
GFD-R.232 Hans Trompert, SURFnet
NSI-WG John MacAuley, ESnet
nsi-wg@ogf.org August 18, 2017

NSI Authentication and Authorization

Status of This Document
Grid Forum Document (GFD), Proposed Recommendation (R).

Copyright Notice
Copyright © Open Grid Forum (2008-2017). All Rights Reserved.

Trademark
OGSA is a registered trademark and service mark of the Open Grid Forum.

Abstract
This document outlines security requirements placed on Network Service Agents (NSA) when
participating in the Network Services Interface (NSI) Connection Service (CS) protocol. It
describes in detail how the NSI CS security attributes should be used to deliver integration with
end-user authentication and authorization mechanisms.

Contents

1	 Introduction .. 2	
2	 Notational Conventions .. 2	
3	 Requirements ... 2	
4	 Fundamental Principles of Security in NSI ... 3	
5	 Access to the Service Plane .. 5	
6	 Authorization .. 7	
7	 Security Attributes .. 9	

7.1	 Originating Entity Identifier .. 10	
7.2	 Authorization attributes .. 12	

8	 Glossary ... 21	
9	 Contributors .. 22	
10	 Intellectual Property Statement .. 22	
11	 Disclaimer .. 22	
12	 Full Copyright Notice .. 22	
13	 References ... 23	

GFD-R.232 August 18, 2017

nsi-wg@ogf.org 2

1 Introduction

The Network Services Interface provides an API that allows applications to monitor, control,
interrogate, and support network resources that are made available by the provider of the
network. The NSI Connection Service deals specifically with the request and management of
network Connections on transport networks. NSI is inherently agnostic to the technology used in
the transport plane. This technology agnostic approach is built into the NSI topology
representation and is supported through the use of Service Definitions.

A Connection Service can be requested by any application that has implemented an NSI CS
Requester Agent (RA). Similarly, any network provider who has implemented an NSI Provider
Agent (PA) can service the request. These are both examples of a Network Service Agent
(NSA).

Each service is managed by an exchange of NSI messages between agents. These messages
operate using a set of service primitives. Service primitives are the set of instructions that allow
the requester to set up and manage a service. Each service request will result in the allocation of
a service id for the new service instance.

This document describes how security is implemented in Network Service Agents when
participating in the NSI CS protocol. It describes in detail how the NSI CS security attributes
should be used to deliver integration with end-user authentication and authorization mechanisms.

This document should be read in conjunction with GFD-R.212 Network Service Interface
Connection Service v2.0 [GFD.212], GFD-I.213, Network Services Framework v2.0 [GFD.213]
and GFD-I.217 NSI Signaling and Path Finding [GFD.217].

2 Notational Conventions

The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,
“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” are to be interpreted as
described in [RFC 2119]. Words defined in the glossary are capitalized (e.g. Connection). NSI
protocol messages and their attributes are written in camel case and italics (e.g.
reserveConfirmed)

3 Requirements

The NSI Connection Service v2.0 recommendation [GFD.212] states that NSI security is
achieved using Transport Layer Security (TLS) between NSAs. The version of TLS utilized is
deployment specific and fluid based on currently reported vulnerabilities in the TLS
implementations. At the time of writing of this document, deployments of NSI are using TLS
version 1.2. In addition, SAML attributes are provided to convey additional information regarding
NSI request authentication and authorization. This OGF recommendation goes into further detail
about how to apply security to the NSI protocol. The following security requirements have been
derived from the experience gained in during NSI pilot deployments.

• The integrity and confidentiality of the messages between NSAs MUST be ensured.
• All access to the NSI Service Plane MUST be authorized by the ultimate Requester

Agent (uRA).
• Access to a network’s Transport Plane resources MUST be authorized by the ultimate

Provider Agent (uPA) representing that network.
• It MUST be possible to identify the Originating Entity of an NSI request.
• It MUST be possible to identify the uRA of an NSI request.

GFD-R.232 August 18, 2017

nsi-wg@ogf.org 3

• End user authorization schemes are deployment specific, and in many cases site specific
as well. Therefore, it MUST be possible within the NSI security framework to
simultaneously support multiple authorization mechanisms.

4 Fundamental Principles of Security in NSI

An NSI Service Plane consists of a set of NSI Network Service Agents that are allowed to
connect to each other through a prearranged administrative agreement; however, the process for
determining this agreement is a deployment specific issue. This administrative agreement can be
likened to the process by which peering is agreed between providers at layer 3.

In addition, NSAs authenticate pair wise, but not all NSAs authentication with each other (there is
no requirement that there be a full mesh of NSI reachability between NSAs), so the resulting
Service Plane graph can be sparsely connected.

To allow communication between NSA that are not directly peered, the NSI CS allows for
message exchange between indirectly connected NSA using an intermediate aggregator NSA.
The aggregator NSA will process an incoming protocol message from a peer NSA, determine the
destination NSA of the request, and generate a new outgoing protocol message targeting a
second peer along the service plane path, and in many cases without the second peer NSA
having any knowledge of the first peer NSA. The second peer has to trust that the aggregator
NSA has done due diligence on the first peer’s request before passing the message on. As a
consequence, NSI Service Plane security is based on transitive trust, i.e. I trust my neighbours
and the neighbours they trust. Any administrative peering process should take this fact into
consideration when adding new peers to an NSI Service Plane.

NSI uses Client Authenticated TLS as a transport protocol to ensure the integrity and
confidentiality of the messages traveling through a trusted Service Plane. Client Authenticated
TLS uses X.509 certificates as a mechanism to authenticate the identity of peer NSA during TLS
session setup. This allows an NSA to validate that it is communicating with a trusted peer,
determine the identity of the trusted peer through remote host name and certificate
DistinguishedName, and that all communications with the peer NSA is being encrypted.

Peer NSA MUST authenticate each other using Client Authenticated TLS. [GFD.212]

All traffic between two peering NSAs MUST be encrypted using TLS while in transit.
[GFD.212]

The mechanism used for NSAs to authenticate each other via X.509 certificates can differ from
one peer to another. For example, one group of NSA administrators can agree on the use of a
common trusted Certificate Authority, while other administrators will just exchange certificates on
a per peer basis using secure external channels. These certificates are then directly provisioned
on the peer NSA. An advantage of this second method is that it also allows for the secure
exchange of self-signed certificates. For self-signed certificates, the peer’s public certificate is
provisioned directly on the target NSA as an authenticating CA, allowing for secure client
authentication.

GFD-R.232 August 18, 2017

nsi-wg@ogf.org 4

Figure 1 - 2-WAY TLS between peer NSA.

Additional certificate access control checks between peering NSAs can be implemented such as
hostname verification, and subject DistinguishedName (DN) verification of the peer. In this case
the Subject DN of the authenticated certificate is verified against Subject DN that was exchanged
beforehand to uniquely identify the remote NSA and authorize the peering.

An NSA MUST authorize each peer individually before processing any NSI messages. (i.e is
this NSA allowed to participate in the NSI CS with me?)

In addition to Client Authenticated TLS, each NSA type has a specific security obligation to the
Service Plane:

An Aggregator MUST process NSI messages from peers subject to NSI policy [NSI Policy],
perform path computation if needed [GFD.213], and propagate messages to peers along a
path to the target uPA or uRA depending on direction of message.

A uRA MUST determine the identity of the requesting user and authorize that user’s access
to a trusted Service Plane. The uRA does not authorize a user’s access to Transport Plane
resources.

A uPA MUST authorize a user’s access to Transport Plane resources in its associated
network.

Figure 2 below illustrates these security concepts.

NSANSA

ADMIN ADMIN

X.509$

X.509$

Client authenticated TLS
(2WAY authentication)

GFD-R.232 August 18, 2017

nsi-wg@ogf.org 5

Figure 2 – Security in a Service Plane.

A group of NSAs that together form a trusted Service Plane will be self-regulating. NSA
administrators are responsible for performing regulation through manual actions. Misbehaving
NSAs MUST be called to account by the community, and in the worst case such a NSA will be
removed from the Service Plane. There are no automated mechanisms for detecting or removing
an NSA deemed to be “misbehaving”.

A framework for the passing of security related attributes with the NSI messaging header is
defined in [GFD.212]. This framework is based on flexible SAML attribute statements that are
chosen for their ability to model generic security related attributes in a well-defined XML schema.
However, [GFD.212] does not specify a formal use for the “sessionSecurityAttr” attribute, instead
leaving it for further study. Within this document a formalized use of these SAML attribute
statements is provided for modelling security related information.

The sessionSecurityAttr is used to implement two classes of security attribute defined to help
deliver integration with end-user authentication, authorization, and policy mechanisms. The first
class are considered mandatory and are used by NSAs within the Service Plane to perform
functions such as user identity tracking for the purpose of auditing and troubleshooting. The
second class of security attributes are those conveying external authorization information
transparently through the Service Plane. This second type is typically populated by uRA (client
NSA) for the communication of authorization information to uPA (NSA associated with resources).
Section 7 will discuss the use of the sessionSecurityAttr in more detail.

The mechanism by which the uRA and uPA authorize a user access is a deployment decision
and is out of scope of the NSI protocol.

5 Access to the Service Plane

An NSI Connection Service request is any RA to PA Connection Service message as listed in
table 2 of the NSI Connection Service v2.0 [GFD.212]. A uRA is a Requester Agent that is the

GFD-R.232 August 18, 2017

nsi-wg@ogf.org 6

originator of a Connection Service request, and responsible for providing users/applications
access to NSI connection services. The uRA is the source of NSI Connection Service messages
in a Service Plane, initiating messaging at the root of the tree or start of the chain, hence the
designation of “Ultimate” requester agent.

The uRA is responsible for establishing the identity of the Originating Entity that has requested
access to the NSI Connection Services. How this identity is established is a local matter (TLS
client authentication, authentication through Identity Provider, local user accounts, access tokens,
etc.).

The uRA MUST determine the identity of the Originating Entity.

The uRA is also responsible for authorizing the Originating Entity’s access to the Service Plane
after having established its identity. How the uRA authorizes a user is a local matter, and may be
something as simple as providing access if the identity of the Originating Entity can be
established (open policy) or something more restrictive based on an authorization server
(restrictive policy).

The uRA MUST authorize the Originating Entity's access to the Service Plane.

The uRA is also responsible for traceability of requests for the purpose of security auditing by
other NSA within the network involved in a specific Connection Service instance. The Originating
Entity’s identity information is added to the NSI message header, along with the NSA identifier of
the uRA, and sent to all peer PA participating in the Connection Service request. The uRA must
maintain a local audit log of the originating reference and the NSI message for future reference.

The uRA MUST populate each NSI Connection Service message with its unique NSA
identifier.

The uRA MUST populate each NSI Connection Service message with the Originating
Entity’s identity.

The uRA MAY choose to provide an obfuscated identifier to the to the Originating Entity’s
identity instead of the identity itself for the purpose of privacy.

If an obfuscated identifier is used for the Originating Entity it MUST be possible for any
NSA in the network to back trace this identity reference to the originating uRA of the
Connection Service request, and resolve the reference to the identity of the Originating
Entity.

For example, a uRA can authenticate a local Originating Entity as long as the uRA is a part of a
trusted Service Plane as described earlier in this document. This includes authentication done by
user applications that have an integrated uRA.

GFD-R.232 August 18, 2017

nsi-wg@ogf.org 7

Figure 3 - Authenticated access to a Service Plane.

It is not required that every NSA along the reservation workflow be able to directly determine the
Originating Entity’s identity, however, it must be possible to trace the request back to the
originating NSA, and from this NSA resolve the true identity of the Originating Entity. This will
ensure that it is always be possible to reach the Originating Entity and hold it accountable even
though that Originating Entity may not be identifiable at each NSA in the Service Plane.

If any NSA along the reservation workflow wants to hide the Originating Entity identifier found in
the NSI message header, it is allowed to replace it with its own identity information and therewith
take all responsibility for that message as it travels further through the Service Plane. If an NSA
replaces an identity within the NSI message header is MUST maintain a record of the original
Originating Entity so a reverse mapping can be performed for auditing purposes. In this case, the
NSA will also rewrite the NSI message header to make it look like that NSA is the originating
NSA. This act of anonymity is allowed for those organizations that do not wish to expose their
end user’s to other NSA within the Service Plane, but are willing take full responsibility for their
actions.

An intermediate NSA in an NSI Connection Service message flow MAY replace the
Originating Entity’s identity reference with another identity reference. In this case this NSA	
MUST accept responsibility for the Connection Service request.

An intermediate NSA in an NSI Connection Service message flow MAY replace the uRA’s
NSA identifier with its own only if it is willing to accept responsibility as the source of the
Connection Service request, including all message audit requirements.

6 Authorization

Every NSA must authorize NSI request messages and reject messages that do not comply to that
NSA’s policies. Authorization decisions are based on policies that are stored within a policy
source. Such a policy source can either be local to the NSA or part of an authentication and
authorization infrastructure where polices apply to a set of NSA. Depending on the deployment, a
combination of local and/or remote policy sources can be used to authorize NSI requests. How
authorization policies are administrated is deployment specific. In figure 4, NSA A is using a local

GFD-R.232 August 18, 2017

nsi-wg@ogf.org 8

policy database as its policy source and NSA B, C and Z are using external AAI as a source for
their policy.

All RA to PA Connection Service messages listed in table 2 of [GFD.212] must be authorized
according to policy. There may be one policy for all messages, different policies for sets of
messages, or even a per message policy. For example, this supports scenarios where a
particular user is allowed to create a reservation, everybody that belongs to the same user group
can query and modify but not terminate that reservation, and an administrator is allowed all
actions including termination of the reservation. A policy such as ‘allow everything’ is a valid
policy and can be adopted by providers wishing to leave usage unconstrained.

An NSA MUST enforce authorization when processing all Connection Service requests.
(e.g is the Originating Entity allowed what they are requesting?)

Figure 4. Policy source deployment example

Based on Figure 4, examples of authorization decisions that can be made by an NSA include:

• Is access to a specified endpoint STP allowed?
• Does the requested amount of bandwidth exceed the maximum amount allowed for that

user (or user group, etc.)?
• Has the maximum number of reservations per day/week/year been exceeded?
• Does the local path segment involve a specific intermediate STP B2 that is part of SDP

with Network C? (Transport Plane peering based authorization).
• Is the request received via the Service Plane from particular NSA Z? (requesterNSA

attribute) (Service Plane peering based authorization).
• Use the default policy if no other policies are triggered.

The document [NSI Policy] captures a more detailed list of network policy requirements for
enforcement by provider agents.

Network(

A1
B1

NSA(A(

Network(

A1 B2

NSA(B(Policy(DB(

AAI(Policy(DB(

Network(

C1 C2

NSA(C(

NSA(Z(

GFD-R.232 August 18, 2017

nsi-wg@ogf.org 9

7 Security Attributes

As part of the definition of the NSI protocol message structure, a generic security attribute
element called sessionSecurityAttr is defined. This attribute is a flexible container for transport of
security related information. Zero or more of these sessionSecurityAttr elements can be
populated in the nsiHeader element, which is itself carried in the SOAP envelope’s Header
element. The NSI Connection Services specification [GFD.212] Section 8.2.1 does not define the
specific use of this sessionSecurityAttr element, instead leaving it for later definition and
deployment specific use.

<soapenv:Header>
 <nsi_headers:nsiHeader xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
 xmlns:nsi_headers="http://schemas.ogf.org/nsi/2013/12/framework/headers"
 xmlns:nsi_ftypes="http://schemas.ogf.org/nsi/2013/12/framework/types">
 <protocolVersion>application/vnd.ogf.nsi.cs.v2.provider+soap</protocolVersion>
 <correlationId>urn:uuid:f123ef0a-a362-4524-b7ac-631cff3e7c66</correlationId>
 <requesterNSA>urn:ogf:network:example.net:2013:nsa:requester</requesterNSA>
 <providerNSA>urn:ogf:network:example.net:2013:nsa:aggregator</providerNSA>
 <replyTo>https://requester.example.net/requester/reply</replyTo>
 <sessionSecurityAttr type="urn:ogf:nsi:security:attr:example" name="example1">
 ...
 </sessionSecurityAttr>
 <sessionSecurityAttr type="urn:ogf:nsi:security:attr:example" name="example2">
 ...
 </sessionSecurityAttr>
 </nsi_headers:nsiHeader>
</soapenv:Header>

Figure 5 – The sessionSecurityAttr.

The sessionSecurityAttr element is defined using a standardized SAML AtttributeStatementType
imported from the SAML namespace “urn:oasis:names:tc:SAML:2.0:assertion” with an NSI
specific extension, adding a string based type and name attribute to this root element. This allows
for multiple sessionSecurityAttr elements to be specified in the nsiHeader element, with each one
identified for a specific use via the type and name attributes (for example, supplying user
credentials per NSA domain).

The expected (default) behaviour is that a uRA will populate the security element based on
information from/about the Originating Entity making the NSI request. Any NSA AG receiving
these security elements will normally pass these on to all child NSAs, however, deployment
specific behaviours may be introduced that change this default behaviour.

Other NSAs along a reservation workflow can add additional security attributes to a message;
these are either new attributes that are deemed useful for NSAs downstream on the workflow, or
modified attributes that are the result of evaluating existing message security attributes. Any NSA
should be transparent to security attributes, meaning that all received attributes plus any potential
new attributes are passed on to all downstream NSAs untouched.

An NSA SHOULD transparently pass all session security attributes from a received NSI
request message through to all child NSAs receiving an NSI request message as part of
the reservation.

An NSA MAY add additional security attributes before sending a message on to a child
NSA if that NSA has specific context information needed in the authorization flow of the
message.

An NSA MAY manipulate existing security attributes before sending on to a child NSA if
the NSA has specific context information permitting this non-transparent manipulation.

GFD-R.232 August 18, 2017

nsi-wg@ogf.org 10

An NSA MAY delete security attributes before sending on to a child NSA if the NSA has
specific context information requiring the removal of a specific attribute. Any deletion
must be done with specific knowledge that the removed security attributes are not
required by any other NSA within the Service Plane that will participate in that specific
NSA message workflow. For tractability the NSA must maintain an audit record of any
modification to or removal of security attributes from a message.

The context where a specific security attribute is to be evaluated is indicated by the
sessionSecurityAttr element value itself. In this document we define two types of security
elements:

1. A global standard security element with a defined sessionSecurityAttr element type
attribute that all NSA understand and can utilize if required.

2. A realm specific element that is defined in the context of a group of NSAs considered part
of a common authorization realm. In this case, the sessionSecurityAttr element type
attribute identifies the element as domain specific and the name identifies the
authorization realm itself. NSAs that are part of that authorization realm can identify the
sessionSecurityAttr elements applicable to them by matching the element’s type/name
pair.

An NSA can be part of zero, one, or more authorization realms, and more than one NSA can be
part of the same authorization realm.

7.1 Originating Entity Identifier

We introduce a specialized sessionSecurityAttr element called “originatingId” to address the uRA
requirement to provide access to the Originating Entity’s identity information, and the uRA’s NSA
identifier. A uRA populates the nsiHeader element of every NSI Connection Services request
message with an originatingId. Response, Failed, Error, and Notification messages do not
require an originatingId within the nsiHeader.

A uRA MUST populate an originatingId with its own NSA identifier and reference to the
Originating Entity’s identity.

The originatingId utilizes the sessionSecurityAttr element in the following way:

Parameter Type Mandatory Description
name Attr True The sessionSecurityAttr.name attribute contains the NSA

identifier of the uRA issuing the request.
type Attr True The sessionSecurityAttr.type attribute contains the NSI security

attribute type identifier of “urn:ogf:nsi:security:attr:originatingId”
following the SAML type identifier naming format.

Attribute Elem True The child SAML Attribute element contains the reference to the
Originating Entity’s identity information as specified on the
uRA.

7.1.1 Obfuscated Originating Entity identity reference

It is RECOMMENDED that an obfuscated identifier be used within the originatingId to provide
confidentiality. The uRA is aware of the Originating Entity’s true identity, while NSAs within the
network have a reference to the entity that will allow them to contact the uRA for additional
details, or to resolve a specific problem.

GFD-R.232 August 18, 2017

nsi-wg@ogf.org 11

A uRA SHOULD populate the originatingId with an obfuscated reference to the
requesting user’s identity.

A SAML Attribute element of the originatingId is populated in the following way:

Parameter Type Mandatory Description
Name Attr True The Attribute.Name attribute contains the MACE identifier

“urn:mace:dir:attribute-def:eduPersonTargetedID” indicating
this Attribute is modelling a SAML/Shibboleth target identifier
value.

NameFormat Attr True The Attribute.NameFormat attribute contains the type
identifier of “urn:oasis:names:tc:SAML:2.0:attrname-
format:uri” indicating that the Attribute.Name is a proper
SAML URI.

AttributeValue Elem True The child SAML AttributeValue element contains the
persistent reference to the user identity information as
specified on the uRA.

This AttributeValue element is populated with a SAML
NameID element with the attribute NameID.Format set to
“urn:oasis:names:tc:SAML:2.0:nameid-format:persistent”,
and a value of the persistent identifier.

The following is an example originatingId security attribute populated with an obfuscated
identifier. In this example the originating uRA is identified as
“urn:ogf:network:example.net:2013:nsa:requester” and the persistent identifier for the
Originating Entity is “c693b1c47a0da7de6518bc30a1bb8d2e44b56980”.

<sessionSecurityAttr type="urn:ogf:nsi:security:attr:originatingId"
 name="urn:ogf:network:example.net:2013:nsa:requester">
 <saml:Attribute Name="urn:mace:dir:attribute-def:eduPersonTargetedID"
 NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri">
 <saml:AttributeValue>
 <saml:NameID Format="urn:oasis:names:tc:SAML:2.0:nameid-format:persistent">
 c693b1c47a0da7de6518bc30a1bb8d2e44b56980
 </saml:NameID>
 </saml:AttributeValue>
 </saml:Attribute>
</sessionSecurityAttr>

Figure 6 – originatingId with obfuscated entity identifier.

7.1.2 Direct user identity reference

An NSI deployment may decide not to use obfuscated identity in the originatingId, but instead a
direct reference to the Originating Entity. The SAML Attribute element is flexible enough to
handle these situations as well. For example, the eduPersonPrincipalName attribute is used by
many organizations as part of their security federation, and is in the familiar form of
“user@domain” that is typically assigned for authentication to network services within a security
realm.

A uRA MAY populate the originatingId with a non-obfuscated reference to the requesting
Originating Entity.

A SAML Attribute element of the originatingId is populated in the following way:

GFD-R.232 August 18, 2017

nsi-wg@ogf.org 12

Parameter Type Mandatory Description
Name Attr True The Attribute.Name attribute contains the MACE identifier for

the type of name being represented in the AttributeValue.
Here we use “urn:mace:dir:attribute-
def:eduPersonPrincipalName” indicating this Attribute is a
scoped identifier for a person of the form user@domain.

NameFormat Attr True The Attribute.NameFormat attribute contains the type
identifier of “urn:oasis:names:tc:SAML:2.0:attrname-
format:uri” indicating that the Attribute.Name is a proper
SAML URI.

AttributeValue Elem True The child SAML AttributeValue element is a string containing
the scoped identifier for the user’s identity information as
specified on the uRA.

The following is an example originatingId security attribute populated with an
eduPersonPrincipalName attribute identifier. In this example the originating uRA is identified as
“urn:ogf:network:example.net:2013:nsa:requester” and the Originating Entity is
“bob@example.net”.

<sessionSecurityAttr type="urn:ogf:nsi:security:attr:originatingId"
 name="urn:ogf:network:example.net:2013:nsa:requester">
 <saml:Attribute Name="urn:mace:dir:attribute-def:eduPersonPrincipalName"
 NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri">
 <saml:AttributeValue xsi:type="xsd:string">bob@example.net</saml:AttributeValue>
 </saml:Attribute>
</sessionSecurityAttr>

Figure 7 – originatingId with an eduPersonPrincipalName entity identifier.

In this example, an NSI deployment uses X.509 certificate authentication for all user entities
accessing the network. For simplicity, the deployment utilizes the user’s certificate subject DN as
the unique identifier for the user within the originatingId. For this case we have originating uRA
identified as “urn:ogf:network:example.net:2013:nsa:requester” and the Originating Entity as
“CN=bob@example.net,OU=User,O=Example Networks,C=US”. This uses the standard SAML Subject
and NameID elements.

<sessionSecurityAttr type="urn:ogf:nsi:security:attr:originatingId"
 name="urn:ogf:network:example.net:2013:nsa:requester">
 <saml:Attribute Name="urn:oasis:names:tc:SAML:2.0:assertion:subject">
 <saml:AttributeValue>
 <saml:NameID
 Format="urn:oasis:names:tc:SAML:1.1:nameid-format:X509SubjectName">
 CN=bob@example.net,OU=User,O=Example Networks,C=US
 </saml:NameID>
 </saml:AttributeValue>
 </saml:Attribute>
</sessionSecurityAttr>

Figure 8 – originatingId with X.509 subject name.

7.2 Authorization attributes

As discussed in section 6, NSI does not specify how a specific network deployment performs end
user authorization. The final decision to approve an operation is left up to the uPA associated
with the Network containing the requested resources. By making authorization a deployment
time decision, NSI has provided the most flexibility for end networks, allowing each Network to
decide on how they would like to authorize a user’s access to their resources.

GFD-R.232 August 18, 2017

nsi-wg@ogf.org 13

Similar to the mechanism used in section 7.1, “Originating Entity Identifier”, authorization
information is passed from the uRA to the uPA using the flexible sessionSecurityAttr element for
securely transporting security related information between NSA within the trusted Service Plane.
As shown in Figure 9. , security related attributes introduced by the uRA are securely transported
to all uPAs involved in the reservation through the secure Service Plane.

Figure 9. Service Plane security.

Authorization decisions are made based on attribute values that serve as input for policy rules
that are either stored locally, or are fetched from one or more authorization policy sources, or
both. Any NSI message attribute can be used as input for policy evaluation. Additional attributes
needed for policy evaluation can be added to the NSI message header using the
sessionSecurityAttr element. Examples of additional security attributes are:

• X.509 certificates
• OAuth access tokens
• Signed authorization certificates
• Group membership information

The uRA will be the primary source of security attributes within an NSI message, however, every
NSA along the reservation workflow can add additional attributes to a message if needed. These
are either new attributes that are deemed useful for NSAs downstream on the reservation
workflow or modified attributes that are the result of evaluating existing message security
attributes

The sessionSecurityAttr element is used to add additional security attributes to the NSI message
header; it functions as a container for the individual attributes. The context where the

GFD-R.232 August 18, 2017

nsi-wg@ogf.org 14

sessionSecurityAttr is evaluated is indicated by the type attribute. In the previous section the
urn:ogf:nsi:security:attr:originatingId attribute type was defined with a specific behaviour that all
NSAs can understand. In this section we define the urn:ogf:nsi:security:attr:realm attribute type
that allows a sessionSecurityAttr element to be scoped within a specific authorization realm.
NSAs that are members of an authorization realm will understand the contents of the element and
use them appropriately. Those NSAs that are not a member can ignore the content, but should
follow the transparency rules.

New sessionSecurityAttr element types can be defined and used as needed. With the existing
transparency rules in place, these newly defined attributes will be seamlessly propagated to all
NSAs participating in a specific reservation workflow. NSAs needing to interpret the new
attributes can do so without impact to other NSAs in the Service Plane.

As an example, here is a sessionSecurityAttr element definition from an authorization realm
“http://idp.example.net”, with an Attribute element named urn:mace:dir:attribute-
def:eduPersonAffiliation, and an AttributeValue of “student”.

<sessionSecurityAttr type="urn:ogf:nsi:security:attr:realm" name="http://idp.example.net">
 <saml:Attribute Name="urn:mace:dir:attribute-def:eduPersonAffiliation"
 NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri">
 <saml:AttributeValue xsi:type="xsd:string">student</saml:AttributeValue>
 </saml:Attribute>
</sessionSecurityAttr>

Figure 10 – example element sessionSecurityAttr element.

The following sections describe how to utilize the sessionSecurityAttr element to convey realm
specific authorization information for the primary authorization use cases.

7.2.1 Authorization using OAuth

OAuth provides a method for clients to access a protected resource on behalf of a resource
owner. Before a client can access a protected resource, it must first obtain an authorization
grant from the resource owner, it can then be exchanged for an access token. This access
token represents the grant's scope, duration, and other attributes associated with the
authorization grant. A client then accesses the protected resource by presenting the access
token to the resource server. See Figure 11 for one example of an OAuth abstract protocol flow,
with more details available in [RFC6749].

GFD-R.232 August 18, 2017

nsi-wg@ogf.org 15

Figure 11 – OAuth 2.0 abstract protocol flow.

In some cases, a client can directly present its own credentials to an authorization server to
obtain an access token without obtaining an authorization grant from a resource owner. An
access token provides an abstraction, replacing different authorization constructs (e.g., username
and password, assertion) for a single token understood by the resource server. This abstraction
enables access tokens to be issued that are valid for a short time period, as well as removing the
resource server's need to understand a wide range of authentication schemes.

OAuth assumes a point-to-point interaction model between an application (i.e. Originating Entity
within NSI) and the actors within the protocol (i.e. resource owner, authorization server and
resource server all OAuth components outside of NSI). An application uses SSL/TLS for secure
communications with the authorization server and the resource server. An application is
responsible for maintaining the context of the access token (i.e. it must know the resource server
corresponding to the access token). An authorization server understands the concept of 'realm',
so a single access token can grant access to resources on multiple resource servers if they were
all part of the same realm.

An application client is responsible for maintaining the secrecy of the access token as an
intercepted token can be used to gain access to resources. A limited lifetime is assigned to each
access token to reduce the window of vulnerability for an intercepted token.

7.2.1.1 OAuth Attributes
NSI deployments can use OAuth as an authorization mechanism for granting access to network
resources. In this case, the trusted Service Plane will provide secure transport between the
Application and the Resource Server (Network Resource Manager or other service provider
component). NSI does not participate in the protocol except for the transport of OAuth access
tokens, and the return of any related OAuth error messages.

An Originating Entity issuing a reservation request to a uRA is responsible for obtaining any
access tokens needed for resources associated with the reservation. However as the Originating
Entity may not know which domain Resource Servers will be selected ahead of a path-
computation action, the Originating Entity can effectively only provide access tokens (if needed)
for resources it explicitly requests for. For instance, an Originating Entity may act as a third-party
proxy for a circuit request, and may need access tokens from both the end-to-end source and

GFD-R.232 August 18, 2017

nsi-wg@ogf.org 16

destination site Resource Servers in order for the circuit request to be successful. Another
example might be that the Originating Entity was associated with a specific collaboration that
could request for privileged resources along a path. In this case the Originating Entity could
specify the path in the request using an Explicit Route Object, and provide the necessary access
tokens for the corresponding Resource Servers. Figure 12 shows the abstract OAuth protocol
flow using the NSI Service Plane as a secure transport between the Originating Entity and
Resource Server associated with a network’s uPA. Obtaining the tokens
may require (1) communicating with multiple authorization servers depending on the nature of the
reservation (endpoints used and authorization realms involved), returning possibly multiple (2)
access tokens applying to different authorization domains. The Originating Entity (3) passes all
access tokens associated with the request to the uRA that populates them in sessionSecurityAttr
elements of the nsiHeader element. The access tokens are (4) passed down the reservation
workflow in the NSI request to a uPA. The uPA (5) extracts the access tokens applicable to its
associated realms, (6) queries the Authorization server to determine whether the token is valid
and whether the Originating Entity has been granted access to the resources associated with the
reservation. If the Authorization Server approves the use of the requested resources, and those
resources are available for the reservation, the uPA holds the resources and (7) sends a
confirmation back to the originating uRA as per the standard NSI CS reservation workflow.

Figure 12 – OAuth protocol flow using NSI.

NSI has the flexibility to support an arbitrary number of Authorization Servers. Each Authorization
Server is identified by a unique realm.

OAuth related tokens are included within the nsiHeader using the sessionSecurityAttr element in
the following way:

GFD-R.232 August 18, 2017

nsi-wg@ogf.org 17

Parameter Type Mandatory Description
name Attr True The sessionSecurityAttr.name attribute contains a unique

OAuth provider 'realm' identifier.
type Attr True The sessionSecurityAttr.type attribute contains an NSI security

attribute type identifier of urn:ogf:nsi:security:attr:realm
following the SAML type identifier naming format.

Attribute Elem True The child SAML Attribute element contains an OAuth
access_token(s) associated with the specified realm and
needed to secure the target resources of the reservation.
Other information that may be needed as part of the
authorization access can be included in additional attributes.

The method by which an Originating Entity utilizes the access token to authenticate against a
Resource Server (i.e. Network Resource Manager/Network Management System) depends on
the type of access token issued by the Authorization Server. Specifications [RFC 6749] and
[RFC 6750] describe this in additional detail.

At a minimum, the Originating Entity is required to include an OAuth access_token in the SAML
Attribute element. An example of this is shown in the table below.

Parameter Type M/O Description
Name Attr M The Attribute.Name attribute contains the string “access_token” as

defined in the OAuth specification [RFC 6749].
NameFormat Attr M The Attribute.NameFormat attribute contains the type identifier

urn:oasis:names:tc:SAML:2.0:attrname-format:basic indicating that
the Attribute.Name is a basic name string.

AttributeValue Elem M The SAML AttributeValue element contains an OAuth access_token
value encoded as a string.

Any other OAuth related parameters can be included using a similar method. Additional OAuth
tokens for different realms can be included in the nsiHeader by populating additional
sessionSecurityAttr elements.

The following is an example of an OAuth access_token security attribute for the realm
“http://idp.example.net/oauth” with a value of “2YotnFZFEjr1zCsicMWpAA”.

<sessionSecurityAttr type="urn:ogf:nsi:security:attr:realm"
 name="http://idp.example.net/oauth">
 <saml:Attribute Name="access_token"
 NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:basic">
 <saml:AttributeValue xsi:type="xsd:string">
 2YotnFZFEjr1zCsicMWpAA
 </saml:AttributeValue>
 </saml:Attribute>
</sessionSecurityAttr>

Figure 13 – OAuth access_token encoding in sessionSecurityAttr element.

NSI does not specify the form of the Originating Entity/uRA interface, and therefore, cannot
specify how these OAuth access tokens are passed to a uRA. It is left up to the specific
implementation of a uRA. The Originating Entity must be able to pass multiple
realm/access_token pairs needed to utilize resources associated with the connection request.

7.2.1.2 OAuth Error Handling
[RFC 6749], Section 7 Accessing Protected Resources, describes the structure of error
messages returned by a Resource Server in response to a failed access attempt. [RFC6750]

GFD-R.232 August 18, 2017

nsi-wg@ogf.org 18

defines three specific authorization errors that can be returned from a Resource Server. There
are three error fields associated with an error in the OAuth protocol:

error (REQUIRED)

• Is a single ASCII [USASCII] error code from the set defined in IETF RFC 6749
[RFC6749], and extended sets contained in IETF RFC 6750 [RFC6750]. For example,
“invalid_request”, “invalid_token” and “insufficient_scope”.

error_description (OPTIONAL)
• Human-readable ASCII [USASCII] text providing additional information, used to assist the

client developer in understanding the error that occurred.

error_uri (OPTIONAL)
• A URI identifying a human-readable web page with information about the error, used to

provide the client developer with additional information about the error.

OAuth related authorization errors are populated in a serviceException element the following way:

Parameter Type Mandatory Description
nsaId Elem True The id of the NSA that generated the OAuth service exception.
connectionId Elem True The connectionId associated with the reservation impacted by

this error.
serviceType Elem False The service type identifying the applicable service description

in the context of the NSA generating the error.
errorId Elem True The error code “00302” to indicate a security authorization

issue.
text Elem True The text error description “AUTHORIZATION_FAILURE” plus

any addition descriptive text deemed useful by the generating
NSA.

variables Elem True Includes all fields associated with the OAuth error (error,
error_description, and error_uri), as well as the original realm
and access_token provided in the request to giving context to
the authorization error.

The NSI protocol utilizes the operation specific failed response (i.e. reserveFailed) to
communicate Resource Server error messages from the uPA to the Originating Entity (via the
uRA) using the NSI ServiceException element. An NSI CS standard 00302
AUTHORIZATION_FAILURE error code [GFD.212] is used for the OAuth type of
ServiceException. Below is an example showing how the variables element is populated with the
application OAuth error information.

<serviceException>
 <nsaId>urn:ogf:network:example.net:2013:nsa:provider</nsaId>
 <connectionId>urn:uuid:59d6c0b2-a8e0-4583-ae8a-0fc84eb89f07</connectionId>
 <serviceType>
 http://services.ogf.org/nsi/2013/12/descriptions/EVTS.A-GOLE
 </serviceType>
 <errorId>00302</errorId>
 <text>AUTHORIZATION_FAILURE</text>
 <variables>
 <variable type="urn:ogf:nsi:security:attr:realm">
 <value>http://idp.example.net/oauth</value>
 </variable>
 <variable type="access_token">
 <value>2YotnFZFEjr1zCsicMWpAA</value>
 </variable>
 <variable type="error">

GFD-R.232 August 18, 2017

nsi-wg@ogf.org 19

 <value>invalid_token</value>
 </variable>
 <variable type="error_description">
 <value>Supplied token is invalid</value>
 </variable>
 <variable type="error_uri">
 <value>http://idp.example.net/oauth/errors/invalid_token.html</value>
 </variable>
 </variables>
</serviceException>

Figure 14 – variables element populated with the application OAuth error information.

7.2.2 Attribute Certificates

Authorization or Attribute certificates [RFC3281] are digital certificates containing signed
attributes granted to the holder by the issuer of the certificate. The issuer (resource owner for
example) creates the certificate with their private key, signing the attributes they would like to
assign the holder (user/application). This certificate can then be verified by any Resource Server
using the issuer’s public key, instantly having access to the list of attributes associated with the
user without needing to query an Authorization Server.

In contrast to OAuth, attribute certificates carry the authorization information in the certificate
itself, whereas OAuth requires the access_token be used to lookup the user’s authorization
information. The user workflow for obtaining an authorization certificate can be considered
similar to OAuth:

• The Originating Entity's identity is authenticated (typically using their X.509 certificate) by
the Authorization Server (Attribute Authority).

• The Originating Entity requests an authorization grant for a set of resources, roles, etc.
from the Authorization Server.

• The Authorization Server validates the Originating Entity's access, generates a certificate
listing a set of attributes associated with the Originating Entity (access permissions
expressed as attributes), and returns the generated certificate to the Originating Entity.

• The Originating Entity presents this attribute certificate to the Resource Server along with
an access request.

• The Resource Server uses the Authorization Server’s public key to verify that the
presented attribute certificate was created by the Authorization Server, and utilizes the
Originating Entity's public key to validate that the certificate corresponds to the requester.
Once verified, the Resource Server grants access based on the attributes presented in
the attribute certificate.

Attribute certificates can be populated in a sessionSecurityAttr element in the following way:

Parameter Type Mandatory Description
Type Attr True The sessionSecurityAttr.type attribute contains the NSI security

attribute type identifier urn:ogf:nsi:security:attr:realm, following
the naming format used in standard SAML type identifiers.

Name Attr True The sessionSecurityAttr.name attribute should contain the DN
of the issuing Attribute Authority to identify the security realm.
This could be replaced with any string uniquely identifying the
associated realm.

Attribute Elem True The child SAML Attribute element contains the base64Binary
encoded attribute certificate associated with the target
resources of the reservation.

GFD-R.232 August 18, 2017

nsi-wg@ogf.org 20

The SAML Attribute element would be populated with the attribute certificate as described in the
table below.

Parameter Type M/O Description
Name Attr M The Attribute.Name attribute contains the string “attributeCertificate”

indicating an attribute certificate [RFC 3281] is present in the
AttributeValue member element.

NameFormat Attr M The Attribute.NameFormat attribute contains the type identifier
urn:oasis:names:tc:SAML:2.0:attrname-format:basic indicating that
the Attribute.Name is a basic name string.

AttributeValue Elem M The SAML AttributeValue element contains the base64Binary
encoded attribute certificate.

The following example shows an attribute certificate included in the sessionSecurityAttr element
using base64Binary encoding:

<sessionSecurityAttr type="urn:ogf:nsi:security:attr:realm"
 name="/C=US/O=EXAMPLE/OU=Grid Resources/CN=attributeauthority@example.net">
 <saml:Attribute Name="attributeCertificate"
 NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:basic">
 <saml:AttributeValue xsi:type="xsd:base64Binary">
 MIICiDCCAXACCQDE+9eiWrm62jANBgkqhkiG9w0BAQQFADBFMQswCQYDVQQGEwJV
 UzESMBAGA1UEChMJTkNTQS1URVNUMQ0wCwYDVQQLEwRVc2VyMRMwEQYDVQQDEwpT
 UC1TZXJ2aWNlMB4XDTA2MDcxNzIwMjE0MVoXDTA2MDcxODIwMjE0MVowSzELMAkG
 A1UEBhMCVVMxEjAQBgNVBAoTCU5DU0EtVEVTVDENMAsGA1UECxMEVXNlcjEZMBcG
 A1UEAwwQdHJzY2F2b0B1aXVjLmVkdTCBnzANBgkqhkiG9w0BAQEFAAOBjQAwgYkC
 gYEAv9QMe4lRl3XbWPcflbCjGK9gty6zBJmp+tsaJINM0VaBaZ3t+tSXknelYife
 nCc2O3yaX76aq53QMXy+5wKQYe8Rzdw28Nv3a73wfjXJXoUhGkvERcscs9EfIWcC
 g2bHOg8uSh+Fbv3lHih4lBJ5MCS2buJfsR7dlr/xsadU2RcCAwEAATANBgkqhkiG
 9w0BAQQFAAOCAQEAdyIcMTob7TVkelfJ7+I1j0LO24UlKvbLzd2OPvcFTCv6fVHx
 Ejk0QxaZXJhreZ6+rIdiMXrEzlRdJEsNMxtDW8++sVp6avoB5EX1y3ez+CEAIL4g
 cjvKZUR4dMryWshWIBHKFFul+r7urUgvWI12KbMeE9KP+kiiiiTskLcKgFzngw1J
 selmHhTcTCrcDocn5yO2+d3dog52vSOtVFDBsBuvDixO2hv679JR6Hlqjtk4GExp
 E9iVI0wdPE038uQIJJTXlhsMMLvUGVh/c0ReJBn92Vj4dI/yy6PtY/8ncYLYNkjg
 oVN0J/ymOktn9lTlFyTiuY4OuJsZRO1+zWLy9g==
 </saml:AttributeValue>
 </saml:Attribute>
</sessionSecurityAttr>

Figure 15 – attribute certificate included in the sessionSecurityAttr element.

7.2.2.1 Attribute Certificate Error Handling
If a uPA determines the uRA has not presented a valid Attribute Certificate for the requested
resources it should return a failed message with a serviceException element populated as
follows:

Parameter Type Mandatory Description
nsaId Elem True The id of the NSA that generated the authroization service

exception.
connectionId Elem True The connectionId associated with the reservation impacted by

this error.
serviceType Elem False The service type identifying the applicable service description

in the context of the NSA generating the error.
errorId Elem True The error code “00302” to indicate a security authorization

issue.
text Elem True The text error description “AUTHORIZATION_FAILURE” plus

GFD-R.232 August 18, 2017

nsi-wg@ogf.org 21

any addition descriptive text deemed useful by the generating
NSA.

variables Elem True Include a list of zero or more security realms for which valid
authorization credentials should be presented for access to
requested resources.

The NSI protocol utilizes the operation specific failed response (i.e. reserveFailed) to
communicate Resource Server error messages from the uPA to the Originating Entity (via the
uRA) using the NSI ServiceException element. An NSI CS standard 00302
AUTHORIZATION_FAILURE error code [GFD.212] is used for communicating this type of
ServiceException. Below is an example of how the variables element is populated with the
authorization error information.

<serviceException>
 <nsaId>urn:ogf:network:example.net:2013:nsa:provider</nsaId>
 <connectionId>urn:uuid:59d6c0b2-a8e0-4583-ae8a-0fc84eb89f07</connectionId>
 <serviceType>
 http://services.ogf.org/nsi/2013/12/descriptions/EVTS.A-GOLE
 </serviceType>
 <errorId>00302</errorId>
 <text>AUTHORIZATION_FAILURE</text>
 <variables>
 <variable type="urn:ogf:nsi:security:attr:realm">
 <value>
 /C=US/O=EXAMPLE/OU=Grid Resources/CN=idp@example.com
 </value>
 </variable>
 </variables>
</serviceException>

Figure 16 – variables element populated with the authorization error information.

8 Glossary

Aggregator NSA (AG) The Aggregator NSA is a Provider Agent that acts as both a requester and
provider NSA. It can service requests from other NSA, perform path finding,
and distribute segment requests to child NSA for processing.

Client Authenticated TLS Transport Layer Security (TLS) and its predecessor, Secure Sockets Layer
(SSL), are protocols that provide communication security. TLS is mandated
in NSI for communication between NSAs.

Connection Service (CS) The NSI Connection Service is a service that allows an RA to request and
manage a Connection from a PA. See [OGF NSI-CS].

DistinguishedName (DN) A Distinguished Name is a unique name for an entry in a Directory Service
and is used within X.509 certificates to identify the subject (owner) of the
certificate.

Network A Network is an Inter-Network topology object that describes a set of STPs
with a Transfer Function between STPs.

Network Service Agent (NSA) The Network Service Agent is a concrete piece of software that sends and
receives NSI Messages. The NSA includes a set of capabilities that allow
Network Services to be delivered.

Network Service Interface (NSI) The NSI is the interface between RAs and PAs. The NSI defines a set of
interactions or transactions between these NSAs to realize a Network
Service.

Requester/Provider Agent (RA/PA) An NSA acts in one of two possible roles relative to a particular instance of
an NSI. When an NSA requests a service, it is called a Requester Agent
(RA). When an NSA realizes a service, it is called a Provider Agent (PA). A
particular NSA may act in different roles at different interfaces.

GFD-R.232 August 18, 2017

nsi-wg@ogf.org 22

Originating Entity Any entity that originates a service request in to uPA. This could be a
person, institution, software application, etc. This ‘user’ is not a formal part
of the NSI protocol since NSI does not define the interface between the uRA
and the Originating Entity.

Ultimate PA (uPA) The ultimate PA is a Provider Agent that has an associated NRM.

Ultimate RA (uRA) The Ultimate RA is a Requester Agent is the originator of a service request.

XML Schema Definition (XSD) XSD is a schema language for XML. See [W3C XSD]

eXtensible Markup Language (XML) XML is a markup language that defines a set of rules for encoding
documents in a format that is both human-readable and machine-readable.

9 Contributors

Hans Trompert, SURFnet
John H. MacAuley, ESnet
Henrik Thostrup Jensen, NORDUnet
Guy Roberts, GÉANT
Chin Guok, ESnet

10 Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual property or other
rights that might be claimed to pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights might or might not be available;
neither does it represent that it has made any effort to identify any such rights. Copies of claims
of rights made available for publication and any assurances of licenses to be made available, or
the result of an attempt made to obtain a general license or permission for the use of such
proprietary rights by implementers or users of this specification can be obtained from the OGF
Secretariat.

The OGF invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights, which may cover technology that may be required to
practice this recommendation. Please address the information to the OGF Executive Director.

11 Disclaimer

This document and the information contained herein is provided on an “As Is” basis and the OGF
disclaims all warranties, express or implied, including but not limited to any warranty that the use
of the information herein will not infringe any rights or any implied warranties of merchantability or
fitness for a particular purpose.

12 Full Copyright Notice

Copyright (C) Open Grid Forum (2012-2017). Some Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published and distributed, in whole or in part, without restriction of any kind, provided that the
above copyright notice and this paragraph are included as references to the derived portions on
all such copies and derivative works. The published OGF document from which such works are
derived, however, may not be modified in any way, such as by removing the copyright notice or
references to the OGF or other organizations, except as needed for the purpose of developing
new or updated OGF documents in conformance with the procedures defined in the OGF
Document Process, or as required to translate it into languages other than English. OGF, with the

GFD-R.232 August 18, 2017

nsi-wg@ogf.org 23

approval of its board, may remove this restriction for inclusion of OGF document content for the
purpose of producing standards in cooperation with other international standards bodies.

The limited permissions granted above are perpetual and will not be revoked by the OGF or its
successors or assignees.

13 References

[GFD.212] OGF GFD-I.212, Network Service Interface Connection Service, v2.0.

[GFD.213] OGF GFD-I.213, Network Services Framework v2.0.

[GFD.217] OGF GFD-I.217 NSI Signaling and Path Finding

[NSI Policy] OGF GFD-R (gfd-r-nsi-policy-v7), Network Service Interface Policy, NSI-WG 2015.

[RFC3281] IETF RFC 3281, An Internet Attribute Certificate Profile for Authorization, S. Farrell, R.
Housley, April 2002.

[RFC6749] IETF RFC 6749, The OAuth 2.0 Authorization Framework, D. Hardt, Ed., October
2012.

[RFC6750] IETF RFC 6750, The OAuth 2.0 Authorization Framework: Bearer Token Usage, M.
Jones, October 2012.

