anonymous complex type definition is not distinguished from the complex type definition
itself, and shall be mapped as specified in clause 20 for the complex type definition.

23.7 If a simple type definition or complex type definition is used as the type definition of an element declaration

with a value constraint, then a final DEFAULT-FOR-EMPTY encoding instruction shall be assigned to the
ASN.1 type definition, and one of the three following subclauses applies.

23.7.1 For a simple type definition, the "Value" in the final DEFAULT-FOR-EMPTY encoding instruction
shall be generated by applying clause 16 to the value in the value constraint considered as a value in
the value space of the simple type definition.

23.7.2 For a complex type definition whose content type is a simple type definition, the "Value" in the final
DEFAULT-FOR-EMPTY encoding instruction shall be generated by applying clause 16 to the value in the
value constraint considered as a value in the value space of the simple type definition.

23.7.3 For a complex type definition with a mixed content type, the "Value" in the final DEFAULT-FOR-
EMPTY encoding instruction shall be generated by applying clause 16 to the value in the value constraint
considered as a value in the value space of xsd:string with whiteSpace preserve.

23.8 If a simple type definition or complex type definition is used as the type definition of an element declaration
with a value constraint that is a fixed value, then one of the three following subclauses applies.

23.8.1 For a simple type definition, an ASN.1 single value constraint with a "Value" identical to the
"Value" in the final DEFAULT-FOR-EMPTY encoding instruction shall be added to the ASN.1 definition.

23.8.2 For a complex type definition whose content type is a simple type definition, an ASN.1 inner subtype
constraint shall be added to the the ASN.1 definition and shall apply to the base component a single
value constraint with a "Value" identical to the "Value" in the final DEFAULT-FOR-EMPTY encoding
instruction.

23.8.3 For a complex type definition with a mixed content type, an ASN.1 inner subtype constraint shall
be added to the the ASN.1 definition and shall apply:

a) to the embed-values component, an ASN.1 single value constraint with a "Value" consisting in a
single occurrence of a "Value" identical to the "Value" in the final DEFAULT-FOR-EMPTY encoding
instruction;

b) to each component that is OPTIONAL and does not have a final ATTRIBUTE encoding instruction, the
keyword ABSENT; and

c) to each component whose type is a sequence-of type, a SIZE(0) constraint.

24 Mapping special uses of simple and complex type definitions (substitutable)
24.1 This clause applies as explicitly invoked by other clauses of this Recommendation |
International Standard to generate an ASN.1 type definition corresponding to a simple type definition or

ITU-T Rec. X.694 (01/2004) – Prepublished version

31

complex type definition used as the type definition of element declarations that have a substitutable type definition
(see 14.6), are not nillable, and may or may not have a value constraint.

24.2 A use of a simple type definition (STD, say) or complex type definition (CTD, say) shall be mapped to
an ASN.1 choice type.

24.3 One alternative shall be added to the ASN.1 choice type for STD or CTD itself and one
alternative shall be added for each user-defined top-level simple type definition and complex type definition in
the source XSD schema that is derived by restriction or extension (directly or indirectly) from STD
or CTD.

24.4 For each alternative, the "identifier" in the "NamedType" shall be generated by applying
10.3 to the name of the simple type definition or complex type definition corresponding to the alternative, and
the "Type" in the "NamedType" shall be the ASN.1 type definition generated by applying clause 23
to the simple type definition or complex type definition.

24.5 The first alternative added to the choice type shall be the one corresponding to STD or CTD
itself. The subsequent alternatives shall be added to the choice type in an order based on the target
namespace and name of the simple type definitions and complex type definitions. Type definitions shall first be
ordered by target namespace (with the absent namespace preceding all namespace names sorted in
ascending lexicographical order) and then by name (also in ascending lexicographical order) within
each target namespace.

24.6 A final USE-TYPE encoding instruction shall be assigned to the ASN.1 choice type.

24.7 If there is a value constraint, then a final DEFAULT-FOR-EMPTY encoding instruction shall be
assigned to each alternative of the ASN.1 choice type. One of the three following subclauses
applies.

24.7.1 If the alternative corresponds to a simple type definition, the "Value" in the final DEFAULT-FOR-
EMPTY encoding instruction shall be generated by applying clause 16 to the value in the value constraint
considered as a value in the value space of the simple type definition.

24.7.2 If the alternative corresponds to a complex type definition whose content type is a simple type definition,
the "Value" in the final DEFAULT-FOR-EMPTY encoding instruction shall be generated by applying
clause 16 to the value in the value constraint considered as a value in the value space of the simple type
definition.

24.7.3 If the alternative corresponds to a complex type definition with a mixed content type, the "Value"
in the final DEFAULT-FOR-EMPTY encoding instruction shall be generated by applying clause 16 to the
value in the value constraint considered as a value in the value space of xsd:string with whiteSpace preserve.

24.8 If there is a value constraint that is a fixed value, then an ASN.1 inner subtype constraint shall be
added to the ASN.1 choice type. One of the three following subclauses applies.

24.8.1 If the alternative corresponds to a simple type definition, the inner subtype constraint shall apply
to the alternative an ASN.1 single value constraint with a "Value" identical to the "Value" in the
final DEFAULT-FOR-EMPTY encoding instruction.

24.8.2 If the alternative corresponds to a complex type definition whose content type is a simple type definition,
the inner subtype constraint shall apply to the alternative another ASN.1 inner subtype constraint
that applies to the base component a single value constraint with a "Value" identical to the "Value"
in the final DEFAULT-FOR-EMPTY encoding instruction.

24.8.3 If the alternative corresponds to a complex type definition with a mixed content type, the inner
subtype constraint shall apply to the alternative another ASN.1 inner subtype constraint that applies:

a) to the embed-values component, an ASN.1 single value constraint with a "Value" consisting in a
single occurrence of a "Value" identical to the "Value" in the final DEFAULT-FOR-EMPTY encoding
instruction;

ITU-T Rec. X.694 (01/2004) – Prepublished version

32

b) to each component that is OPTIONAL and does not have a final ATTRIBUTE encoding instruction, the
keyword ABSENT; and

c) to each component whose type is a sequence-of type, a SIZE(0) constraint.

25 Mapping special uses of simple and complex type definitions (substitutable, nillable)
25.1 This clause applies as explicitly invoked by other clauses of this Recommendation |
International Standard to generate an ASN.1 type definition corresponding to a simple type definition or
complex type definition used as the type definition of element declarations that have a substitutable type definition
(see 14.6), are nillable, and may or may not have a value constraint.

25.2 A use of a simple type definition (STD, say) or complex type definition (CTD, say) shall be mapped to
an ASN.1 choice type.

25.3 One alternative shall be added to the ASN.1 choice type for STD or CTD itself and one
alternative shall be added for each user-defined top-level simple type definition and complex type definition in
the source XSD schema that is derived by restriction or extension (directly or indirectly) from STD
or CTD.

25.4 For each alternative, the "identifier" in the "NamedType" shall be generated by applying
10.3 to the name of the simple type definition or complex type definition corresponding to the alternative, and
the "Type" in the "NamedType" shall be the ASN.1 type definition (a "DefinedType") generated by
applying clause 10.2 to the ASN.1 type assignment generated by applying clause 30 to the simple type
definition or complex type definition.

25.5 The first alternative added to the choice type shall be the one corresponding to STD or CTD
itself. The subsequent alternatives shall be added to the choice type in an order based on the target
namespace and name of the simple type definitions and complex type definitions. Type definitions shall first be
ordered by target namespace (with the absent namespace preceding all namespace names sorted in
ascending lexicographical order) and then by name (also in ascending lexicographical order) within
each target namespace.

25.6 A final USE-TYPE encoding instruction shall be assigned to the ASN.1 choice type.

25.7 If there is a value constraint, then a final DEFAULT-FOR-EMPTY encoding instruction shall be
assigned to each alternative of the ASN.1 choice type. One of the three following subclauses
applies.

25.7.1 If the alternative corresponds to a simple type definition, the "Value" in the final DEFAULT-FOR-
EMPTY encoding instruction shall be generated by applying clause 16 to the value in the value constraint
considered as a value in the value space of the simple type definition.

25.7.2 If the alternative corresponds to a complex type definition whose content type is a simple type definition,
the "Value" in the final DEFAULT-FOR-EMPTY encoding instruction shall be generated by applying
clause 16 to the value in the value constraint considered as a value in the value space of the simple type
definition.

25.7.3 If the alternative corresponds to a complex type definition with a mixed content type, the "Value"
in the final DEFAULT-FOR-EMPTY encoding instruction shall be generated by applying clause 16 to the
value in the value constraint considered as a value in the value space of xsd:string with whiteSpace preserve.

25.8 If there is a value constraint that is a fixed value, then an ASN.1 inner subtype constraint shall be
added to the ASN.1 choice type. One of the three following subclauses applies.

25.8.1 If the alternative corresponds to a simple type definition, the inner subtype constraint shall apply
to the alternative (which is an ASN.1 sequence type with a final USE-NIL encoding instruction)
another ASN.1 inner subtype constraint which in turn shall apply to the content component the
keyword PRESENT and an ASN.1 single value constraint with a "Value" identical to the "Value" in
the final DEFAULT-FOR-EMPTY encoding instruction.

ITU-T Rec. X.694 (01/2004) – Prepublished version

33

25.8.2 If the alternative corresponds to a complex type definition whose content type is a simple type definition,
the inner subtype constraint shall apply to the alternative (which is an ASN.1 sequence type with a
final USE-NIL encoding instruction) another ASN.1 inner subtype constraint that applies to the
content component the keyword PRESENT and an ASN.1 single value constraint with a "Value"
identical to the "Value" in the final DEFAULT-FOR-EMPTY encoding instruction.

25.8.3 If the alternative corresponds to a complex type definition with a mixed content type, the inner
subtype constraint shall apply to the alternative (which is an ASN.1 sequence type with a final USE-
NIL encoding instruction) another ASN.1 inner subtype constraint that applies:

a) to the embed-values component, an ASN.1 single value constraint with a "Value" consisting in a
single occurrence of a "Value" identical to the "Value" in the final DEFAULT-FOR-EMPTY encoding
instruction;

b) to the content component (which is an ASN.1 sequence type), the keyword PRESENT and another inner
subtype constraint that applies the keyword ABSENT to each of its components that is OPTIONAL and a
SIZE(0) constraint to each of its components whose type is a sequence-of type;

c) to each component that is OPTIONAL and does not have a final ATTRIBUTE encoding instruction, the
keyword ABSENT; and

d) to each component whose type is a sequence-of type, a SIZE(0) constraint.

26 Mapping special uses of simple type definitions (nillable)
26.1 This clause applies as explicitly invoked by other clauses of this Recommendation |
International Standard to generate an ASN.1 type definition corresponding to a simple type definition
used as the type definition of element declarations that do not have a substitutable type definition (see 14.6), are
nillable, and may or may not have a value constraint.

26.2 A use of a simple type definition shall be mapped to an ASN.1 sequence type with one OPTIONAL
component.

26.3 The "identifier" in the "NamedType" of the component shall be content and the "Type" in
the "NamedType" shall be the ASN.1 type definition generated by applying clause 23 to the simple
type definition.

26.4 A final USE-NIL encoding instruction shall be assigned to the ASN.1 sequence type.

26.5 If there is a value constraint, then a final DEFAULT-FOR-EMPTY encoding instruction shall be
assigned to the ASN.1 sequence type. The "Value" in the final DEFAULT-FOR-EMPTY encoding
instruction shall be generated by applying clause 16 to the value in the value constraint.

26.6 If there is a value constraint that is a fixed value, then an ASN.1 inner subtype constraint shall be
added to the ASN.1 sequence type. The inner subtype constraint shall apply to the content
component an ASN.1 single value constraint with a "Value" identical to the "Value" in the final
DEFAULT-FOR-EMPTY encoding instruction. The inner subtype constraint shall also apply the keyword
PRESENT to the content component.

27 Mapping special uses of complex type definitions (nillable)
27.1 This clause applies as explicitly invoked by other clauses of this Recommendation |
International Standard to generate an ASN.1 type definition corresponding to a complex type definition
used as the type definition of element declarations that do not have a substitutable type definition (see 14.6), are
nillable, and may or may not have a value constraint.

27.2 A use of a complex type definition shall be mapped to an ASN.1 sequence type. One or more
components shall be added to the ASN.1 sequence type as specified by the following subclauses, in
the specified order.

ITU-T Rec. X.694 (01/2004) – Prepublished version

34

27.3 If the content type of the complex type definition is a mixed content model, then an embed-values
component shall be added to the ASN.1 sequence type as specified in 20.5.

27.4 If the content type of the complex type definition is a particle whose term is a model group with a
compositor of all, then an order component shall be added to the ASN.1 sequence type as specified in
20.6.

27.5 If the complex type definition has attribute uses, components mapped from the attribute uses shall be
added to the ASN.1 sequence type as specified in 20.7.

27.6 If the complex type definition has an attribute wildcard, then a component generated from the attribute
wildcard shall be added to the ASN.1 sequence type. as specified in 20.8.

27.7 If the content type of the complex type definition is a particle, then one of the two following
subclauses applies.

27.7.1 If the term of the particle is a model group with a compositor of sequence or choice, then an OPTIONAL
component shall be added to the ASN.1 sequence type. The "identifier" in the "NamedType" of the
component shall be generated by applying 10.3 to the character string "content" and the "Type" in
the "NamedType" shall be an ASN.1 sequence type with a single component, which shall be
generated by applying clause 19 to the particle in the content type.

27.7.2 If the term of the particle is a model group with a compositor of all, then an OPTIONAL component
shall be added to the ASN.1 sequence type. The "identifier" in the "NamedType" of the component
shall be generated by applying 10.3 to the character string "content" and the "Type" in the
"NamedType" shall be an ASN.1 sequence type. For each particle of the model group in order, a
component generated by applying clause 19 to the particle of the model group shall be added to the inner
ASN.1 sequence type. If the particle in the content type of the complex type definition has min occurs zero, each
of the particles of the model group with min occurs one shall be mapped as if it had min occurs zero.

27.8 If the content type of the complex type definition is a simple type definition, then an OPTIONAL
component shall be added to the ASN.1 sequence type. The "identifier" in the "NamedType" of the
component shall be generated by applying 10.3 to the character string "content" and the "Type" in
the "NamedType" shall be the ASN.1 type definition generated by applying clause 23 to the content
type.
27.9 If the content type of the complex type definition is empty, then no further components shall be
added to the ASN.1 sequence type.

27.10 A final USE-NIL encoding instruction shall be assigned to the ASN.1 sequence type.

27.11 If there is a value constraint, then a final DEFAULT-FOR-EMPTY encoding instruction shall be
assigned to the ASN.1 sequence type. One of the two following subclauses applies.

27.11.1 If the content type of the complex type definition is a simple type definition, the "Value" in the final
DEFAULT-FOR-EMPTY encoding instruction shall be generated by applying clause 16 to the value in the
value constraint considered as a value in the value space of the simple type definition.

27.11.2 If the content type of the complex type definition is a mixed content type, the "Value" in the final
DEFAULT-FOR-EMPTY encoding instruction shall be generated by applying clause 16 to the value in the
value constraint considered as a value in the value space of xsd:string with whiteSpace preserve.
27.12 If there is a value constraint that is a fixed value, then an ASN.1 inner subtype constraint shall be
added to the ASN.1 sequence type. The inner subtype constraint shall apply the keyword PRESENT
to the content component. One of the two following subclauses applies.

27.12.1 If the content type of the complex type definition is a simple type definition, the inner subtype constraint
shall apply to the content component an ASN.1 single value constraint with a "Value" identical to
the "Value" in the final DEFAULT-FOR-EMPTY encoding instruction.

ITU-T Rec. X.694 (01/2004) – Prepublished version

35

27.12.2 If the content type of the complex type definition is a mixed content type, the inner subtype constraint
shall apply:

a) to the embed-values component, an ASN.1 single value constraint with a "Value" consisting in a
single occurrence of a "Value" identical to the "Value" in the final DEFAULT-FOR-EMPTY encoding
instruction;

b) to each component of the content component (an ASN.1 sequence type) that is OPTIONAL, the
keyword ABSENT;

c) to each component of the content component (an ASN.1 sequence type) whose type is a sequence-of
type, a SIZE(0) constraint.

28 Mapping special uses of element declarations (head of element substitution group)
28.1 This clause applies as explicitly invoked by other clauses of this Recommendation |
International Standard to generate an ASN.1 type definition corresponding to a top-level element
declaration that is the head of an element substitution group and is used as the term of particles.

28.2 A use of a top-level element declaration shall be mapped to an ASN.1 choice type.

28.3 One alternative shall be added to the ASN.1 choice type for the top-level element declaration
itself (H, say) and one alternative shall be added for each top-level element declaration in the source
XSD Schema that is not abstract and whose substitution group affiliation is H.

28.4 For each alternative, the "identifier" in the "NamedType" shall be generated by applying
10.3 to the name of the top-level element declaration corresponding to the alternative, and the "Type" in
the "NamedType" shall be the ASN.1 type definition (a "DefinedType") generated by applying
clause 10.2 to the ASN.1 type assignment generated by applying clause 14 to the top-level element
declaration.

NOTE - In XSD, substitution group membership is transitive, i.e., the members of a substitution group ESG1 whose head is a
member of another substitution group ESG2 are all also members of ESG2.

28.5 Alternatives shall be added to the choice type in an order based on the target namespace and
name of the top-level element declarations. The element declarations shall first be ordered by target namespace
(with the absent namespace preceding all namespace names sorted in ascending lexicographical
order) and then by name (also in ascending lexicographical order) within each target namespace.

NOTE - The element declaration that is the head of the element substitution group is ordered together with the other element
declarations that belong to the element substitution group.

28.6 A final UNTAGGED encoding instruction shall be assigned to the choice type.

29 Generating special ASN.1 type assignments for element declarations
29.1 This clause applies as explicitly invoked by other clauses of this Recommendation |
International Standard to generate an ASN.1 type assignment corresponding to a user-defined top-
level simple type definition or complex type definition used as the type definition of element declarations that have a
substitutable type definition (see 14.6) or are nillable.

29.2 This clause 29 is invoked by other clauses for a given combination of:
a) a simple type definition or complex type definition;
b) whether the element declarations has a substitutable type definition (see 14.6);
c) whether the element declaration is nillable; and
d) whether the element declaration has a value constraint and the kind and value of the value constraint;

and generates an ASN.1 type assignment (called a "special ASN.1 type assignment (for element
declarations)") for a combination of the above items.

ITU-T Rec. X.694 (01/2004) – Prepublished version

36

29.3 One and only one special ASN.1 type assignment shall be generated for each different
combination of the above items that actually occurs in one or more invocations of this clause 29
over the mapping of a source XSD Schema.

NOTE - For example, if two or more element declarations in a large XSD Schema have identical type definitions, are both nillable,
and both have a value constraint that is a default value and is the same value, then a single special ASN.1 type assignment is
generated. The type reference name of this type assignment will occur in the "Type" in the "TypeAssignment"s corresponding to
both element declarations.

29.4 The term "associated ASN.1 type assignment" designates the ASN.1 type assignment being
mapped from the simple type definition or complex type definition that is the type definition of the element declaration
for which a special ASN.1 type assignment is generated, by applying clause 13 or clause 20,
respectively.

NOTE - Any special ASN.1 type assignment has an associated ASN.1 type assignment, as this clause 29 applies only when the
type definition of an element declaration is a user-defined top-level simple type definition or complex type definition. All such simple type
definitions and complex type definitions are mapped to ASN.1 type assignments.

29.5 For a given element declaration, the "typereference" in the "TypeAssignment" for a special
ASN.1 type assignment shall be constructed by appending a suffix to the type reference name of the
associated ASN.1 type assignment and applying 10.3 to the resulting character string, and the
"Type" in the "TypeAssignment" shall be the ASN.1 type definition generated by applying either
clause 24 or clause 25 to the simple type definition or complex type definition that is the type definition of the
element declaration. One of the following applies:

a) if the element declaration is not nillable, has a substitutable type definition, and does not have a value
constraint, the suffix shall be "-derivations" and clause 24 shall be applied;

b) if the element declaration is nillable, has a substitutable type definition, does not have a value constraint, the
suffix shall be "-deriv-nillable" and clause 25 shall be applied;

c) if the element declaration is not nillable, has a substitutable type definition, and has a value constraint that is a
default value, the suffix shall be "-deriv-default-" followed by the canonical lexical representation
(see W3C XML Schema Part 2, 2.3.1) of the value in the value constraint, and clause 24 shall be applied;

d) if the element declaration is not nillable, has a substitutable type definition, and has a value constraint that is a
fixed value, the suffix shall be "-deriv-fixed-" followed by the canonical lexical representation (see
W3C XML Schema Part 2, 2.3.1) of the value in the value constraint, and clause 24 shall be applied;

e) if the element declaration is nillable, and has a substitutable type definition, and has a value constraint that is
a default value, the suffix shall be "-deriv-nillable-default-" followed by the canonical lexical
representation (see W3C XML Schema Part 2, 2.3.1) of the value in the value constraint, and clause 25
shall be applied;

f) if the element declaration is nillable, has a substitutable type definition, and has a value constraint that is a
fixed value, the suffix shall be "-deriv-nillable-fixed-" followed by the canonical lexical
representation (see W3C XML Schema Part 2, 2.3.1) of the value in the value constraint, and clause 25
shall be applied.

30 Generating special ASN.1 type assignments for type definitions
30.1 This clause applies as explicitly invoked by other clauses of this Recommendation |
International Standard to generate an ASN.1 type assignment corresponding to a user-defined top-
level simple type definition or complex type definition that belongs to the derivation hierarchy of the type
definition of element declarations that have a substitutable type definition (see 14.6) and are nillable.

30.2 This clause 30 is invoked by other clauses for a given simple type definition or complex type
definition and generates an ASN.1 type assignment (called a "special ASN.1 type assignment (for a
type definition)").

30.3 One and only one special ASN.1 type assignment shall be generated for each simple type
definition or complex type definition that actually occurs in one or more invocations of this clause 30 over
the mapping of a source XSD Schema.

ITU-T Rec. X.694 (01/2004) – Prepublished version

37

30.4 The term "associated ASN.1 type assignment" designates the ASN.1 type assignment being
mapped from the simple type definition or complex type definition by applying clause 13 or clause 20,
respectively.

30.5 The "typereference" in the "TypeAssignment" for a special ASN.1 type assignment shall be
constructed by appending the suffix "-nillable" to the type reference name of the associated ASN.1
type assignment and applying 10.3 to the resulting character string, and the "Type" in the
"TypeAssignment" shall be the ASN.1 type definition generated by applying either clause 26 or
clause 27 to the simple type definition or complex type definition, respectively.

31 Generating special ASN.1 type assignments for element substitution groups
31.1 This clause applies as explicitly invoked by other clauses of this Recommendation |
International Standard to generate an ASN.1 type assignment corresponding to a particle whose term is
a top-level element declaration that is the head of an element substitution group.

31.2 This clause 31 is invoked by other clauses for a top-level element declaration that is the head of
an element substitution group and generates an ASN.1 type assignment (called a "special ASN.1
type assignment (for an element substitution group)").

31.3 One and only one special ASN.1 type assignment shall be generated for each top-level
element declaration that actually occurs in one or more invocations of this clause 31 over the mapping
of a source XSD Schema.

31.4 The term "associated ASN.1 type assignment" designates the ASN.1 type assignment being
mapped from the top-level element declaration by applying clause 14.

31.5 The "typereference" in the "TypeAssignment" for a special ASN.1 type assignment shall be
constructed by appending the suffix "-group" to the type reference name of the associated ASN.1
type assignment and applying 10.3 to the resulting character string, and the "Type" in the
"TypeAssignment" shall be the ASN.1 type definition generated by applying clause 28 to the top-
level element declaration.

ITU-T Rec. X.694 (01/2004) – Prepublished version

38

Annex A

ASN.1 type definitions corresponding to XSD built-in datatypes

(This annex forms an integral part of this Recommendation | International Standard)

A.1 This annex specifies a module that defines the ASN.1 types that correspond to the XSD
built-in datatypes and that are used for the mapping from W3C XML Schema to ASN.1.

A.2 W3C XML Schema defines many built-in date and time datatypes to represent durations,
instants or recurring instants. Although they are all derived from ISO 8601, there are some
extensions and restrictions. The XSD built-in date and time datatypes are mapped to VisibleString
with a user-defined constraint referencing the applicable XSD clause. A permitted alphabet
constraint is added to provide a more efficient encoding with the Packed Encoding Rules (PER),
since user-defined constraints are not PER-visible (and hence are not used in optimizing encodings).

A.3 The XSD module is:
XSD {joint-iso-itu-t asn1(1) specification(0) modules(0) xsd-module(1)}
DEFINITIONS
AUTOMATIC TAGS ::=
BEGIN

/* xsd:anySimpleType */

AnySimpleType ::= XMLCompatibleString

/* xsd:anyType */

AnyType ::= SEQUENCE {
embed-values SEQUENCE OF String,
attr SEQUENCE
 (CONSTRAINED BY {
 /* Each item shall conform to the "AnyAttributeFormat" specified
 in ITU-T Rec. X.693 | ISO/IEC 8825-4, clause 18 */ }) OF String,
elem-list SEQUENCE OF elem String
 (CONSTRAINED BY {
 /* Shall conform to the "AnyElementFormat" specified
 in ITU-T Rec. X.693 | ISO/IEC 8825-4, clause 19 */ }) }

 (CONSTRAINED BY {
 /* Shall conform to ITU-T Rec. X.693 | ISO/IEC 8825-4, clause 25 */ })

/* xsd:anyUri */

AnyURI ::= XMLStringWithNoCRLFHT
(CONSTRAINED BY {
 /* The XMLStringWithNoCRLFHT shall be a valid URI as defined in IETF RFC
 2396 */ })

/* xsd:base64Binary */

Base64Binary ::= OCTET STRING

/* xsd:boolean */

Boolean ::= BOOLEAN

/* xsd:byte */

Byte ::= INTEGER (-128..127)

/* xsd:date */

Date ::= DATE-TIME (DateOnly)

/* xsd:dateTime */

DateTime ::= DATE-TIME

/* xsd:decimal */

Decimal ::= REAL (WITH COMPONENTS {..., base(10)})

ITU-T Rec. X.694 (01/2004) – Prepublished version

39

 (ALL EXCEPT(-0 | MINUS-INFINITY | PLUS-INFINITY | NOT-A-NUMBER))

/* xsd:double */

Double ::= REAL (WITH COMPONENTS {
 mantissa(-9007199254740991..9007199254740991),
 base(2),
 exponent(-1075..970)})

/* xsd:duration */

Duration ::= DURATION

/* xsd:ENTITIES */

ENTITIES ::= SEQUENCE (SIZE(1..MAX)) OF ENTITY

/* xsd:ENIITY */

ENTITY ::= NCName

/* xsd:float */

Float ::= REAL (WITH COMPONENTS {
 mantissa(-16777215..16777215),
 base(2),
 exponent(-149..104)})

/* xsd:gDay */

GDay ::= DATE-TIME (Day)

/* xsd:gMonth */

GMonth ::= DATE-TIME (Month)

/* xsd:gMonthDay */

GMonthDay ::= DATE-TIME (MonthDay)

/* xsd:gYear */

GYear ::= DATE-TIME (Year)

/* xsd:gYearMonth */

GYearMonth ::= DATE-TIME (YearMonth)

/* xsd:hexBinary */

HexBinary ::= OCTET STRING

/* xsd:ID */

ID ::= NCName

/* xsd:IDREF */

IDREF ::= NCName

/* xsd:IDREFS */

IDREFS ::= SEQUENCE (SIZE(1..MAX)) OF IDREF

/* xsd:int */

Int ::= INTEGER (-2147483648..2147483647)

/* xsd:integer */

Integer ::= INTEGER

/* xsd:language */

Language ::= VisibleString (FROM ("a".."z" | "A".."Z" | "-" | "0".."9"))
(PATTERN
 "[a-zA-Z]#(1,8)(-[a-zA-Z0-9]#(1,8))*")

 /* The semantics of Language is specified in IETF RFC 3066 */

/* xsd:long */

Long ::= INTEGER (-9223372036854775808..9223372036854775807)

ITU-T Rec. X.694 (01/2004) – Prepublished version

40

/* xsd:name */

Name ::= Token (XMLStringWithNoWhitespace)
(CONSTRAINED BY {

 /* The Token shall be a Name as defined in W3C XML 1.0, 2.3 */ })

/* xsd:NCName */

NCName ::= Name
 (CONSTRAINED BY {
 /* The Name shall be an NCName as defined in W3C XML Namespaces, 2 */ }
)

/* xsd:negativeInteger */

NegativeInteger ::= INTEGER (MIN..-1)

/* xsd:NMTOKEN */

NMTOKEN ::= Token (XMLStringWithNoWhitespace)
 (CONSTRAINED BY {
 /* The Token shall be an NMTOKEN as defined in W3C XML 1.0, 2.3 */ })

/* xsd:NMTOKENS */

NMTOKENS ::= SEQUENCE (SIZE(1..MAX)) OF NMTOKEN

/* xsd:nonNegativeInteger */

NonNegativeInteger ::= INTEGER (0..MAX)

/* xsd:nonPositiveInteger */

NonPositiveInteger ::= INTEGER (MIN..0)

/* xsd:normalizedString */

NormalizedString ::= String (XMLStringWithNoCRLFHT)
(CONSTRAINED BY {
 /* The String shall be a normalizedString as defined in W3C XML Schema
Part 2, 3.3.1 */})

/* xsd:NOTATION */

NOTATION ::= QName

/* xsd:positiveInteger */

PositiveInteger ::= INTEGER (1..MAX)

/* xsd:QName */

QName ::= SEQUENCE {
uri AnyURI OPTIONAL,
name NCName }

/* xsd:short */

Short ::= INTEGER (-32768..32767)

/* xsd:string */

String ::= XMLCompatibleString

/* xsd:time */

Time ::= DATE-TIME (TimeOnly)

/* xsd:token */

Token ::= NormalizedString (CONSTRAINED BY {
/* The NormalizedString shall be a token as defined in W3C XML Schema Part 2,
3.3.2 */})

/* xsd:unsignedByte */

UnsignedByte ::= INTEGER (0..255)

/* xsd:unsignedInt */

UnsignedInt ::= INTEGER (0..4294967295)

ITU-T Rec. X.694 (01/2004) – Prepublished version

41

/* xsd:unsignedLong */

UnsignedLong ::= INTEGER (0..18446744073709551615)

/* xsd:unsignedShort */

UnsignedShort ::= INTEGER (0..65535)

/* ASN.1 type definitions supporting the mapping of W3C XML Schema built-in
datatypes */

XMLCompatibleString ::= UTF8String (FROM(
{0, 0, 0, 9} |
{0, 0, 0, 10} |
{0, 0, 0, 13} |
{0, 0, 0, 32} .. {0, 0, 215, 255} |
{0, 0, 224, 0} .. {0, 0, 255, 253} |
{0, 1, 0, 0} .. {0, 16, 255, 253}))

XMLStringWithNoWhitespace ::= UTF8String (FROM(
{0, 0, 0, 33} .. {0, 0, 215, 255} |
{0, 0, 224, 0} .. {0, 0, 255, 253} |
{0, 1, 0, 0} .. {0, 16, 255, 253}))

XMLStringWithNoCRLFHT ::= UTF8String (FROM(
{0, 0, 0, 32} .. {0, 0, 215, 255} |
{0, 0, 224, 0} .. {0, 0, 255, 253} |
{0, 1, 0, 0} .. {0, 16, 255, 253}))

/* ASN.1 type definitions supporting the mapping of W3C XML Schema built-in date
and time datatypes */

DURATION ::= VisibleString (FROM ("0".."9" | "DHMPSTY:.+-"))
 (CONSTRAINED BY {/* W3C XML Schema Part 2, 3.2.6 */})

DATE-TIME ::= VisibleString (FROM ("0".."9" | "TZ:.+-"))
 (CONSTRAINED BY {/* W3C XML Schema Part 2, 3.2.7 */})

DateOnly ::= DATE-TIME (FROM ("0".."9" | "Z:+-"))
 (CONSTRAINED BY {/* W3C XML Schema Part 2, 3.2.9 */})

Day ::= DATE-TIME (FROM ("0".."9" | "Z:+-"))
 (CONSTRAINED BY {/* W3C XML Schema Part 2, 3.2.13 */})

Month ::= DATE-TIME (FROM ("0".."9" | "Z:+-"))

 (CONSTRAINED BY {/* W3C XML Schema Part 2, 3.2.14 */})

MonthDay ::= DATE-TIME(FROM ("0".."9" | "Z:+-"))
 (CONSTRAINED BY {/* W3C XML Schema Part 2, 3.2.12 */})

Year ::= DATE-TIME (FROM ("0".."9" | "Z:+-"))
 (CONSTRAINED BY {/* W3C XML Schema Part 2, 3.2.11 */})

YearMonth ::= DATE-TIME (FROM ("0".."9" | "Z:+-"))
 (CONSTRAINED BY {/* W3C XML Schema Part 2, 3.2.10 */})

TimeOnly ::= DATE-TIME (FROM ("0".."9" | "Z:.+-"))
 (CONSTRAINED BY {/* W3C XML Schema Part 2, 3.2.8 */})

ENCODING-CONTROL XER
 GLOBAL-DEFAULTS MODIFIED-ENCODINGS
 GLOBAL-DEFAULTS CONTROL-NAMESPACE
 "http://www.w3.org/2001/XMLSchema-instance"
 PREFIX "xsi"
 NAMESPACE ALL, ALL IN ALL AS
 "http://www.w3.org/2001/XMLSchema"
 PREFIX "xsd"
 USE-QNAME QName
 BASE64 Base64Binary
 DECIMAL Decimal
 LIST ENTITIES, IDREFS, NMTOKENS
 EMBED-VALUES AnyType
 ANY-ATTRIBUTES AnyType.any-attributes

ITU-T Rec. X.694 (01/2004) – Prepublished version

42

 ANY-ELEMENT AnyType.any-elements.*
 UNTAGGED AnyType.any-elements

 NAME AnySimpleType, AnyURI, Base64Binary, Boolean,
 Byte, Date, DateTime, Decimal, Double, Duration,

 Float, GDay, GMonth, GMonthDay, GYear, GYearMonth,
 HexBinary, Int, Integer, Language, Long,
 NegativeInteger, NonNegativeInteger, NonPositiveInteger,
 NormalizedString, PositiveInteger, Short,
 String, Time, Token,
 UnsignedByte, UnsignedInt, UnsignedLong, UnsignedShort
 AS UNCAPITALIZED
 WHITESPACE AnyURI, Language, Token, DURATION, DATE-TIME COLLAPSE
 WHITESPACE NormalizedString REPLACE

END

ITU-T Rec. X.694 (01/2004) – Prepublished version

43

Annex B

Assignment of object identifier values

(This annex does not form an integral part of this Recommendation | International Standard)

The following object identifier and object descriptor value is assigned in this Recommendation |
International Standard:

For the module defining ASN.1 types corresponding to the XSD built-in datatypes:
 { joint-iso-itu-t asn1(1) specification(0) modules(0) xsd-module(1) }

 "ASN.1 XSD Module"

ITU-T Rec. X.694 (01/2004) – Prepublished version

44

Annex C

Examples of mappings

(This annex does not form an integral part of this Recommendation | International Standard)

This annex illustrates the mapping specified in this Recommendation | International Standard by
giving an ASN.1 module corresponding to an XSD Schema.

C.1 A Schema using simple type definitions
The following Schema contains examples of XSD built-in datatypes (xsd:string, xsd:decimal, xsd:integer,
xsd:int, xsd:date), other simple type definitions and complex type definitions.

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" elementFormDefault="unqualified">
 <xsd:element name="EXAMPLES">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="personnelRecord"/>
 <xsd:element name="decimal" type="xsd:decimal"/>
 <xsd:element name="daysOfTheWeek" type="ListOfDays"/>
 <xsd:element ref="namesOfMemberNations"/>
 <xsd:element ref="fileIdentifier" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="personnelRecord">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="name" type="name"/>
 <xsd:element name="title" type="xsd:string"/>
 <xsd:element name="decimal" type="xsd:integer"/>
 <xsd:element name="dateOfHire" type="xsd:date"/>
 <xsd:element ref="nameOfSpouse"/>
 <xsd:element ref="children"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="nameOfSpouse" type="name"/>
 <xsd:complexType name="name">
 <xsd:sequence>
 <xsd:element name="givenName" type="xsd:string"/>
 <xsd:element name="initial" type="xsd:string"/>
 <xsd:element name="familyName" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="children">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="ChildInformation" minOccurs="0"
maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="ChildInformation">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="name" type="name"/>
 <xsd:element name="dateOfBirth" type="xsd:date"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:simpleType name="ListOfDays">
 <xsd:list itemType="Day"/>
 </xsd:simpleType>
 <xsd:simpleType name="Day">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="monday"/>
 <xsd:enumeration value="tuesday"/>
 <xsd:enumeration value="wednesday"/>
 <xsd:enumeration value="thursday"/>
 <xsd:enumeration value="friday"/>

ITU-T Rec. X.694 (01/2004) – Prepublished version

45

 <xsd:enumeration value="saturday"/>
 <xsd:enumeration value="sunday"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:element name="namesOfMemberNations">
 <xsd:simpleType>
 <xsd:list itemType="xsd:string"/>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="fileIdentifier">
 <xsd:complexType>
 <xsd:choice>
 <xsd:element name="serialNumber" type="xsd:int"/>
 <xsd:element name="relativeName" type="xsd:string"/>
 <xsd:element ref="unidentified"/>
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="unidentified">
 <xsd:complexType>
 <xsd:complexContent>
 <xsd:restriction base="xsd:anyType"/>
 </xsd:complexContent>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

C.2 The corresponding ASN.1 definitions
The following is the corresponding ASN.1 specification and validates the same XML documents as
the XSD Schema:

EXAMPLES{joint-iso-itu-t asn1(1) examples(999) xml-defined-types(3)}
DEFINITIONS AUTOMATIC TAGS

XER INSTRUCTIONS ::=
BEGIN

IMPORTS String, Decimal, Int, Date, AnyType
 FROM XSD
 {joint-iso-itu-t asn1(1) specification(0) modules(0) xsd-module(1)};

EXAMPLES ::= SEQUENCE {
personnelRecord PersonnelRecord,
number Decimal,
daysOfTheWeek ListOfDays,
namesOfMemberNations NamesOfMemberNations,
fileIdentifier-list [UNTAGGED]
 SEQUENCE (SIZE(1..MAX)) OF fileidentifier FileIdentifier }

PersonnelRecord ::= [NAME AS UNCAPITALIZED] SEQUENCE {
name Name,
title XSD.String,
number INTEGER,
dateOfHire Date,
nameOfSpouse NameOfSpouse,
children Children }

NameOfSpouse ::= [NAME AS UNCAPITALIZED] Name

Name ::= [NAME AS UNCAPITALIZED] SEQUENCE {
givenName XSD.String,
initial XSD.String,
familyName XSD.String }

Children ::= [NAME AS UNCAPITALIZED] SEQUENCE {
childInformation-list [UNTAGGED]

 SEQUENCE OF ChildInformation }

ChildInformation ::= SEQUENCE {
name Name,
dateOfBirth Date }

ListOfDays ::= [LIST] SEQUENCE OF Day

ITU-T Rec. X.694 (01/2004) – Prepublished version

46

Day ::= ENUMERATED {monday, tuesday, wednesday, thursday, friday,
 saturday, sunday}

NamesOfMemberNations ::= [NAME AS UNCAPITALIZED] [LIST] SEQUENCE OF XSD.String

FileIdentifier ::= [NAME AS UNCAPITALIZED] SEQUENCE {
choice [UNTAGGED] CHOICE {
 serialNumber Int,
 relativeName XSD.String,
 unidentified UNIDENTIFIED } }

UNIDENTIFIED ::= [NAME AS LOWERCASED] XSD.AnyType

ENCODING-CONTROL XER
GLOBAL-DEFAULTS MODIFIED-ENCODINGS

END

C.3 Further examples
In this subclause, all the partial examples (the examples that do not contain the schema element)
assume that the XML elements representing the XSD syntax are in the scope of a default namespace
declaration whose namespace name is the target namespace of the schema.

C.3.1 Schema documents with import and include element information items
The following XSD Schema is composed of two namespaces that are composed from four schema
files:

<!-- file "http://example.com/xyz/schema.xsd" -->

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xyz="http://example.com/xyz"

targetNamespace="http://example.com/xyz">

 <xsd:element name="xyz-elem" type="xsd:string"/>

 <xsd:complexType name="Xyz-type">
 <xsd:attribute name="xyz-attr" type="xsd:boolean"/>
</xsd:complexType>

</xsd:schema>

<!-- file "http://example.com/abc/main.xsd" -->

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:abc="http://example.com/abc"
 targetNamespace="http://example.com/xyz">

 <xsd:include schemaLocation="http://example.com/abc/sub1.xsd"/>

 <xsd:import namespace="http://www.w3.org/2001/XMLSchema"
 schemaLocation="http://example.com/xyz/schema.xsd"/>

 <xsd:redefine schemaLocation="http://example.com/abc/sub2.xsd">
 <xsd:attribute name="sub2-attr" type="xsd:token"/>
</xsd:redefine>

 <xsd:element name="abc-elem" type="Xyz-type"/>
</xsd:schema>

<!-- file "http://example.com/abc/sub1.xsd" -->

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:abc="http://example.com/abc"
 targetNamespace="http://example.com/xyz">

 <xsd:element name="sub1-elem" type="xsd:string"/>
</xsd:schema>

<!-- file "http://example.com/abc/sub2.xsd" -->

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="sub2-elem " type="xsd:string"/>
<xsd:attribute name="sub2-attr" type="xsd:string"/>

</xsd:schema>

Those four schema documents are mapped to the two following ASN.1 modules:
 XYZ -- The module reference is not standardized

DEFINITIONS AUTOMATIC TAGS ::=

ITU-T Rec. X.694 (01/2004) – Prepublished version

47

BEGIN

Xyz-elem ::= [NAME AS UNCAPITALIZED] XSD.String
Xyz-type ::= SEQUENCE {
 xyz-attr [ATTRIBUTE] BOOLEAN OPTIONAL }

ENCODING-CONTROL XER
 GLOBAL-DEFAULTS MODIFIED-ENCODINGS
 GLOBAL-DEFAULTS CONTROL-NAMESPACE
 "http://www.w3.org/2001/XMLSchema-instance"
END

 ABC -- The module reference is not standardized
DEFINITIONS AUTOMATIC TAGS ::=
BEGIN
IMPORTS
Xyz-type FROM XYZ
Token, String FROM XSD;

Abc-elem ::= [NAME AS UNCAPITALIZED] Xyz-type
Sub1-elem ::= [NAME AS UNCAPITALIZED] XSD.String
Sub2-elem ::= [NAME AS UNCAPITALIZED] XSD.String
Sub2-attr ::= [NAME AS UNCAPITALIZED] [ATTRIBUTE] XSD.Token

ENCODING-CONTROL XER
 GLOBAL-DEFAULTS MODIFIED-ENCODINGS
 GLOBAL-DEFAULTS CONTROL-NAMESPACE
 "http://www.w3.org/2001/XMLSchema-instance"
END

C.3.2 Mapping simple type definitions

C.3.2.1 simple type definition derived by restriction
For a complete set of examples of simple type restrictions, see the examples of facets in C.3.3.

C.3.2.2 simple type definition derived by list
<xsd:simpleType name="Int-list">
 <xsd:list itemType="xsd:integer"/>
</xsd:simpleType>

<xsd:simpleType name="Int-10-to-100-list">
 <xsd:list>
 <xsd:simpleType>
 <xsd:restriction base="xsd:integer">
 <xsd:minInclusive value="10"/>
 <xsd:minInclusive value="100"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:list
</xsd:simpleType>

These simple type definitions are mapped to the following ASN.1 type assignments:
Int-list ::= [LIST] SEQUENCE OF INTEGER

Int-10-to-100-list ::= [LIST] SEQUENCE OF INTEGER (10..100)

C.3.2.3 simple type definition derived by union
<xsd:simpleType name="Int-or-boolean">
 <xsd:union itemType="xsd:integer xsd:boolean"/>
</xsd:simpleType>

<xsd:simpleType name="Time-or-int-or-boolean--or-dateRestriction">
 <xsd:union itemType=" xsd:time Int-or-boolean">
 <xsd:simpleType>
 <xsd:restriction base="xsd:date">
 <xsd:minInclusive value="2003-01-01"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:union>
</xsd:simpleType>

ITU-T Rec. X.694 (01/2004) – Prepublished version

48

These simple type definitions are mapped to the following ASN.1 type assignments:
Int-or-boolean ::= [USE-UNION] CHOICE {

integer [NAMESPACE "http://www.w3.org/2001/XMLSchema"] INTEGER,
boolean [NAMESPACE "http://www.w3.org/2001/XMLSchema"] BOOLEAN }

Time-or-int-or-boolean-or-dateRestriction ::= [USE-UNION] CHOICE {
time [NAMESPACE "http://www.w3.org/2001/XMLSchema"] XSD.Time,
integer [NAMESPACE "http://www.w3.org/2001/XMLSchema"] INTEGER,
boolean [NAMESPACE "http://www.w3.org/2001/XMLSchema"] BOOLEAN,
alt [NAME AS ""] XSD.Date (CONSTRAINED BY
 { /* minInclusive="2003-01-01" */ }) }

C.3.2.4 Mapping type derivation hierarchies for simple type definitions
<xsd:simpleType name="Int-10-to-50">
 <xsd:restriction base="xsd:integer">
 <xsd:minExclusive value="10"/>
 <xsd:maxExclusive value="50"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="Ten-multiples">
 <xsd:restriction base="Int-10-to-50">
 <xsd:enumeration value="20"/>
 <xsd:enumeration value="30"/>
 <xsd:enumeration value="40"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="Twenty-multiples">
 <xsd:restriction base="Ten-multiples">
 <xsd:pattern value=".*[02468]0|0"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="Stock-level">
 <xsd:extension base="Int-10-to-50">
 <xsd:attribute name="procurement" type="Int-10-to-50"/>
 </xsd:extension>
</xsd:complexType>

These simple type definitions are mapped to the following ASN.1 type assignments:
Int-10-to-50 ::= INTEGER (10<..<50)

Ten-multiples ::= ENUMERATED {int20(20), int30(30), int40(40)}

Twenty-multiples ::= ENUMERATED {int20(20), int40(40)}

Stock-level ::= SEQUENCE {
procurement [ATTRIBUTE] Int-10-to-50 OPTIONAL,
base Int-10-to-50-derivations }

Ten-multiples-derivations ::= [USE-TYPE] CHOICE {
ten-multiples [NAME AS CAPITALIZED] Ten-multiples,
twenty-multiples [NAME AS CAPITALIZED] Twenty-multiples }

Int-10-to-50-derivations ::= [USE-TYPE] CHOICE {
int-10-to-50 [NAME AS CAPITALIZED] Int-10-to-50,
ten-multiples [NAME AS CAPITALIZED] Ten-multiples,
twenty-multiples [NAME AS CAPITALIZED] Twenty-multiples,
stock-level [NAME AS CAPITALIZED] Stock-level }

C.3.3 Mapping facets

C.3.3.1 length, minLength, and maxLength
<xsd:simpleType name="String-10">

<xsd:restriction base="xsd:string">
 <xsd:length value="10"/>
</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="String-5-to-10">
<xsd:restriction base="xsd:string">
 <xsd:minLength value="5"/>
 <xsd:maxLength value="10"/>

ITU-T Rec. X.694 (01/2004) – Prepublished version

49

</xsd:restriction>
</xsd:simpleType>

These two simple type definitions are mapped to the following ASN.1 type assignments:
String-10 ::= XSD.String (SIZE(10))

String-5-to-10 ::= XSD.String (SIZE(5..10))

C.3.3.2 pattern
<xsd:simpleType name="My-filename">

<xsd:restriction base="xsd:string">
 <xsd:pattern value="[�-&#FF;]*"/>
 <xsd:pattern value="/?([^/]*/)*[^/]*/*" />
</xsd:restriction>

</xsd:simpleType>

This simple type definition is mapped to the following ASN.1 type assignment:
My-filename ::= XSD.String

(CONSTRAINED BY
 {/* XML representation of the XSD pattern
 "�-&#FF;" | "/?([^/]*/)*[^/]*/*" */})

C.3.3.3 whiteSpace
<xsd:simpleType name="My-String">

<xsd:restriction base="xsd:string">
 <xsd:whitespace value="preserve"/>
</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="My-NormalizedString">
<xsd:restriction base="xsd:string">
 <xsd:whitespace value="replace"/>
</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="My-TokenString">
<xsd:restriction base="xsd:string">
 <xsd:whitespace value="collapse"/>
</xsd:restriction>

</xsd:simpleType>

These simple type definitions are mapped to the following ASN.1 type assignments:
My-String ::= XSD.String

My-NormalizedString ::= [WHITESPACE REPLACE] XSD.String
 (FROM ({0, 0, 0, 32} .. {0, 16, 255, 255}))

My-TokenString ::= [WHITESPACE REPLACE] XSD.String
 (FROM ({0, 0, 0, 32} .. {0, 16, 255, 255}))
 (PATTERN "([^]([^]| [^])*)?")

C.3.3.4 minInclusive, minExclusive, maxInclusive, and maxExclusive
<xsd:simpleType name="Int-10-to-100">

<xsd:restriction base="xsd:integer">
 <xsd:minExclusive value="10"/>
 <xsd:maxInclusive value="100"/>
</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="Pi-approximation">
<xsd:restriction base="xsd:double">
 <xsd:minExclusive value="3.14159"/>
 <xsd:maxExclusive value="3.1416"/>
</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="Morning">
<xsd:restriction base="xsd:time">
 <xsd:minInclusive value="00:00:00"/>
 <xsd:maxExclusive value="12:00:00"/>
</xsd:restriction>

</xsd:simpleType>

ITU-T Rec. X.694 (01/2004) – Prepublished version

50

These simple type definitions are mapped to the following ASN.1 type assignments:
Int-10-to-100 ::= INTEGER (10<..100)

Pi-approximation ::= XSD.Double (3.14159<..<3.1416)

Morning ::= XSD.Time (CONSTRAINED BY
{/* minInclusive="00:00:00" maxExclusive="12:00:00" */ })

C.3.3.5 totalDigits and fractionDigits
<xsd:simpleType name="RefundableExpenses">

<xsd:restriction base="xsd:decimal">
 <xsd:totalDigits="5"/>
 <xsd:fractionDigits value="2"/>
</xsd:restriction>

</xsd:simpleType>

This simple type definition is mapped to the following ASN.1 type assignment:
RefundableExpenses ::= XSD.Decimal (CONSTRAINED BY

{/* totalDigits="5" fractionDigits="2" */ })

C.3.3.6 enumeration
<xsd:simpleType name="FarmAnimals">

<xsd:restriction base="xsd:normalizedString">
 <xsd:enumeration value="Horse"/>
 <xsd:enumeration value="Bull"/>
 <xsd:enumeration value="Cow"/>
 <xsd:enumeration value="Pig"/>
 <xsd:enumeration value="Duck"/>
 <xsd:enumeration value="Goose"/>
</xsd:restriction>

 </xsd:simpleType>

<xsd:simpleType name="PrimeNumbersBelow30">
<xsd:restriction base="xsd:integer">
 <xsd:enumeration value="2"/>
 <xsd:enumeration value="3"/>
 <xsd:enumeration value="5"/>
 <xsd:enumeration value="7"/>
 <xsd:enumeration value="11"/>
 <xsd:enumeration value="13"/>
 <xsd:enumeration value="17"/>
 <xsd:enumeration value="19"/>
 <xsd:enumeration value="23"/>
 <xsd:enumeration value="29"/>
</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="X680-release">
<xsd:restriction base="xsd:gYearMonth">
 <xsd:enumeration value="2002-07"/>
 <xsd:enumeration value="1997-12"/>
 <xsd:enumeration value="1994-07"/>
</xsd:restriction>

</xsd:simpleType>

These simple type definitions are mapped to the following ASN.1 type assignments:
FarmAnimals ::= ENUMERATED {horse, bull, cow, pig, duck, goose}

PrimeNumbersBelow30 ::= [USE-NUMBER] ENUMERATED {int2(2), int3(3), int5(5),
 int7(7), int11(11), int13(13), int17(17), int19(19), int23(23), int29(29)}

X680-release ::= XSD.GYearMonth ("2002-07" | "1997-12" | "1994-07")

The following encoding instruction is included in the XER encoding control section:
TEXT FarmAnimals:ALL AS CAPITALIZED

C.3.3.7 enumeration in conjunction with other facets
The following examples are based on the inheritance of facets using the restriction of some of the
types defined in C.3.3.6.

<xsd:simpleType name="FarmAnimals-subset">

ITU-T Rec. X.694 (01/2004) – Prepublished version

51

<xsd:restriction base="FarmAnimals">
 <xsd:minLength value="4"/>
 <xsd:pattern value="[^oe]*"/>
</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="PrimeNumbersBelow30-subset">
 <xsd:restriction base="PrimeNumbersBelow30">
 <xsd:minExclusive value="5"/>
 <xsd:pattern value=".*[23].*"/>
 </xsd:restriction>
</xsd:simpleType>

These simple type definitions are mapped to the following ASN.1 type assignments:
/* Horse and Goose do not satisfy the pattern facet

 Cow and Pig do not satisfy the minLength facet */

FarmAnimals-subset ::= ENUMERATED {bull, duck}

/* 2, 3 and 5 do not satisfy the minExclusive facet

 2, 5, 7, 11, 17 and 19 do not satisfy the pattern facet */

PrimeNumbersBelow30-subset ::= [USE-NUMBER] ENUMERATED {int13(13), int23(23),
 int29(29)}

The following encoding instruction is included in the XER encoding control section:
TEXT FarmAnimals-subset:ALL AS CAPITALIZED

C.3.4 Mapping element declarations

C.3.4.1 element declarations whose type definition is a user-defined top-level simple type definition or
complex type definition

<xsd:element name="Forename" type="xsd:token"/>

<xsd:element name="File" type="My-filename"/>

<xsd:element name="Value" type="Int-10-to-50"/>

These element declarations are mapped to the following ASN.1 type assignments:
Forename ::= XSD.Token

File ::= My-filename

Value ::= Int-10-to-50-derivations

NOTE – The type "My-filename" and its mapping to ASN.1 is defined in C.3.3.2; the type "Int-10-to-50" and its mapping to
ASN.1 is defined in C.3.2.4.

C.3.4.2 element declarations whose type definition is an anonymous simple type definition or complex type
definition

<xsd:element name="maxOccurs">
 <xsd:simpleType>
 <xsd:union memberTypes="xsd:nonNegativeInteger">
 <xsd:simpleType>
 <xsd:restriction base="xsd:token">
 <xsd:enumeration name="unbounded"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:union>
 </xsd:simpleType>
</xsd:element>

<xsd:element name="address">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="line-1" type="xsd:token"/>
 <xsd:element name="line-2" type="xsd:token"/>
 <xsd:element name="city" type="xsd:token"/>
 <xsd:element name="state" type="xsd:token" minOccurs="0"/>
 <xsd:element name="zip" type="xsd:token"/>
 </xsd:sequence>
 <xsd:attribute name="country" type="xsd:token"/>
 </xsd:complexType>
</xsd:element>

ITU-T Rec. X.694 (01/2004) – Prepublished version

52

These element declarations are mapped to the following ASN.1 type assignments:
MaxOccurs ::= [NAME AS UNCAPITALIZED] [USE-UNION] CHOICE {

nonNegativeInteger [NAMESPACE AS "http://www.w3.org/2001/XMLSchema"]
 XSD.NonNegativeInteger,
alt [NAME AS ""] ENUMERATED {unbounded} }

Address ::= [NAME AS UNCAPITALIZED] SEQUENCE {
Country [ATTRIBUTE] XSD.Token OPTIONAL,
line-1 XSD.Token,
line-2 XSD.Token,
city XSD.Token,
state XSD.Token OPTIONAL,
zip XSD.Token }

C.3.4.3 element declarations which are the head of an element substitution group
<xsd:element name="Tic" type="xsd:integer" abstract="true"/>

<xsd:element name="Tac" type="xsd:byte" substitutionGroup="Tic"/>

<xsd:element name="Toe" substitutionGroup="Tic"/>

<xsd:element name="Foo" type="xsd:date"/>

<xsd:element name="Bar" substitutionGroup="Foo"/>

These element declarations are mapped to:
Tac ::= INTEGER (-128..127)

Toe ::= INTEGER

Tic-group ::= [UNTAGGED] CHOICE {
tac [NAME AS CAPITALIZED] Tac,
toe [NAME AS CAPITALIZED] Toe }

Foo ::= XSD.Date

Bar ::= XSD.Date

Foo-group ::= [UNTAGGED] CHOICE {
foo [NAME AS CAPITALIZED] Foo,
bar [NAME AS CAPITALIZED] Bar }

C.3.4.4 element declarations with a value constraint that is a default value
C.3.4.4.1 The following is an element declaration with an anonymous simple type definition, not used as
the base type definition of any type.

<xsd:element name="Telephone" type="xsd:token" default="undefined"/>

This element declaration is mapped to the following ASN.1 type assignment:
Telephone ::= [DEFAULT-FOR-EMPTY "undefined"] XSD.Token

C.3.4.4.2 The following is an element declaration with an anonymous complex type definition with simple
content, not used as the base type definition of any type.

<xsd:element name="InternationalTelephone" default="undefined">
 <xsd:simpleContent>
 <xsd:extension base="xsd:token">
 <xsd:attribute name="country-code" type="xsd:integer"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:element>

This element declaration is mapped to the following ASN.1 type assignment:
InternationalTelephone ::= [DEFAULT-FOR-EMPTY "undefined"] SEQUENCE {

country-code [ATTRIBUTE] INTEGER OPTIONAL,
base [UNTAGGED] XSD.Token }

C.3.4.4.3 The following is an element declaration with an anonymous complex type definition. The complex
type definition has complex content that is mixed and emptiable, and is not used as the base type definition of
any type.

ITU-T Rec. X.694 (01/2004) – Prepublished version

53

<xsd:element name="Description" default="absent" mixed="true">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="bold" type="xsd:string"/>
 <xsd:element name="italic" type="xsd:string"/>
 </xsd:choice>
</xsd:element>

This element declaration is mapped to the following ASN.1 type assignment:
Description ::= [EMBED-VALUES] [DEFAULT-FOR-EMPTY "absent"] SEQUENCE {

embed-values SEQUENCE OF XSD.String,
choice-list [UNTAGGED] SEQUENCE OF [UNTAGGED] CHOICE {
 bold XSD.String,
 italic XSD.String } } (CONSTRAINED BY
{/* Shall conform to ITU-T Rec. X.693 | ISO/IEC 8825-4, clause 25 */})

C.3.4.4.4 The type definition of the element declaration in the following example is used as the base type
definition of another type.

This example uses the XSD and ASN.1 types of the example in C.3.2.4.
<xsd:element name="Quantity" type="Int-10-to-50" default="20"/>

This element declaration is mapped to the following ASN.1 type assignment:
Quantity ::= Int-10-to-50-deriv-default-20

If no ASN.1 type corresponding to Int-10-to-50, with a default value of "20" has already been
generated, the following type is also generated:

Int-10-to-50-deriv-default-20 ::= [USE-TYPE] CHOICE {
int-10-to-50 [NAME AS CAPITALIZED] [DEFAULT-FOR-EMPTY 20]
 Int-10-to-50,
ten-multiples [NAME AS CAPITALIZED] [DEFAULT-FOR-EMPTY int20]
 Ten-multiples,
twenty-multiples [NAME AS CAPITALIZED] [DEFAULT-FOR-EMPTY int20]
 Twenty-multiples,
stock-level [NAME AS CAPITALIZED] [DEFAULT-FOR-EMPTY 20]
 Stock-level }

C.3.4.5 element declaration with a value constraint that is a fixed value
C.3.4.5.1 The following is an element declaration with an anonymous simple type definition, which is not
used as the base type definition of any type.

<xsd:element name="UnknownTelephone" type="xsd:token" fixed="undefined"/>

This element declaration is mapped to the following ASN.1 type assignment:
UnknownTelephone ::= [DEFAULT-FOR-EMPTY "undefined"] XSD.Token ("undefined")

C.3.4.5.2 The following is an element declaration with an anonymous complex type definition. The complex
type definition has simple content and is not used as the base type definition of any type.

<xsd:element name="UnknownInternationalTelephone" fixed="undefined">
 <xsd:simpleContent>
 <xsd:extension base="xsd:token">
 <xsd:attribute name="country-code" type="xsd:integer"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:element>

This element declaration is mapped to the following ASN.1 type assignment:
UnknownInternationalTelephone ::= [DEFAULT-FOR-EMPTY "undefined"] SEQUENCE {

country-code [ATTRIBUTE] INTEGER OPTIONAL,
base [UNTAGGED] XSD.Token }
 (WITH COMPONENTS {..., base ("undefined")})

C.3.4.5.3 The following is an element declaration with an anonymous complex type definition. The complex
type definition has complex content that is mixed and emptiable, and is not used as the base type definition of
any type.

ITU-T Rec. X.694 (01/2004) – Prepublished version

54

<xsd:element name="UnknownDescription" fixed="absent" mixed="true">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="bold" type="xsd:string"/>
 <xsd:element name="italic" type="xsd:string"/>
 </xsd:choice>
</xsd:element>

This element declaration is mapped to the following ASN.1 type assignment:
UnknownDescription ::= [EMBED-VALUES] [DEFAULT-FOR-EMPTY "absent"] SEQUENCE {

embed-values SEQUENCE OF XSD.String,
choice-list [UNTAGGED] SEQUENCE OF [UNTAGGED] CHOICE {
 bold XSD.String,
 italic XSD.String } }
(CONSTRAINED BY
 {/* Shall conform to ITU-T Rec. X.693 | ISO/IEC 8825-4, clause 25 */})
(WITH COMPONENTS {embed-values ({"absent"}),
 choice-list (SIZE(0))})

C.3.4.5.4 The type definition of the following element declaration is a simple type definition used as the base
type definition of another type.

This example uses the XSD and ASN.1 types of the example C.3.2.4.
<xsd:element name="Quantity" type="Int-10-to-50" fixed="20"/>

This element declaration is mapped to the following ASN.1 type assignment:
Quantity ::= Int-10-to-50-deriv-fixed-20

If no ASN.1 type corresponding to Int-10-to-50 with a fixed value of "20" has already been
generated, the following type is also generated:

Int-10-to-50-deriv-fixed-20 ::= [USE-TYPE] CHOICE {
int-10-to-50 [NAME AS CAPITALIZED] [DEFAULT-FOR-EMPTY 20]
 Int-10-to-50,
ten-multiples [NAME AS CAPITALIZED] [DEFAULT-FOR-EMPTY int20]
 Ten-multiples,
twenty-multiples [NAME AS CAPITALIZED] [DEFAULT-FOR-EMPTY int20]
 Twenty-multiples,
stock-level [NAME AS CAPITALIZED] [DEFAULT-FOR-EMPTY 20]
 Stock-level }

(WITH COMPONENTS {
 int-10-to-50 (20),
 ten-multiples (int20),
 twenty-multiples (int20),
 stock-level (WITH COMPONENTS {..., base (20)}) })

C.3.4.6 element declarations that are nillable
C.3.4.6.1 The following example shows a element declaration that is nillable and whose type definition is
an XSD built-in datatype.

<xsd:element name="Nillable-1" type="xsd:string" nillable="true"/>

This element declaration is mapped to the following ASN.1 type assignment:
Nillable-1 ::= [USE-NIL] SEQUENCE {

content XSD.String OPTIONAL }

C.3.4.6.2 The following example shows an element declaration that is nillable and whose type definition is
an anonymous complex type definition.

<xsd:element name="Nillable-2" nillable="true">
<xsd:complexType>
 <xsd:sequence>
 <xsd:element name="a" type="xsd:string"/>
 <xsd:element name="b" type="xsd:string"/>
 </xsd:sequence>
 <xsd:attribute name="b" type="xsd:boolean"/>
 </xsd:complexType>

</xsd:element>

This element declaration is mapped to the following ASN.1 type assignment:

ITU-T Rec. X.694 (01/2004) – Prepublished version

55

Nillable-2 ::= [USE-NIL] SEQUENCE {
b [ATTRIBUTE] BOOLEAN OPTIONAL,
content SEQUENCE {
 a XSD.String,
 b XSD.String } OPTIONAL }

C.3.4.6.3 The following example shows an element declaration that is nillable, and whose type definition is
a top-level complex type definition.

<xsd:complexType name="Foo">
<xsd:sequence>
 <xsd:element name="a" type="xsd:string"/>
 <xsd:element name="b" type="xsd:string"/>
</xsd:sequence>
<xsd:attribute name="b" type="xsd:boolean"/>

</xsd:complexType>

<xsd:element name="Nillable-3" type="Foo" nillable="true"/>

These schema components are mapped to the following ASN.1 type assignments:
Foo ::= SEQUENCE {

b [ATTRIBUTE] BOOLEAN OPTIONAL,
a XSD.String,
b-1 [NAME AS "b"] XSD.String }

Foo-nillable ::= [USE-NIL] SEQUENCE {
b [ATTRIBUTE] BOOLEAN OPTIONAL,
content SEQUENCE {
 a XSD.String,
 b XSD.String } OPTIONAL }

Nillable-3 ::= Foo-nillable

C.3.4.6.4 The following example shows an element declaration that is nillable, whose type definition is a
top-level complex type definition, and which is used as the base type definition of another complex type definition.

The following schema components are defined in addition to the schema components of C.3.4.6.3:
<xsd:complexType name="Bar">

<xsd:complexContent>
 <xsd:extension base="Foo">
 <xsd:sequence>
 <xsd:element name="z" type="xsd:string"/>
 </xsd:sequence>
 <xsd:attribute name="c" type="xsd:boolean"/>
 </xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<xsd:element name="Nillable-4" type="Foo" nillable="true"/>

In addition to the type Foo of C.3.4.6.3, the following ASN.1 types are generated:
Bar ::= SEQUENCE {

b [ATTRIBUTE] BOOLEAN OPTIONAL,
c [ATTRIBUTE] BOOLEAN OPTIONAL,
a XSD.String,
b-1 [NAME AS "b"] XSD.String,
z XSD.String }

Foo-derivations ::= [USE-TYPE] CHOICE {
foo [NAME AS CAPITALIZED] Foo,
bar [NAME AS CAPITALIZED] Bar }

Foo-nillable ::= [USE-NIL] SEQUENCE {
b [ATTRIBUTE] BOOLEAN OPTIONAL,
content SEQUENCE {
 a XSD.String,
 b XSD.String } OPTIONAL }

Bar-nillable ::= [USE-NIL] SEQUENCE {
b [ATTRIBUTE] BOOLEAN OPTIONAL,
c [ATTRIBUTE] BOOLEAN OPTIONAL,
content SEQUENCE {
 a XSD.String,

ITU-T Rec. X.694 (01/2004) – Prepublished version

56

 b XSD.String,
 z XSD.String } OPTIONAL }

Foo-deriv-nillable ::= [USE-TYPE] CHOICE {
foo [NAME AS CAPITALIZED] Foo-nillable,
bar [NAME AS CAPITALIZED] Bar-nillable }

Nillable-4 ::= Foo-deriv-nillable

C.3.5 Mapping attribute uses and attribute declarations
C.3.5.1 The following is an example of a top-level attribute declaration whose type definition is a user-
defined top-level simple type definition.

<xsd:attribute name="name" type="NCName"/>

This attribute declaration is mapped to the following ASN.1 type assignment:
Name ::= [NAME AS UNCAPITALIZED] [ATTRIBUTE] XSD.NCName

C.3.5.2 The following is an example of a top-level attribute declaration whose type definition is an
anonymous simple type definition.

<xsd:attribute name="form">
 <xsd:simpleType>
 <xsd:restriction base="xsd:token">
 <xsd:enumeration value="qualified"/>
 <xsd:enumeration value="unqualified"/>
 </xsd:restriction>
 </xsd:simpleType>
</xsd:attribute>

This attribute declaration is mapped to the following ASN.1 type assignment:
Form ::= [NAME AS UNCAPITALIZED] [ATTRIBUTE] ENUMERATED {qualified, unqualified}

C.3.5.3 The following example is an attribute use with a value constraint that is a default value.

The attribute declaration whose name is "form" and that is referenced in this example is defined in
C.3.5.2.

<xsd:complexType name="element">
 <xsd:attribute name="name" type="xsd:NCName" default="NAME"/>
 <xsd:attribute ref="form" default="qualified"/>
</xsd:complexType>

This complex type definition is mapped to the following ASN.1 type assignment:
Element ::= [NAME AS UNCAPITALIZED] SEQUENCE {

name [ATTRIBUTE] XSD.NCName DEFAULT "NAME",
form [ATTRIBUTE] Form DEFAULT qualified }

C.3.5.4 This example shows a top-level attribute declaration with a value constraint that is a default value
and an attribute use with this attribute declaration.

<xsd:attribute name="minOccurs" type="xsd:nonNegativeInteger" default="1"/>

<xsd:attribute name="maxOccurs" default="1"/>
 <xsd:simpleType>
 <xsd:union memberTypes="xsd:nonNegativeInteger" >
 <xsd:simpleType>
 <xsd:restriction base="xsd:NMTOKEN">
 <xsd:enumeration value="unbounded"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:union>
 </xsd:simpleType>
</xsd:attribute>

<xsd:complexType name="Particle">
 <xsd:sequence>
 <xsd:element name="particle"/>
 </xsd:sequence>
 <xsd:attribute ref="minOccurs"/>
 <xsd:attribute ref="maxOccurs" default="unbounded"/>
</xsd:complexType>

ITU-T Rec. X.694 (01/2004) – Prepublished version

57

These schema components are mapped to the following ASN.1 type assignments:
MinOccurs ::= [ATTRIBUTE] [NAME AS UNCAPITALIZED] XSD.NonNegativeInteger

MaxOccurs ::= [ATTRIBUTE] [NAME AS UNCAPITALIZED] [USE-UNION] CHOICE {
nonNegativeInteger [NAMESPACE AS "http://www.w3.org/2001/XMLSchema"]
 XSD.NonNegativeInteger,
alt [NAME AS ""] ENUMERATED {unbounded} }

Particle ::= SEQUENCE {
minOccurs [ATTRIBUTE] MinOccurs DEFAULT 1,
maxOccurs [ATTRIBUTE] MaxOccurs DEFAULT alt : unbounded,
particle XSD.AnyType }

C.3.5.5 This example shows an attribute use whose attribute declaration has a target namespace that is not
absent.

<xsd:complexType name="Ack">
 <xsd:attribute name="number" type="xsd:integer" form="qualified" />
</xsd:complexType>

This complex type definition is mapped to the following ASN.1 type assignment:
Ack ::= SEQUENCE {

number [NAMESPACE AS "http://targetnamespaceForExample"] [ATTRIBUTE]
 INTEGER OPTIONAL }

C.3.6 Mapping model group definitions
C.3.6.1 The following is a model group definition whose model group has a compositor of sequence.

<xsd:group name="mySequence">
 <xsd:sequence>
 <xsd:element name="a" type="xsd:string"/>
 <xsd:element name="b" type="xsd:boolean"/>
 </xsd:sequence>
</xsd:group>

This model group definition is mapped to the following ASN.1 type assignment:
MySequence ::= [UNTAGGED] SEQUENCE {

a XSD.String,
b BOOLEAN }

C.3.6.2 The following is a model group definition whose model group has a compositor of all:
<xsd:group name="myAll ">
 <xsd:all>
 <xsd:element name="a" type="xsd:string"/>
 <xsd:element name="b" type="xsd:boolean"/>
 </xsd:all>
</xsd: group>

This model group definition is not mapped to ASN.1. See C.3.8.3.1 for an example of the mapping of a
complex type definition where the model group of this model group definition occurs as the topmost model group.

C.3.6.3 The following is a model group definition whose model group has a compositor of choice.
<xsd:group name="myChoice">
 <xsd:choice>
 <xsd:element name="am" type="xsd:string"/>
 <xsd:element name="bm" type="xsd:boolean"/>
 </xsd:choice>
</xsd:group>

This model group definition is mapped to the following ASN.1 type assignment:
MyChoice ::= [UNTAGGED] CHOICE {

am XSD.String,
bm BOOLEAN }

C.3.7 Mapping particles
The model group definition of C.3.6.3, and its corresponding ASN.1 type are used in some of the particle
examples.

ITU-T Rec. X.694 (01/2004) – Prepublished version

58

C.3.7.1 The following example shows particles of a model group with a compositor of sequence.
<xsd:complexType name="ElementSequence">
 <xsd:sequence>
 <xsd:element name="elem1" type="xsd:boolean"/>
 <xsd:element name="elem2" type="xsd:boolean" minOccurs="0"/>
 <xsd:element name="elem3" type="xsd:boolean" minOccurs="2" maxOccurs="5"/>
 <xsd:element name="elem4" type="xsd:boolean" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="elem5" type="xsd:boolean" minOccurs="5" maxOccurs="unbounded"/>
 <xsd:sequence>
</xsd:complexType>

<xsd:complexType name="ModelGroupSequence">
 <xsd:sequence>
 <xsd:group ref="myChoice"/>
 <xsd:choice>
 <xsd:element name="a" type="xsd:string"/>
 <xsd:element name="b" type="xsd:string"/>
 </xsd:choice>
 <xsd:sequence>
 <xsd:element name="c" type="xsd:string"/>
 <xsd:element name="d" type="xsd:string"/>
 </xsd:sequence>
 <xsd:choice minOccurs="3" maxOccurs="12">
 <xsd:element name="e" type="xsd:string"/>
 <xsd:element name="f" type="xsd:string"/>
 </xsd:choice>

 </xsd:sequence>
</xsd:complexType>

These complex type definitions are mapped to the following ASN.1 type assignments:
ElementSequence ::= SEQUENCE {

elem1 BOOLEAN,
elem2 BOOLEAN OPTIONAL,
elem3-list [UNTAGGED] SEQUENCE (SIZE(2..5)) OF elem3 BOOLEAN,
elem4-list [UNTAGGED] SEQUENCE OF elem4 BOOLEAN,
elem5-list [UNTAGGED] SEQUENCE (SIZE(1..MAX)) OF elem5 BOOLEAN }

ModelGroupSequence ::= SEQUENCE {
myChoice MyChoice,
choice [UNTAGGED] CHOICE {
 a XSD.String,
 b XSD.String },
sequence [UNTAGGED] SEQUENCE {
 c XSD.String,
 d XSD.String },
choice-list [UNTAGGED] SEQUENCE (SIZE(3..12)) OF [UNTAGGED] CHOICE {
 e XSD.String,
 f XSD.String } }

C.3.7.2 The following example shows particles of a model group with a compositor of all.
<xsd:complexType name="ElementAll">
 <xsd:all>
 <xsd:element name="elem1" type="xsd:boolean"/>
 <xsd:element name="elem2" type="xsd:boolean" minOccurs="0"/>
 </xsd:all>
</xsd:complexType>

This complex type definition is mapped to the following ASN.1 type assignments:
ElementAll ::= [USE-ORDER] SEQUENCE {

order SEQUENCE OF ENUMERATED {elem1, elem2},
elem1 XSD.String,
elem2 XSD.String OPTIONAL }
(CONSTRAINED BY
 {/* Shall conform to ITU-T Rec. X.693 | ISO/IEC 8825-4, clause 35 */})

C.3.7.3 The following example shows particles of a model group with a compositor of choice.
<xsd:complexType name="ElementSequence">
 <xsd:choice>
 <xsd:element name="elem1" type="xsd:boolean"/>
 <xsd:element name="elem2" type="xsd:boolean" minOccurs="0"/>

ITU-T Rec. X.694 (01/2004) – Prepublished version

59

 <xsd:element name="elem3" type="xsd:boolean" minOccurs="2" maxOccurs="5"/>
 <xsd:element name="elem4" type="xsd:boolean" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="elem5" type="xsd:boolean" minOccurs="5" maxOccurs="unbounded"/>
 <xsd:choice>
</xsd:complexType>

<xsd:complexType name="ModelGroupChoice">
 <xsd:choice>
 <xsd:group ref="myChoice"/>
 <xsd:choice>
 <xsd:element name="a" type="xsd:string"/>
 <xsd:element name="b" type="xsd:string"/>
 </xsd:choice>
 <xsd:sequence>
 <xsd:element name="c" type="xsd:string"/>
 <xsd:element name="d" type="xsd:string"/>
 </xsd:sequence>
 <xsd:choice minOccurs="3" maxOccurs="12">
 <xsd:element name="e" type="xsd:string"/>
 <xsd:element name="f" type="xsd:string"/>
 </xsd:choice>

 </xsd:choice>
</xsd:complexType>

These complex type definitions are mapped to the following ASN.1 type assignments:
ElementSequence ::= SEQUENCE {

choice [UNTAGGED] CHOICE {
 elem1 BOOLEAN,
 elem2-list [UNTAGGED] SEQUENCE (SIZE(0..1)) OF elem2 BOOLEAN,
 elem3-list [UNTAGGED] SEQUENCE (SIZE(2..5)) OF elem3 BOOLEAN,
 elem4-list [UNTAGGED] SEQUENCE OF elem4 BOOLEAN,
 elem5-list [UNTAGGED] SEQUENCE (SIZE(5..MAX)) OF elem5 BOOLEAN } }

ModelGroupChoice ::= SEQUENCE {
choice [UNTAGGED] CHOICE {
 myChoice MyChoice,
 choice [UNTAGGED] CHOICE {
 a XSD.String,
 b XSD.String },
 sequence [UNTAGGED] SEQUENCE {
 c XSD.String,
 d XSD.String }
 choice-list [UNTAGGED] SEQUENCE (SIZE(3..12)) OF [UNTAGGED] CHOICE {
 e XSD.String,
 f XSD.String } }

C.3.8 Mapping complex type definitions
C.3.8.1 The following example is a complex type definition whose content type is empty.

<xsd:complexType name="Null"/>

<xsd:complexType name="Ack">
 <xsd:sequence/>
 <xsd:attribute name="packetNumber" type="xsd:integer"/>
</xsd:complexType>

These complex type definitions are mapped to the following ASN.1 type assignments:
Null ::= SEQUENCE {}

Ack ::= SEQUENCE {
packetNumber [ATTRIBUTE] INTEGER OPTIONAL }

C.3.8.2 The following example is a complex type definition whose content type is a simple type definition.
<xsd:complexType name="Formatted">
 <xsd:simpleContent>
 <xsd:extension base="xsd:token">
 <xsd:attribute name="format">
 <xsd:simpleType>
 <xsd:restriction base="xsd:token">
 <xsd:enumeration value="bold"/>
 <xsd:enumeration value="italic"/>
 </xsd:restriction>

ITU-T Rec. X.694 (01/2004) – Prepublished version

60

 </xsd:simpleType>
 </xsd:attribute>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

This complex type definition is mapped to the following ASN.1 type assignment:
Formatted ::= SEQUENCE {

Format [ATTRIBUTE] ENUMERATED {bold, italic} OPTIONAL,
Base [UNTAGGED] XSD.Token }

C.3.8.3 The following examples are complex type definitions whose content type is an element-only content
model.

C.3.8.3.1 In the following example, the content type is the model group of a model group definition.

This example uses the types defined in C.3.6.
<xsd:complexType name="MyComplexType-1">

<xsd:group ref="myAll"/>
</xsd:complexType>

<xsd:complexType name="MyComplexType-2">
<xsd:group ref="myChoice" />

</xsd:complexType>

<xsd:complexType name="MyComplexType-3">
<xsd:group ref="mySequence" maxOccurs="100"/>

</xsd:complexType>

These complex type definitions are mapped to the following ASN.1 type assignments:
MyComplexType-1 ::= [USE-ORDER] SEQUENCE {

order SEQUENCE OF ENUMERATED {a,b},
a XSD.String,
b BOOLEAN }
(CONSTRAINED BY
 {/* Shall conform to ITU-T Rec. X.693 | ISO/IEC 8825-4, clause 35 */})

MyComplexType-2 ::= SEQUENCE {
myChoice MyChoice }

MyComplexType-3 ::= SEQUENCE {
mySequence-list SEQUENCE (SIZE(1..100)) OF MySequence }

C.3.8.3.2 In the following example, the content type is a model group whose compositor is choice.
<xsd:complexType name="MyComplexType-4">
 <xsd:choice>
 <xsd:element name="a" type="xsd:string"/>
 <xsd:element name="b" type="xsd:boolean"/>
 </xsd:choice>
</xsd:complexType>

<xsd:complexType name="MyComplexType-5">
 <xsd:choice minOccurs="0">
 <xsd:element name="a" type="xsd:string"/>
 <xsd:element name="b" type="xsd:boolean"/>
 </xsd:choice>
</xsd:complexType>

<xsd:complexType name="MyComplexType-6">
 <xsd:choice maxOccurs="5">
 <xsd:element name="a" type="xsd:string"/>
 <xsd:element name="b" type="xsd:boolean"/>
 </xsd:choice>
</xsd:complexType>

These complex type definitions are mapped to the following ASN.1 type assignments:
MyComplexType-4 ::= SEQUENCE {

choice [UNTAGGED] CHOICE {
 a XSD.String,
 b BOOLEAN } }

MyComplexType-5 ::= SEQUENCE {
choice [UNTAGGED] CHOICE {

ITU-T Rec. X.694 (01/2004) – Prepublished version

61

 a XSD.String,
 b BOOLEAN } OPTIONAL }

MyComplexType-6 ::= SEQUENCE {
choice-list [UNTAGGED] SEQUENCE (SIZE(1..5)) OF [UNTAGGED] CHOICE {
 a XSD.String,
 b BOOLEAN } }

C.3.8.3.3 In the following example, the content type is a model group whose compositor is all.
<xsd:complexType name="MyComplexType-7">
 <xsd:all>
 <xsd:element name="a" type="xsd:string"/>
 <xsd:element name="b" type="xsd:boolean"/>
 </xsd:all>
</xsd:complexType>

<xsd:complexType name="MyComplexType-8">
 <xsd:all minOccurs="0">
 <xsd:element name="a" type="xsd:string"/>
 <xsd:element name="b" type="xsd:boolean"/>
 </xsd:all>
</xsd:complexType>

These complex type definitions are mapped to the following ASN.1 type assignments:
MyComplexType-7 ::= [USE-ORDER] SEQUENCE {

order SEQUENCE OF ENUMERATED {a,b},
a XSD.String,
b BOOLEAN }
(CONSTRAINED BY
 {/* Shall conform to ITU-T Rec. X.693 | ISO/IEC 8825-4, clause 35 */})

MyComplexType-8 ::= [USE-ORDER] SEQUENCE {
order SEQUENCE OF ENUMERATED {a,b},
a XSD.String OPTIONAL,
b BOOLEAN OPTIONAL }
(CONSTRAINED BY
 {/* Shall conform to ITU-T Rec. X.693 | ISO/IEC 8825-4, clause 35 */ })

C.3.8.3.4 In the following example, the content type is a model group whose compositor is sequence.
<xsd:complexType name="MyComplexType-9">
 <xsd:sequence>
 <xsd:element name="a" type="xsd:string"/>
 <xsd:element name="b" type="xsd:boolean"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="MyComplexType-10">
 <xsd:sequence minOccurs="0">
 <xsd:element name="a" type="xsd:string"/>
 <xsd:element name="b" type="xsd:boolean"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="MyComplexType-11">
 <xsd:sequence maxOccurs="5">
 <xsd:element name="a" type="xsd:string"/>
 <xsd:element name="b" type="xsd:boolean"/>
 </xsd:sequence>
</xsd:complexType>

These complex type definitions are mapped to the following ASN.1 type assignments:
MyComplexType-9 ::= SEQUENCE {

a XSD.String,
b BOOLEAN }

MyComplexType-10 ::= SEQUENCE {
sequence [UNTAGGED] SEQUENCE {
 a XSD.String,
 b BOOLEAN } OPTIONAL }

MyComplexType-11 ::= SEQUENCE {
sequence-list [UNTAGGED] SEQUENCE (SIZE(1..5)) OF [UNTAGGED] SEQUENCE {
 a XSD.String,
 b BOOLEAN } }

ITU-T Rec. X.694 (01/2004) – Prepublished version

62

C.3.8.4 The following example shows a complex type definition whose content type is a mixed content
model.

<xsd:complexType name="MyComplexType-12" mixed="true">
 <xsd:sequence>
 <xsd:element name="a" type="xsd:string"/>
 <xsd:element name="b" type="xsd:boolean"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="MyComplexType-13" mixed="true">
 <xsd:all>
 <xsd:element name="a" type="xsd:string"/>
 <xsd:element name="b" type="xsd:boolean"/>
 </xsd:all>
</xsd:complexType>

<xsd:complexType name="MyComplexType-14" mixed="true">
 <xsd:choice>
 <xsd:element name="a" type="xsd:string"/>
 <xsd:element name="b" type="xsd:boolean"/>
 </xsd:choice>
</xsd:complexType>

<xsd:complexType name="MyComplexType-15" mixed="true">
 <xsd:all minOccurs="0">
 <xsd:element name="a" type="xsd:string"/>
 <xsd:element name="b" type="xsd:boolean"/>
 </xsd:all>
</xsd:complexType>

<xsd:complexType name="MyComplexType-16">
 <xsd:sequence maxOccurs="unbounded" minOccurs="0">
 <xsd:element name="a" type="xsd:string"/>
 <xsd:element name="b" type="xsd:boolean"/>
 </xsd:sequence>
</xsd:complexType>

These complex type definitions are mapped to the following ASN.1 type assignments:
MyComplexType-12 ::= [EMBED-VALUES] SEQUENCE {

embed-values SEQUENCE OF XSD.String,
a XSD.String,
b BOOLEAN }
(CONSTRAINED BY
 {/* Shall conform to ITU-T Rec. X.693 | ISO/IEC 8825-4, clause 25 */})

MyComplexType-13 ::= [EMBED-VALUES] [USE-ORDER] SEQUENCE {
embed-values SEQUENCE OF XSD.String,
order SEQUENCE OF ENUMERATED {a,b},
a XSD.String,
b BOOLEAN }
 (CONSTRAINED BY
 {/* Shall conform to ITU-T Rec. X.693 | ISO/IEC 8825-4, clause 25
*/})
 (CONSTRAINED BY
 {/* Shall conform to ITU-T Rec. X.693 | ISO/IEC 8825-4, clause 35
*/})

MyComplexType-14 ::= [EMBED-VALUES] SEQUENCE {
embed-values SEQUENCE OF XSD.String,
choice [UNTAGGED] CHOICE {
 a XSD.String,
 b BOOLEAN } }
(CONSTRAINED BY
 {/* Shall conform to ITU-T Rec. X.693 | ISO/IEC 8825-4, clause 25 */})

MyComplexType-15 ::= [EMBED-VALUES] [USE-ORDER] SEQUENCE {
embed-values SEQUENCE OF XSD.String,
order SEQUENCE OF ENUMERATED {a,b},
a XSD.String OPTIONAL,
b BOOLEAN OPTIONAL }
(CONSTRAINED BY
 {/* Shall conform to ITU-T Rec. X.693 | ISO/IEC 8825-4, clause 35 */})
(CONSTRAINED BY
 {/* Shall conform to ITU-T Rec. X.693 | ISO/IEC 8825-4, clause 25 */})

ITU-T Rec. X.694 (01/2004) – Prepublished version

63

MyComplexType-16 ::= [EMBED-VALUES] SEQUENCE {
embed-values SEQUENCE OF XSD.String,
sequence-list [UNTAGGED] SEQUENCE OF [UNTAGGED] SEQUENCE {
 a XSD.String,
 b BOOLEAN } }
(CONSTRAINED BY
 {/* Shall conform to ITU-T Rec. X.693 | ISO/IEC 8825-4, clause 25 */})

C.3.8.5 The following example shows attribute uses of a complex type definition built using an attribute group
definition.

<xs:attributeGroup name="AG1">
 <xs:attribute name="a1" type="xs:string"/>
 <xs:attribute name="a2" type="xs:string"/>
 <xs:attribute name="a3" type="xs:decimal"/>
</xs:attributeGroup>

<xs:attributeGroup name="AG2">
 <xs:attribute name="a1" use="prohibited"/>
 <xs:attribute name="a3" type="xs:integer"/>
</xs:attributeGroup>

<xs:complexType name="MyComplexType-17">
<xs:attribute name="a4" type="xs:boolean"/>
<xs:attribute name="a5" type="xs:boolean"/>
<xs:attributeGroup ref="AG1"/>

 </xs:complexType>

<xs:complexType name="MyComplexType-18">
<xs:complexContent>
 <xs:restriction base="MyComplexType-17">
 <xs:attributeGroup ref="AG2"/>
 <xs:attribute name="a4" use="prohibited"/>
 </xs:restriction>
</xs:complexContent>

 </xs:complexType>

These complex type definitions are mapped to the following ASN.1 type assignments:
MyComplexType-17 ::= SEQUENCE {

a1 [ATTRIBUTE] XSD.String OPTIONAL,
a2 [ATTRIBUTE] XSD.String OPTIONAL,
a3 [ATTRIBUTE] XSD.Decimal OPTIONAL,
a4 [ATTRIBUTE] BOOLEAN OPTIONAL,
a5 [ATTRIBUTE] BOOLEAN OPTIONAL }

MyComplexType-18 ::= SEQUENCE {
a2 [ATTRIBUTE] XSD.String OPTIONAL,
a3 [ATTRIBUTE] INTEGER OPTIONAL,
a5 [ATTRIBUTE] BOOLEAN OPTIONAL }

MyComplexType-17-derivations ::= [USE-TYPE] CHOICE {
myComplexType-17 [NAME AS CAPITALIZED] MyComplexType-17,
myComplexType-18 [NAME AS CAPITALIZED] MyComplexType-18 }

C.3.8.6 Derivation of complex type definitions.
<xsd:complexType name="MyComplexType-19">
 <xsd:sequence minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="a" type="xsd:string"/>
 <xsd:element name="b" type="xsd:boolean"/>
 <xsd:element name="c" type="xsd:boolean" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="attr1" type="xsd:short" use="required"/>
 <xsd:attribute name="attr2" type="xsd:short"/>
</xsd:complexType>

<xsd:complexType name="MyComplexType-20">
 <xsd:complexContent>
 <xsd:restriction base="MyComplexType-19">
 <xsd:sequence>
 <xsd:element name="a" type="xsd:token"/>
 <xsd:element name="b" type="xsd:boolean"/>
 </xsd:sequence>
 <xsd:attribute name="attr2" type="xsd:short" use="prohibited"/>
 </xsd:restriction>
 </xsd:complexContent>

ITU-T Rec. X.694 (01/2004) – Prepublished version

64

</xsd:complexType>

<xsd:complexType name="MyComplexType-21">
 <xsd:complexContent>
 <xsd:extension base="MyComplexType-20">
 <xsd:sequence>
 <xsd:element name="d" type="xsd:string"/>
 </xsd:sequence>
 <xsd:attribute name="attr3" type="xsd:boolean"/>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

These complex type definitions are mapped to the following ASN.1 type assignments:
MyComplexType-19 ::= SEQUENCE {

attr1 [ATTRIBUTE] XSD.Short,
attr2 [ATTRIBUTE] XSD.Short OPTIONAL,
sequence-list [UNTAGGED] SEQUENCE OF [UNTAGGED] SEQUENCE {
 a XSD.String,
 b BOOLEAN,
 c BOOLEAN OPTIONAL } }

MyComplexType-20 ::= SEQUENCE {
attr1 [ATTRIBUTE] XSD.Short,
a XSD.Token,
b BOOLEAN }

MyComplexType-21 ::= SEQUENCE {
attr1 [ATTRIBUTE] XSD.Short,
attr3 [ATTRIBUTE] BOOLEAN OPTIONAL,
a XSD.String,
b BOOLEAN,
d XSD.String }

MyComplexType-20-derivations ::= [USE-TYPE] CHOICE {
myComplexType-20 [NAME AS CAPITALIZED] MyComplexType-20,
myComplexType-21 [NAME AS CAPITALIZED] MyComplexType-21 }

MyComplexType-19-derivations ::= [USE-TYPE] CHOICE {
myComplexType-19 [NAME AS CAPITALIZED] MyComplexType-19,
myComplexType-20 [NAME AS CAPITALIZED] MyComplexType-20,
myComplexType-21 [NAME AS CAPITALIZED] MyComplexType-21 }

C.3.9 Mapping wildcards
For these examples, the target namespace is assumed to be the following URI:
"http://www.asn1.org/X694/wildcard".

C.3.9.1 Attribute wildcard.
<xsd:complexType name="AnyAttribute-1">
 <xsd:anyAttribute namespace="##any"/>
</xsd:complexType>

<xsd:complexType name="AnyAttribute-2">
 <xsd:anyAttribute namespace="##other"/>
</xsd:complexType>

<xsd:complexType name="AnyAttribute-3">
 <xsd:anyAttribute namespace="##targetNamespace"/>
</xsd:complexType>

<xsd:complexType name="AnyAttribute-4">
 <xsd:anyAttribute namespace="##local http://www.asn1.org/X694/attribute"/>
</xsd:complexType>

<xsd:complexType name="AnyAttribute-5">
 <xsd:complexContent>
 <xsd:extension base="AnyAttribute-4">
 <xsd:anyAttribute namespace="##targetNamespace"/>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

These complex type definitions are mapped to the following ASN.1 type assignments:

ITU-T Rec. X.694 (01/2004) – Prepublished version

65

AnyAttribute-1 ::= SEQUENCE {
attr [ANY-ATTRIBUTES] SEQUENCE (CONSTRAINED BY {
 /* Each item shall conform to the "AnyAttributeFormat" specified in
 ITU-T Rec. X.693 | ISO/IEC 8825-4, clause 18 */})
 OF XSD.String }

AnyAttribute-2 ::= SEQUENCE {
attr [ANY-ATTRIBUTES EXCEPT "http://www.asn1.org/X694/wildcard"]
 SEQUENCE (CONSTRAINED BY {
 /* Each item shall conform to the "AnyAttributeFormat" specified in
 ITU-T Rec. X.693 | ISO/IEC 8825-4, clause 18 */})
 OF XSD.String }

AnyAttribute-3 ::= SEQUENCE {
attr [ANY-ATTRIBUTES FROM "http://www.asn1.org/X694/wildcard"]
 SEQUENCE (CONSTRAINED BY {
 /* Each item shall conform to the "AnyAttributeFormat" specified in
 ITU-T Rec. X.693 | ISO/IEC 8825-4, clause 18 */})
 OF XSD.String }

AnyAttribute-4 ::= SEQUENCE {

attr [ANY-ATTRIBUTES FROM ABSENT
 "http://www.asn1.org/X694/attribute"]
 SEQUENCE (CONSTRAINED BY {
 /* Each item shall conform to the "AnyAttributeFormat" specified in
 ITU-T Rec. X.693 | ISO/IEC 8825-4, clause 18 */})
 OF XSD.String }

AnyAttribute-5 ::= SEQUENCE {
attr [ANY-ATTRIBUTES FROM ABSENT
 "http://www.asn1.org/X694/attribute"
 "http://www.asn1.org/X694/wildcard"]
 SEQUENCE (CONSTRAINED BY {
 /* Each item shall conform to the "AnyAttributeFormat" specified in
 ITU-T Rec. X.693 | ISO/IEC 8825-4, clause 18 */})
 OF XSD.String }

C.3.9.2 The following is an example of a content model wildcard.
<xsd:complexType name="Any-1">
 <xsd:sequence>
 <xsd:any namespace="##any"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="Any-2">
 <xsd:sequence>
 <xsd:any minOccurs="0" namespace="##other"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="Any-3">
 <xsd:sequence>
 <xsd:any minOccurs="0" masOccurs="unbounded" namespace="##local"/>
 </xsd:sequence>
</xsd:complexType>

These complex type definitions are mapped to the following ASN.1 type assignments:
Any-1 ::= SEQUENCE {

elem [ANY-ELEMENT] XSD.String (CONSTRAINED BY {
 /* Shall conform to the "AnyElementFormat" specified in
 ITU-T Rec. X.693 | ISO/IEC 8825-4, clause 18 */}) }

Any-2 ::= SEQUENCE {
elem [ANY-ELEMENT EXCEPT ABSENT
 "http://www.asn1.org/X694/wildcard"]
 XSD.String (CONSTRAINED BY {
 /* Shall conform to the "AnyElementFormat" specified in
 ITU-T Rec. X.693 | ISO/IEC 8825-4, clause 18 */})
 OPTIONAL }

Any-3 ::= SEQUENCE {
elem-list SEQUENCE OF elem
 [ANY-ELEMENT FROM ABSENT] XSD.String (CONSTRAINED BY {

ITU-T Rec. X.694 (01/2004) – Prepublished version

66

 /* Shall conform to the "AnyElementFormat" specified in
 ITU-T Rec. X.693 | ISO/IEC 8825-4, clause 18 */}) }

NOTE – For more examples on the computation of the "NamespaceRestriction" see examples on attribute wildcards in C.3.9.1.

ITU-T Rec. X.694 (01/2004) – Prepublished version

67

Annex D
Use of the mapping to provide binary encodings for W3C XML Schema

(This annex does not form an integral part of this Recommendation | International Standard)

This annex describes the use of the mapping specified in this Recommendation | International
Standard in conjunction with standardized ASN.1 Encoding Rules to provide canonical and
compact binary encodings for data defined by an XSD Schema.

D.1 Encoding XSD Schemas
D.1.1 XSD Schemas can be mapped to ASN.1 type definitions as specified in the body of this
Recommendation | International Standard, and the top-level type can then be encoded using any of
the ASN.1 encoding rules specified in ITU-T Rec. X.690 | ISO/IEC 8825-1, ITU-T Rec. X.691 |
ISO/IEC 8825-2, and ITU-T Rec. X.693 | ISO/IEC 8825-4.

D.1.2 Each of these encodings has an associated object identifier value that can be used to
identify the encoding in transfer. The way in which such identification is communicated to a
decoder is outside the scope of this Recommendation | International Standard.

D.1.3 When the XSD Schema is not sent to the receiver by the method described in clause D.3,
the way in which the receiver obtains the Schema is outside the scope of this Recommendation |
International Standard.

D.2 Transfer without using the XSD Schema for Schemas
D.2.1 This method makes the assumption that the receiver knows the XSD Schema used by the
sender.

D.2.2 Figure 1 shows how to use the mapping defined in this Recommendation | International
Standard to encode XML documents by means of ASN.1 encoding rules.

D.2.3 The sender and the receiver use the same (fixed) XSD Schema to generate an ASN.1
schema which in turn is given to an ASN.1 compiler to generate the BER, DER, PER or XER
encoding table for XML documents conforming to that XSD Schema.

D.3 Transfer using the XSD Schema for Schemas
D.3.1 Since a unique XSD Schema for Schemas is available, it is possible to proceed in two steps (see Figure 2).

D.3.2 The sender and the receiver build an ASN.1 module and an encoder/decoder from the XSD Schema for
Schemas.

D.3.3 In the first step, the sender encodes in BER, DER or PER the XSD Schema for the document and sends the
encoded Schema to the receiver. The receiver decodes that Schema and, using the mapping from XSD Schema to
ASN.1 and an ASN.1 compiler, generates an ASN.1 module and an encoder/decoder for XML documents conforming
to that Schema.

D.3.4 In the second step the sender encodes in BER, DER, PER, or XER the XML document and sends the encoded
document to the receiver.

	ITU-T RECOMMENDATION
	INFORMATION TECHNOLOGY - ASN.1 ENCODING RULES - MAPPING W3C XML SCHEMA DEFINITIONS INTO ASN.1
	Summary
	CONTENTS
	Introduction
	INFORMATION TECHNOLOGY - ASN.1 ENCODING RULES - MAPPING W3C XML SCHEMA DEFINITIONS INTO ASN.1
	1 Scope
	2 Normative references
	2.1 Identical Recommendations | International Standards
	Additional references

	3 Definitions
	3.1 Imported definitions
	3.2 Additional definitions

	4 Abbreviations
	5 Notation
	6 Purpose and extent of standardization
	7 Mapping XSD Schemas
	8 Ignored schema components and properties
	9 The ASN.1 module and namespaces
	10 Name conversion
	10.1 General
	10.2 Generating ASN.1 type definitions that are references to ASN.1 type assignments
	10.3 Generating identifiers and type reference names
	10.4 Order of the mapping

	11 Mapping uses of XSD built-in datatypes
	12 Mapping facets
	12.1 The length, minLength, and maxLength facets
	12.2 The pattern facet
	12.3 The whiteSpace facet
	12.4 The enumeration facet
	12.5 Other facets

	13 Mapping simple type definitions
	14 Mapping element declarations
	15 Mapping attribute declarations
	16 Mapping values of simple type definitions
	17 Mapping model group definitions
	18 Mapping model groups
	19 Mapping particles
	20 Mapping complex type definitions
	21 Mapping wildcards
	22 Mapping attribute uses
	23 Mapping uses of simple and complex type definitions (general case)
	24 Mapping special uses of simple and complex type definitions (substitutable)
	25 Mapping special uses of simple and complex type definitions (substitutable, nillable)
	26 Mapping special uses of simple type definitions (nillable)
	27 Mapping special uses of complex type definitions (nillable)
	28 Mapping special uses of element declarations (head of element substitution group)
	29 Generating special ASN.1 type assignments for element declarations
	30 Generating special ASN.1 type assignments for type definitions
	31 Generating special ASN.1 type assignments for element substitution groups
	Annex A ASN.1 type definitions corresponding to XSD built-in datatypes
	Annex B Assignment of object identifier values
	Annex C Examples of mappings
	C.1 A Schema using simple type definitions
	C.2 The corresponding ASN.1 definitions
	C.3 Further examples
	C.3.1 Schema documents with import and include element information items
	C.3.2 Mapping simple type definitions
	C.3.3 Mapping facets
	C.3.4 Mapping element declarations

	Nillable-1 ::= [USE-NIL] SEQUENCE { content XSD.String OPTIONAL }
	b [ATTRIBUTE] BOOLEAN OPTIONAL, content SEQUENCE {
	b [ATTRIBUTE] BOOLEAN OPTIONAL, content SEQUENCE {
	b [ATTRIBUTE] BOOLEAN OPTIONAL, content SEQUENCE {
	c [ATTRIBUTE] BOOLEAN OPTIONAL, content SEQUENCE {
	C.3.5 Mapping attribute uses and attribute declarations
	C.3.6 Mapping model group definitions
	C.3.7 Mapping particles
	C.3.8 Mapping complex type definitions
	C.3.9 Mapping wildcards

	Annex D Use of the mapping to provide binary encodings for W3C XML Schema
	D.1 Encoding XSD Schemas
	D.2 Transfer without using the XSD Schema for Schemas
	D.3 Transfer using the XSD Schema for Schemas

