
GWD-R John MacAuley, ESnet
NSI-WG Guy Roberts, GÉANT
nsi-wg@ogf.org 16 Dec 2016

Network Service Interface Document Distribution Service

Status of This Document

Grid Working Document - Recommendation (GWD-R)

Copyright Notice

Copyright © Open Grid Forum (2012-2016). Some Rights Reserved. Distribution is unlimited.

Abstract

This document describes the Network Service Interface (NSI) Document Distribution Service
(DDS) version 1.0; it is an Application Programing interface (AP) that supports the distribution of
meta-data documents throughout an interconnected network of NSI Network Service Agents
(NSA) in the Service Plane. The DDS is a REST based API that supports the dynamic
distribution of data within the NSI Service Plane by providing a flooding based protocol for
exchange of documents published by an NSA about itself and its Networks. By abstracting the
DDS for the exchange of meta-data from the meta-data itself, a more generic service is provided
which meets the requirements for distribution of NSA Description documents, NSI Topology
documents, and NSI Service Definition documents. This document should be read in conjunction
with GFD.213, Network Services Framework v2.0 [GFD.213].

Notational Conventions

 The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,
“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” are to be interpreted as
described in [RFC 2119]. Words defined in the glossary are capitalized (e.g. Connection). NSI
protocol messages and their attributes are written in camel case and italics (e.g.
reserveConfirmed)

GWD-R
NSI-WG 16 Dec 2016

NSI-WG 2

Contents

Abstract ... 1	
Notational Conventions ... 1	
Contents .. 2	
1	 Introduction .. 3	

1.1	 Context .. 3	
1.2	 Document structure ... 3	
1.3	 Global Document Space .. 4	

2	 DDS in the NSI Service Framework ... 4	
3	 Messages and workflow ... 5	

3.1	 Push and pull methods .. 5	
3.2	 DDS workflow .. 6	

4	 DDS Documents .. 7	
5	 Time to Live .. 10	
6	 Subscriptions .. 10	
7	 Notifications .. 14	
8	 Formal API definition .. 15	

8.1	 API Access Control .. 16	
8.2	 Operations ... 16	

9	 NSA Bootstrap Procedure .. 23	
10	 Peer flooding and version sequencing ... 24	
11	 REST-based Protocol Profile ... 25	

11.1	 Content Encodings .. 27	
11.2	 Operations ... 27	

11.2.1	 getDocuments .. 27	
11.2.2	 getLocalDocuments ... 29	
11.2.3	 addDocument .. 31	
11.2.4	 getDocument ... 33	
11.2.5	 updateDocument ... 34	
11.2.6	 getSubscriptions .. 36	
11.2.7	 addSubscription ... 37	
11.2.8	 getSubscription .. 39	
11.2.9	 editSubscription ... 40	
11.2.10	 deleteSubscription ... 42	
11.2.11	 Notifications ... 43	

12	 Security Considerations ... 45	
13	 Glossary ... 46	
14	 Contributors .. 47	
15	 Intellectual Property Statement .. 47	
16	 Disclaimer .. 48	
17	 Full Copyright Notice .. 48	
18	 References ... 48	
19	 Appendix I –Topology distribution requirements .. 49	
20	 Appendix II – Document payload sizes and rate of change ... 49	
21	 Appendix III – DDS provider Pseudo Code .. 51	
22	 Appendix IV – NSI Document Distribution Service Schema .. 59	

GWD-R 16 Dec 2016

NSI-WG 3

1 Introduction

1.1 Context

Within the Network Service Framework (NSF) [GFD.213], the Network Service Agent (NSA) is an
entity that offers network services. Peer NSA entities communicate using the Network Service
Interface (NSI) protocols, a suite of individual protocols that provide the infrastructure needed to
offer network services.

These network services need to disseminate meta-data documents which clients require to
properly utilize the offered service. One such document is the NSA Description Document [OGF
NSI-ND], which is a meta-data schema designed to enable self-description of all NSI services and
associated protocol interfaces offered by these NSA. Other information relating to the NSA itself,
such as software versions, administrative contacts, location, peerings, and managed networks
are also defined as part of the meta-data profile.

Another meta-data document is the NSI topology document. This document provides a
description of the resources in the Service Plane based on the NML methodology. [OGF NML]
Appendix I: Topology distribution requirements, shows the set of objectives that motivated the
DDS. The NSI signaling and pathfinding document [OGF NSI-NSIPF] explains the message flow
in NSI and the way in which NSI topology is used for pathfinding.

This type of dynamic data-discovery mechanism is a key element of large-scale distributed
systems. By making the NSI protocol and its agents more self-descriptive, new documents,
features, protocols, or protocol versions can be added to agents within the Service Plane and
then be discovered by peer agents through this meta-data service. As new features come on
line, agents supporting the capabilities can discover compatible peer agents, and then negotiate
the use of these new features, while older versions of agents within the Service Plane remain
unaffected. Similarly, newer versions of agents can still negotiate features and communicate with
older agent versions using mutually supported versions of the protocol as described in the
discovered meta-data.

The NSI Document Distribution Service is part of the NSF suite of protocols, and is a peer-to-peer
flooding protocol for exchange and distribution of many different types of data documents
between NSA within the interconnected network or ‘Global Document Space’. It supports both
polling and subscription based notification mechanisms for exchange of documents. For the
purpose of this recommendation, a DDS requester is any application or Network Service Agent
(NSA) that is participating as a client in the document distribution protocol (client role). A DDS
provider is any Network Service Agent (NSA) that is participating in the service as a server for the
document space (server role). NSA can participate in both the requester and provider roles of the
document distribution service. A DDS requester/provider could also be deployed independent of
a Connection Service NSA if so desired.

This recommendation forms a normative of the NSI protocol suite. Where a section of this
document is normative, this will be indicated after the section heading.

1.2 Document structure

This document sets out an REST based API for NSI document distribution. Section 2 sets the
DDS in the context of the NSI Service Framework. Section 3 then introduces the DDS push and
pull methods and explains the message workflow. Section 4 defines the meta-data that is

GWD-R 16 Dec 2016

NSI-WG 4

attached to each NSI documents. Section 5 describes how to use the time-to-live attribute.
Section 6 describes how to use subscription mode. Section 7 sets out a formal definition of the
DDS API. Section 9 describes the NSI bootstrap procedure and section 9 describes the peer
flooding and version sequencing. The full REST profile is set out in section 10.	

1.3 Global Document Space

In this document the term ‘Global Document Space’ (GDS) is defined to be a collection of all
documents published within the document space of each provider participating in a DDS
deployment. The DDS supports both a push/pull model to distribute/retrieve documents with the
GDS. The push model propagates all documents published locally within a provider to all other
subscribed providers participating in the GDS. This allows all participating providers to eventually
receive a consistent version of all documents within the GDS.

2 DDS in the NSI Service Framework

A basic overview of the functional components of the NSF architecture is described here to
provide context to the reader. This section is informational only. Addition detail can be found in
[GFD.213].

An NSA is said to be an NSI requester if the NSA is capable of issuing service requests, while it
is an NSI provider if it can receive service requests. An NSA may act as both a requester and a
provider. The NSF defines three distinct roles for an NSA within the architecture:

• uRA: The ultimate Requester Agent is an NSA that originates but does not respond to
service requests. The uRA could, for example, exist in a middleware application.

• uPA: The ultimate Provider Agent is an NSA that services requests by coordinating with
the local Network Resource Manager (NRM) to manage network resources. The uPA
responds to service requests, but never initiates them.

• AG: The Aggregator Agent is an NSA that has no physical network resources, but can
orchestrate end-to-end network services on behalf of a user by utilizing the connection
services exposed by an associated uPA or one or more child NSA. By definition the AG
is both a requester and a provider NSA.

An AG participating in the NSI Connection Service [OGF NSI-CS] requires access to a number of
documents distributed by NSA through the NSI Document Distribution Service to perform basic
functions such as:

• Bootstrapping communications with peer NSAs (uRA, uPA, and other AG) using the
NSA Description Document [OGF NSI-ND].

• Syntactic Processing and validating parameters parsed using NSI Service Definition
Documents [OGF NSI-SD].

• Performing intelligent path finding for a requested connection service using NSI
Topology Documents [OGF NSI-TS]. See the Appendix in section 19 for details of the
NSI topology distribution requirements.

An ultimate Provider NSA participating in the NSI Connection Service does not require access to
documents, but is required to distribute the following documents through the NSI Document
Distribution Service:

GWD-R 16 Dec 2016

NSI-WG 5

• An NSA Description Document describing itself in detail, including supported interfaces,
features, and networks.

• NSI Service Definition Documents for all services being offered by the local Network
managed by the associated NRM.

• NSI Topology Documents of all advertised topology for the local Network managed by the
associated NRM.

An ultimate Requester NSA participating in the NSI Connection Service does not produce any
documents, however, it can optionally use the following documents from the NSI Document
Distribution Service:

• The NSA Description Document from peer provider NSA to discover identity, supported
interfaces, features, and networks.

• The NSI Service Definition Documents to determine available service types being offered
within the Network.

• The NSI Topology Documents if discovery of network ports or intelligent path finding is
implemented by the uRA.

3 Messages and workflow

This section introduces the concepts of the DDS methods and explains the workflow. This
section is normative.

The DDS supports both a getDocuments()and addSubscription() messges. The get message
allows a document to be retrieved (pull model). The subscription message allows a DDS
requester to register to receive document updates (push model).

3.1 Push and pull methods

A DDS requester utilizes the provider’s Document Distribution Service API to query documents
stored within the Document Space (DS).

Figure 1 – Simple document get operation.

Figure 1 shows the simple getDocuments() operation that is invoked by the DDS requester on the
provider NSA to retrieve a set of documents from the document space. These simple document
operations follow the standard request/response model.

The DDS requester can also subscribe to document discovery and documents updates within the
document space. There is also a Document Distribution Service API to publish, update, and
delete documents to/from a local provider.

GWD-R 16 Dec 2016

NSI-WG 6

Figure 2 – Document change notification.

Figure 2 illustrates the interaction of the asynchronous publish/subscribe model supported by the
document distribution service’s notification interface. In this example, the DDS requester
requests a subscription supplying a filter to identify the documents of interest. In this subscription
request the DDS requester also supplies a callback protocol endpoint that will receive the
notifications delivered from the provider NSA. When there is a document event matching the
subscription filter, the provider NSA will deliver the document to the DDS requester using the
callback endpoint.

3.2 DDS workflow

Figure 3 shows an example DDS workflow. A document updated on one NSA gets propagated
throughout the GDS via NSA peering relationships, so that in the end, all peer NSAs within the
space have an accurate version of each document within the GDS. In this example, the DDS
requester issues an update (e.g version 1.2) to a document sourced on NSA A by using the
updateDocument() operation. NSA A updates the local document space with the new version of
the document, and looks through its subscription list to see if there are any NSAs interested in the
document. In this case, NSA B has registered for events on all documents within NSA A. NSA A
issues a notification to NSA B with the updated document version 1.2. Similarly, NSA B will
update its local document space and issue update notifications to NSA C and D who are also
registered with NSA B for events on all documents.

In this example, NSA D will receive update notifications for document version 1.2 from both NSA
B and NSA C, however, NSA D will see that the document version for the two different
notifications is identical, and discard the duplicate. NSA D then issues a notification to NSA E,
which has registered for events on all documents within NSA D. NSA E updates its local
document space, and since there are no further NSAs to update, the flow for this update
completes. It is important to note that an NSA does not propagate a document notification event
back to the NSA from which it was originally received, as this NSA would just discard the update.

GWD-R 16 Dec 2016

NSI-WG 7

Figure 3 – Document propagation through space.

Additional operations, and more details on the document propagation mechanism are described
in more detail in the coming sections.

4 DDS Documents

This section forms a normative part of this recommendation.

A document within the GDS can contain any information that needs to be distributed to all peers
participating in the Document Distribution Service. A document is enclosed in meta-data within
the GDS space to allow for identification and maintenance. The original document content and
annotated meta-data are propagated untouched throughout the GDS.

A document’s meta-data entry MUST include the following attributes:

nsa The source NSA associated with the generation and management of the
document within the network. This is assumed to be the NSA to which the
document relates, however, there may be situations such as proxy
publishing where this assumption is not true.

For example, if the document being generated is the NSA Description
Document for NSA “urn:ogf:network:example.com:2013:nsa:vixen”, then the
nsa element should contain the NSA identifier
“urn:ogf:network:example.com:2013:nsa:vixen”.

GWD-R 16 Dec 2016

NSI-WG 8

type The unique string identifying the type of this document. A document type is
defined by the type and release of a data document. For example, NSI
Topology version 1.0 and a NSI Topology version 2.0 would be considered
two different document types:

• vnd.ogf.nsi.topology.v1+xml
• vnd.ogf.nsi.topology.v2+xml

The NSA Description Document 1.0 is defined as the type:

• vnd.ogf.nsi.nsa.v1+xml
Note: the type values are currently defined in the NSA description document
[OGF NSI-ND]

id The identifier of the document. This value must be unique in the context of
the NSA and type element values.

version The version of the document, is defined to be the date this version of the
document was created. Any updates to the document must be tagged with
a new version.

expires The date this version of the document expires and should be deleted from
GDS and any DDS requesters caching the document. More information is
provided in Section 5.

signature An OPTIONAL digital signature of the document content.
content The document content modeled by this document meta-data.

A document is uniquely identified by the tuple of NSA Identifier (nsa), Document Type (type), and
Document Identifier (id). The Document Identifier need only be unique in the context of the NSA
Identifier and Document Type. This allows for different types of documents to share the same
identifier if they are considered directly related. It also implies that Document Identifiers do not
need to be globally unique to be distributed or resolved in the GDS.

The meta-data of each document stored contains a version attribute based on the date and time
that version of the document was generated. As each new version is added to the space, it
replaces the existing version and is propagated to all interested peers.

Meta-data also contains an ‘expires’ attribute indicating when the document is no longer valid.
Any DDS requesters caching a document that has expired MUST consider the information invalid
and discard the document. An NSA within the space MAY keep the expired document for a
period of time to guarantee all peers (both polling and subscriptions) have had time to receive the
document after it has expired to cover the delete race condition described later in this document.

A document MAY also be digitally signed, generating a signature that can be associated with the
document within the space. Clients of the space can use the signature to verify the originator and
content of the document. It is RECOMMENDED that the document being signed includes within
its document content a duplicate of the identifier, version, and expires attributes so these values
can also be digitally signed and verified if needed.

An NSA MUST not modify the content of a document before propagating on to a peer unless that
NSA is the owner of the document.

Section 11 of this document describes a formal specification of a REST-base profile for the DDS
protocol through the use of HTTP and XML. A formal XML Schema Definition for this REST-
based profile is provided in Section 22 – Appendix IV. Here is an example of an XML instance

GWD-R 16 Dec 2016

NSI-WG 9

from this profile for the meta-data of an NSI Description Document (vnd.ogf.nsi.nsa.v1+xml)
describing the NSA “urn:ogf:network:es.net:2013:nsa”.

<dds:document xmlns:dds="http://schemas.ogf.org/nsi/2014/02/discovery/types"
 id="urn:ogf:network:es.net:2013:nsa"
 version="2015-12-22T23:44:26.543Z" expires="2016-02-20T23:44:26.543Z">
 <nsa>urn:ogf:network:es.net:2013:nsa</nsa>
 <type>vnd.ogf.nsi.nsa.v1+xml</type>
 <signature contentType="application/x-gzip" contentTransferEncoding="base64">
 H4sIAAAAAAAAAI2V15KrSBKG7/UUij6XbTACmY1WTxROoBYgPOgOU8IbARLm6Qe1dns7zsxEzAV
 QkZH15/9lGd7/6PNsfoN1E5fF9gl7Q5/msPDLIC7C7ZOhc6/rpz8+3rU4LNz2WsP5lF4026eoba
 v/IEjXdW/d4q2sQwRHURRBN8iUEDRx+OvpMQsGQnEuP95ptyiL2HezeHTbqZYI26gM5iALyzpuo
 /zvJHX1roohKku/TrKvPkYUr/cIusDIX9Y0jS7zHBZt84T88PhvpH93WzfuaxO52F1IhWdYT02A
 c0MV/sHX3U7TDhlsIgjbiZWJQ9i0/7I0hqDEXWIq8muqSmL4ve5DwnSzK/ywCR+TOcNsNknbsnU
 95CMwG3zUtbV8CNtC14qFVi6qNvaA0vB1kl/2GYiqLiVuuMicmqgkisWhzqWdOru5h/WRVEm622
 7fkZ9l3pFv2Gn8c72+u/lI9NQgtoeLLvIuInHyhvRvnimcd6m10gPrmnmQ5TnsZq+XIXkoRumUC
 p5V3SK0MoSwJUqZaUikslm/M9ez01pR6RX/eXTlCxk3zmafFunFsOT0tHcvijlGCssiTFuMGo+K
 IYcsP/vKXWdakZ7YPtTLJUAM8tpcTKGb4UTs7Bt252s4UoS1nDLl9oHyw/77JxweXDaJbhi3dR8
 j7eol0G8lN4cf2Bv+tibQNwxbkMTmDXubnu0vbImel8ESWy6W2Ipc+ktytSHQ6b3A4RJOX+KFlr
 b7MirmouuDawaHF9nYsgWsw2Gu+fG9t81cgm1X1umLvDW0OQMrt27vG3denueP1JfDVm5bt3NfN
 H0rSy/0lgbvyO8ev0zTsG7j83SWWvghCgLdjzQNEkDTCt32En89wDVVjUCiwvQSpfFu06EUUAwO
 MPQUZw8iSHcAM1gqEmkFZXt6BHsqlMwZBUIdpBtZVNYdoziMqSg8252OAa9GAc72AgPgPZECpc5
 hpi6waubvuCHYYZlXKKGHO6FqkZmfB+RM1EDHh18iB7YPOC83h9MiDQ1cqk4WmZxsMdRzEw3wze
 COrCVSypcr0IuSlm9KL6Ykx5KowOqzGdRZKFLdjtYuO03wFozC7oHqHD2LSxzbbE52BibB61QEF
 SnCZnQWFRljkHWhE5N0FM3yHluIjNjPZOY72IWu/81PAWfClyhRaTr6gS+w3f6oJ+xRBOijZ724
 0xcq6thBdCec/Rfxc0I0jYFiTzYV+YXaToiosNvkAmteT/a+mAjCydmXCN2L9v/6JHBS4lrm1cH
 NcSawZBbwwc3Pm55LgPFwJeqMUd3cHRHqE67yhZv2fAL8nytMK6zF4Fjk4Bzm7UxypuzM8ZBPgt
 OyF3/ZDiwHgEwlCuhCJ6VDhwVtLmyk23iu6UYbPCaw4quWebRB29Vh9plQbUKo+7Rxrgs+WNXAh
 NFR/5TKZ+9661XG3F8CBpqtanFpE7uEAzdCrGRMJz4PxmF0hVt18wXOKA/O7OzjikaMjV6esxra
 EhY9K7XurJLPoShGzjgltj/0HdopBF8hYlFg8kkjKyONIC/HLOwQlAYdC4AOpNlfdvmEFSqgr5c
 bROm68thN/4h9dl5VC9nSwfpcRiKy2qhRLUjZekCPHCsk6S1ZsZUzyxXuOEpXOor4IMLjuBae10
 CI8wrnr1lqupZHCSjxrAhnyVSvPkP5ZxOKAjZc2l0ndkqkS/vF3l0g3K2brQdG6bXLskxwfE8PG
 jI10tit/KgueYov+TgU3ShrbDq8X8u/n+xH5HFVId/X1/8vto8/AcAmLXe7BwAA
 </signature>
 <content contentType="application/x-gzip" contentTransferEncoding="base64">
 H4sIAAAAAAAAAH1UXW+bMBT9K4jXCWxMkibI0HXVNvVlm5Zsk/bmGkOsgo1sQ9t/v4shH020PkS
 53HvOuT72tentS9sEgzBWapWHSYzDQCiuS6nqPPy1+xKtw9uCKptmyrIAwMpClObh3rkuQ8jyvW
 iZjXVdxdrUSFmJCE4WCBNUSss1aL9CloVHMsnD3qhMCldlHTOstRmUoJANnJkyWvhFvHTSCJuHI
 LaKMIkI3pE0WywysoqXi/RvGMhyEoLWmRLuWZunTNgYwgxIfsHhyRqkllECOuRCB9yxVhSft0AM
 vm/v735ug/7HHUU+Ta2u3DMz4vckVIDBRyPLWkRDQtFllVrHjNtJYP6vIZCOGMrKVqp7rRzjbtx
 mMu3BFPbyEBhZjE57yGR8zcvHxzWOSsZvoiQRabThCYvwGmOCMd+w1QoWP9Pm6KDUGTjaOXbixc
 22o4Pxb9uH4JO3NxE9ZgrPqUYMswa4ADttN9pd4GWS7pLNknibb+vT95H4JNX5MuBLDrLsWXPV9
 4Ss1Bnjfi9V8LXXT1eEA2z+s7Bz40mesIeML9dyEMqrTcXpe4pnBRhw2Zy15gD+OE3aVfMZi86O
 Er095EZz5vysNFrV0vWlKGBOSEyWmKQUnbK0AaCP0pt4fbPaEKgeUiPwIDRP/0NZvHcfYFFHHJX
 KCVMxDkLutRMF67pGTnpoUKW/zzDqMbfxQGI4ezgdYT5YzTqKPIPujaiK8Rmw8A5oC2ZtPPVDYF
 YJPopthRkkh2nyaIrO+laCud6IYFTLw+umRjcihpsYokssPDQXWK7bVvo7pXsXFinGFM2cgnYCb
 ucf6fbBKJmHIPnuRsHDAT8Zsbo20TPML0VHCX+0HlL8A/kqeaU8BQAA
 </content>
</dds:document>

This XML <document> element represents a signal instance of a document plus associated
meta-data. The document being transported is contained in the <content> element, and a digital
signature for the document is contained in the <signature> element. Both the <content> and
<signature> elements are defined as a simple XML string with contentTransferEncoding and
contentType attributes to describe the encoding of the document within this string value based on
rules defined in [RFC1341] (sections 5 and 6). The document meta-data <type> element
identifies the document type itself.

In this example we can see that for the document type “vnd.ogf.nsi.nsa.v1+xml” the <signature>
and <content> elements contain contentTransferEncoding and contentType attributes describing
additional encoding information. The contentType attribute indicates the strings contained in the
<signature> and <content> elements are gzipped for compression. In addition, the
contentTransferEncoding attribute indicates the resulting compressed binary stream is base64
encoded allowing for storage in an XML string. The document type itself identifies the original

GWD-R 16 Dec 2016

NSI-WG 10

type of document stored in the <content> element, and the type of signature stored on the
<signature> element is based on the document type.

5 Time to Live

This section forms a normative part of this recommendation.

The Document Distribution Service uses the concept of Time To Live (TTL) to set an expiry date
on documents exchanged through the DDS. There is no explicit delete operation within the DDS,
so the TTL mechanism will ensure old documents eventually expire and are purged from the
GDS. This section forms a normative part of this recommendation. The three primary use cases
for this feature are:

• An NSA has had a Network removed from its configuration, resulting in the removal of a
Topology Document; however, the associated Topology Document was previously
announced into the GDS.

• A Network name change has occurred, resulting in a new Topology Document being

created and announced into the GDS. This new document has a different unique
identifier in the GDS than the Topology Document under the old Network name. As a
result, the previously announced document will not be refreshed when the new one is
announced, resulting in a stale Topology Document within the GDS. When the TTL on
the old Topology Document is reached, all NSA holding a copy will purge it from the
GDS.

• An NSA is removed from the Service Plane resulting in the removal of associated

Networks from the Data Plane; however, Topology Documents associated with the NSA’s
Networks were announced into the GDS that are now invalid. When the TTL on the
document is reached, all NSAs holding a copy will purge it from the GDS.

In all scenarios, when the TTL on the document is reached, all NSAs holding a copy will purge it
from their local DS instance. This will guarantee that the GDS will eventually return to an
accurate and consistent state. In the case where the NSA knows a document needs to be
deleted, it MUST perform an update on the document, issuing a new version with the expires time
set to a short period in the future. This update will propagate through the GDS and expire the
document at the specified time instead of the original time. The method of removal of the
document within an NSA after expires time is implementation specific.

An NSA MUST provide an expires time with each document published.

Enforcement of expires time MUST be based off of a network-synchronized clock.

The expires time SHOULD be a reasonable value computed based on the rate of expected
change on the document.

6 Subscriptions

This section forms a normative part of this recommendation.

To help support a more dynamic document distribution environment a publish/subscribe model is
defined. A provider NSA allows DDS requesters to subscribe to document events by specifying
filters, that when matched, will generate document notifications to the subscriber. A DDS
requester can also publish documents into a specific provider’s document space based on local
security policies, which can then result in notification events to subscribed requesters if their

GWD-R 16 Dec 2016

NSI-WG 11

registered filters match the event. For example a uPA may want to publish its documents into an
associated aggregators document space.

Each DDS provider also participates in the GDS as a DDS requester, subscribing to document
events on peer DDS for any document sourced by other DDS within the GDS. Through this
subscription mechanism the DDS requester can dynamically build a global view of the document
space without the need to perform document-polling operations on all peer DDS providers.

A subscription entry on a DDS provider is composed of the following attributes:

id The DDS provider assigned subscription identifier that uniquely identifies
the subscription in the context of the provider.

version The version of the subscription. Indicates the last time the subscription was
modified by the DDS requester.

requesterId The identifier of the DDS requester that created the subscription. A DDS
requester agent associated with an NSA should use the NSA’s unique
identifier for the requesterId. DDSes that are not directly associated with an
NSA should utilize a unique identifier following similar name rules as NSA
identifiers.

callback The protocol endpoint on the DDS requester that will receive the
notifications delivered for this subscription.

filter The OPTIONAL filter criteria to apply to document events to determine if a
notification should be sent to the DDS requester.

The following is an example subscription request using the formal XML Schema Definition
defined in Section 22 – Appendix IV. The NSA “urn:ogf:network:example.com:2013:nsa:dasher”
is registering a subscription with NSA “urn:ogf:network:example.com:2013:nsa:dancer” for all
document related events. Notification events will be delivered to the notification endpoint
“http://dasher.example.com/discovery/callback”.

<dds:subscriptionRequest xmlns:dds="http://schemas.ogf.org/nsi/2014/02/discovery/types">
 <requesterId>urn:ogf:network:example.com:2013:nsa:dasher</requesterId>
 <callback>http://dasher.example.com/discovery/callback</callback>
 <filter>
 <include>
 <event>All</event>
 </include>
 </filter>
</dds:subscriptionRequest>

The response from NSA “urn:ogf:network:example.com:2013:nsa:dancer” contains the newly
created subscription contained within the DDS service.

<dds:subscription xmlns:dds="http://schemas.ogf.org/nsi/2014/02/discovery/types"
 id="1fcca8fb-e33f-46f6-8085-8dbf1a2b346f"
 href="http://dancer.example.com:8401/dds/subscriptions/1fcca8fb-e33f-46f6-8085-
8dbf1a2b346f"
 version="2015-12-08T17:33:49.434-05:00">
 <requesterId>urn:ogf:network:example.com:2013:nsa:dasher</requesterId>
 <callback>http://dasher.example.com/discovery/callback</callback>
 <filter>
 <include>
 <event>All</event>
 </include>
 </filter>
</dds:subscription>

GWD-R 16 Dec 2016

NSI-WG 12

A document event that matches the supplied filter will generate notifications that will be delivered
to the DDS requester’s protocol endpoint specified in the callback attribute. Only document
events matching the filter criteria will generate a notification event to the subscriber. All other
events will be discarded.

Subscription filters allow a subscriber to control the content delivered to their registered
notification endpoint. A subscription request without a filter will result in a valid subscription that
will match no document events. This can be used to create this initial subscription shell, which
can later be modified to add filter criteria as needed.

The filter supports basic criteria:

include – Include notifications matching these criteria.

exclude - Exclude the notifications matching these criteria.

The include element specifies the document event match criteria to include, while the exclude
element specifies those to specifically exclude. The include element will be evaluated first, before
the exclude element. In other words, the include is applied to the full documented set producing
a bounded output set. The exclude then is applied to this bounded set. Each of the include and
exclude elements are composed of:

event – The type of document event that will generate a notification. Currently only three
events are supported (All, New, Updated). At least one of event criteria must be
supplied. The default event criteria is All.

or – Any document matching any of the supplied nsa, document type, or document id
values.

and - Any document matching all of the supplied nsa, document type, or document id
values.

The following filter subscribes for all document events (All) for all discovered documents:

<filter>
 <include>
 <event>All</event>
 </include>
</filter>

The filter shown above describes the minimum filter criteria for an Aggregator NSA. This filter
allows the aggregator to receive all document events from a peer NSA’s DDS provider, building a
complete view of documents discovered within the GDS. Multiple peers could deliver the same
document events, however the aggregator should discard any duplicates. An aggregator
receiving duplicate events may decide to modify the filter on a DDS provider to avoid receiving
multiple copies of the same document. The following is an example of a filter where the
subscriber is still registered for all events, however, it has applied an exclude criteria to stop
documents issued by NSA “urn:ogf:network:example.com:2013:nsa:dasher” from being sent to
the subscriber endpoint:

<filter>
 <include>
 <event>All</event>
 </include>
 <exclude>

GWD-R 16 Dec 2016

NSI-WG 13

 <event>All</event>
 <or><nsa>urn:ogf:network:example.com:2013:nsa:dasher</nsa></or>
 </exclude>
</filter>

An alternative strategy for an aggregator is to initially subscribe to only new document events for
its peers, expanding the filter by including individual documents, or documents from specific NSA
in the filter as they are first discovered. Using this strategy, the subscribing NSA will only need to
update a single subscription to start receiving document updates, instead of excluding from
multiple peers as in the previous example.

The initial subscription filter subscribes to new (New) document events only for all discovered
documents:

<filter>
 <include>
 <event>New</event>
 </include>
</filter>

As new document events arrive, the first peer to report the event can be the peer who is
configured to deliver future events for that document to the subscriber. The edited filter would still
subscribe to all new document events (New), however, we add updates (Updated) document
events for any documents provided by NSA “urn:ogf:network:example.com:2013:nsa:vixen” or
“urn:ogf:network:example.com:2013:nsa:prancer”:

<filter>
 <include>
 <event>New</event>
 </include>
 <include>
 <event>Updated</event>
 <or>
 <nsa>urn:ogf:network:example.com:2013:nsa:vixen</nsa>
 <nsa>urn:ogf:network:example.com:2013:nsa:prancer</nsa>
 </or>
 </include>
</filter>

Filtering on document type is also supported. The following filter subscribes for all document
events (All) for discovered documents of type “vnd.ogf.nsi.nsa.v1+xml”:

<filter>
 <include>
 <event>All</event>
 <or><type>vnd.ogf.nsi.nsa.v1+xml</type></or>
 </include>
</filter>

In the above example, since there is only a single entry in the or conditional, the filter can also be
written using an and instead, such as the following:

<filter>
 <include>
 <event>All</event>
 <and><type>vnd.ogf.nsi.nsa.v1+xml</type></and>
 </include>
</filter>

GWD-R 16 Dec 2016

NSI-WG 14

For each include and exclude filter criteria, the conditionals therein is evaluated sequentially in
relation to the event. For example, the following filter subscribes for all document events (All) for
discovered documents of type “vnd.ogf.nsi.nsa.v1+xml” provided by NSA
“urn:ogf:network:example.com:2013:nsa:vixen”, as well as any (all) document events (All) from
either NSA “urn:ogf:network:example.com:2013:nsa:prancer” or
“urn:ogf:network:example.com:2013:nsa:blitzen”

<filter>
 <include>
 <event>All</event>
 <and>
 <type>vnd.ogf.nsi.nsa.v1+xml</type>
 <nsa>urn:ogf:network:example.com:2013:nsa:vixen</nsa>
 </and>
 <or>
 <nsa>urn:ogf:network:example.com:2013:nsa:prancer</nsa>
 <nsa>urn:ogf:network:example.com:2013:nsa:blitzen</nsa>
 </or>
 </include>
</filter>

7 Notifications

This section forms a normative part of this recommendation.

When a document event occurs within the GDS each DDS provider evaluates the event against
locally registered subscriptions. For each matching subscription the DDS provider generates a
notifications event to the subscribed DDS requester’s callback endpoint. Multiple document
events matching a single DDS requester’s subscription can be bundled into a single notifications
event if desired by the DDS provider.

A notifications event generated by a DDS provider is composed of the following attributes:

providerId The identifier of the DDS provider that holds the subscription that generated
the notification.

id The DDS provider assigned subscription identifier that uniquely identifies
the subscription in the context of the provider. This is the identifier of the
subscription that generated the document notification.

List of [0..n]
notification

A list of document notification events.

Each document notification is composed of the following attributes:

discovered The time within the DDS provider that the document event occured.

event The type of document event (New, Updated) that generated the notification.

document The document that generated the notification.

The following is an example notifications event using the formal XML Schema Definition defined
in Section 22 – Appendix IV. For this example we use the example subscription from the
previous section. The NSA “urn:ogf:network:example.com:2013:nsa:dasher” has registered a

GWD-R 16 Dec 2016

NSI-WG 15

subscription with NSA “urn:ogf:network:example.com:2013:nsa:dancer” for all document related
events. The following example notifications event on topology document
“urn:ogf:network:example.com:2013:topology:northpole” will be delivered to the notification
endpoint “http://dasher.example.com/discovery/callback” based on the subscription criteria:

<dds:notifications xmlns:dds="http://schemas.ogf.org/nsi/2014/02/discovery/types"
 providerId=" urn:ogf:network:example.com:2013:nsa:dancer"
 id="1fcca8fb-e33f-46f6-8085-8dbf1a2b346f"
 href="http://dancer.example.com:8401/dds/subscriptions/1fcca8fb-e33f-46f6-8085-
8dbf1a2b346f">
 <dds:notification>
 <discovered>2015-12-10T18:20:49.505-05:00</discovered>
 <event>Updated</event>
 <document id="urn:ogf:network:example.com:2013:topology:northpole"
 href="https://dancer.example.com:8401/dds/documents/urn%3Aogf%3Anetwork

 %3Aexample.com%3A2013%3Ansa%3Adancer/vnd.ogf.nsi.topology.v2%2Bxml
 /urn%3Aogf%3Anetwork%3Aexample.com%3A2013%3Atopology%3Anorthpole"

 version="2015-12-10T18:20:49.505-05:00"
 expires="2016-12-10T18:20:49.505-05:00">
 <nsa>urn:ogf:network:example.com:2013:nsa:dancer</nsa>
 <type>vnd.ogf.nsi.topology.v2+xml</type>
 <content contentType="application/x-gzip" contentTransferEncoding="base64">
 H4sIAAAAAAAAAO2bXXObOBSG/wpDr0ECkzqmiTveqZvNTBp7EjYXe8PIRsaaYokRcpLur1++
 ...
 </content>
 </document>
 </dds:notification>
</dds:notifications>

8 Formal API definition

This section forms a normative part of this recommendation.

The logical operations supported by the NSI Document Distribution Service are classified into
DDS requester and DDS provider interfaces. A DDS provider “provides” access to documents
within the GDS, and a DDS requester is “requesting” access to documents within the GDS. As
described earlier, an NSA can participate in both the DDS requester and provider roles.

The DDS provider interface for the NSI Document Distribution Service exposes the following
logical operations:

Operation Returns
getDocuments
([nsa], [type], [id], [lastDiscoveredTime])

status, a list of [0..n] documents, and
[lastDiscoveredTime]

getLocalDocuments
([type], [id], [lastDiscoveredTime])

status, a list of [0..n] documents, and
[lastDiscoveredTime]

getDocument
(nsa, type, id, [lastDiscoveredTime])

status, [document], and [lastDiscoveredTime]

addDocument
(nsa, type, id, version, expires, [signature],
contents)

status, [document], and [lastDiscoveredTime]

updateDocument
(nsa, type, id, version, expires, [signature],
contents)

status, [document], and [lastDiscoveredTime]

addSubscription
(requesterId, callback, filter)

status, [subscription], and [lastModifiedTime]

editSubscription
(id, requesterId, callback, filter)

status, [subscription], and [lastModifiedTime]

GWD-R 16 Dec 2016

NSI-WG 16

deleteSubscription
(id)

status, and [subscription]

getSubscriptions
([requesterId], [lastModifiedTime])

status, list of [0..n] subscription, and
[lastModifiedTime]

getSubscription
(id, [lastModifiedTime])

status, [subscription], and [lastModifiedTime]

getAll
([lastDiscoveredTime])

status, list of [0..n] subscription, list of [0..n]
documents, list of [0..n] local documents, and
[lastDiscoveredTime]

notificationCallback(list of [0..n]
notifications)

status

Table 1 – DDS operations.

8.1 API Access Control

Aspects of security for the DDS API are discussed in Section 12 of this specification. Similar to
other NSI specifications, the implementation of security on the DDS interface is
implementation/deployment specific. At a minimum, a DDS provider should enforce the following
access control rules:

1. Notifications MUST only be accepted from trusted “peer” DDS providers for which valid
subscriptions have been created. Unsolicited notification MUST be discarded.

2. Addition of new documents and updates to existing documents within a DDS provider
MUST be restricted to authorized DDS requesters.

3. Read access (get operations) SHOULD be restricted to only authorized DDS requesters.
4. Creation of subscription-based notifications SHOULD be restricted to authorized DDS

requesters.
5. Editing and deletion of subscriptions SHOULD be restricted to the DDS requester

associated with the subscription.

8.2 Operations

The following abstract API operations are defined for the DDS. Within this section the term
“content” is used to describe the external “document” information being modeled and distributed
within the GDS. The term “document” refers to this content encapsulated within DDS meta-data.

getDocuments([nsa], [type], [id], [summary], [lastDiscoveredTime])

RETURNS status, a list of [0..n] document, and [lastDiscoveredTime]

This operation returns a list of documents and the time of the latest document change on
the DDS provider. If no filter parameters are supplied then all documents within the GDS
will be returned. The following optional parameters can be supplied, and will be applied
using logical AND:

nsa – The source NSA associated with the generation and management of the document
within the GDS.

type - The unique string identifying the type of document to return.

id – The identifier of the document to return.

GWD-R 16 Dec 2016

NSI-WG 17

summary - Returns summary results of any documents matching the query criteria.
Summary results includes all document meta-data but not the signature or document
contents.

lastDiscoveredTime – Provides a time context to the DDS provider requesting all
documents that have been discovered, created, or updated since the time specified in
this parameter. This allows for an effective polling mechanism by using the latest
document change time returned in the previous operation as a filter parameter in the next
get document operation to retrieve only those documents that have been discovered
(new or updated) since the last invocation of the API.

In response to this operation the following information is returned:

status – A status indication as to whether the operation was successful or failed. For the
case of operation failure informative error information must be provided.

list of [0..n] document – A list of documents matching the provided query criteria.

lastDiscoveredTime – An updated time context indicating the most recent time any
document has been discovered, created, updated within the DDS.

getLocalDocuments([type], [id], [summary], [lastDiscoveredTime])
RETURNS status, a list of [0..n] document, and [lastDiscoveredTime]

This operation returns a list of documents associated with the queried DDS provider and
the time of the latest document change on that provider. This operation can be
considered equivalent to getDocuments() with the nsa parameter set to the target DDS
provider’s identifier. If no filter parameters are supplied then all documents within the
space will be returned. The following optional parameters can be supplied, and will be
applied using logical AND:

type - The unique string identifying the type of document to return.

id – The identifier of the document to return.

summary - Returns summary results of any documents matching the query criteria.
Summary results includes all document meta-data but not the signature or document
contents.

lastDiscoveredTime – Provides a time context to the DDS provider requesting all
documents that have been discovered, created, or updated since the time specified in
this parameter. This allows for an effective polling mechanism by using the latest
document change time returned in the previous operation as a filter parameter in the next
get document operation to retrieve only those documents that have been discovered
(new or updated) since the last invocation of the API.

In response to this operation the following information is returned:

status – A status indication as to whether the operation was successful or failed. For the
case of operation failure informative error information must be provided.

list of [0..n] document – A list of local documents associated with the target DDS provider.

GWD-R 16 Dec 2016

NSI-WG 18

lastDiscoveredTime – An updated time context indicating the most recent time any
document has been discovered, created, updated within the DDS.

getDocument(nsa, type, id, [lastDiscoveredTime])

RETURNS status, [document], and [lastDiscoveredTime]

This operation returns the requested document and the time of the latest change on the
document. The following parameters are used to identify the specific document instance
and are mandatory:

nsa – The source NSA associated with the generation and management of the document
within the GDS.

type - The unique string identifying the type of document to return.

id – The identifier of the document to return.

If the optional filter parameter lastDiscoveredTime is provided, then the target document
will only be returned if it has been updated since the time specified.

In response to this operation the following information is returned:

status – A status indication as to whether the operation was successful or failed. For the
case of operation failure informative error information must be provided.

document – A document matching the provided nsa, type, and id parameters if one
exists.

lastDiscoveredTime – An updated time context indicating the most recent time this
document was discovered, created, or updated within the DDS.

addDocument(nsa, type, id, version, expires, [signature], content)
 RETURNS status, [document], and [lastDiscoveredTime]

This operation adds a new document to the space associated with the DDS provider.
Once the document has been successfully created on the provider, a copy of the created
document is returned, including the lastDiscoveredTime indicating the time the document
was added. The provider will immediately send ADD notifications to all subscriptions with
filter criteria matching the document.

nsa – The source NSA associated with the generation and management of the document
within the GDS.

type - The unique string identifying the type of this document.

id – The identifier of the document being added. This value must be unique in the
context of the NSA identifier and document type values, otherwise an error will be
returned.

version - The version of the document, or more specifically, the date this version of the
document was created.

GWD-R 16 Dec 2016

NSI-WG 19

expires - The date this version of the document expires and should be deleted from
document space and any requesters caching the document.

signature - An OPTIONAL digital signature of the document contents.

content - The content of the document modeled by this document meta-data.

In response to this operation the following information is returned:

status – A status indication as to whether the operation was successful or failed. For the
case of operation failure informative error information must be provided.

document – The new document (content + meta-data) created within the DDS.

lastDiscoveredTime – The time within the DDS provider that this document was created.

updateDocument(nsa, type, id, version, expires, [signature], content)
RETURNS status, [document], and [lastDiscoveredTime]

This operation updates an existing document within the space associated with the DDS
provider. A document can only be updated within the DDS provider that is acting as the
source of the document. Any attempt to update a document from a provider other than
the source of the document MUST be rejected. The operation returns a copy of the
updated document, and the lastDiscoveredTime indicating the time of the document
update. The DDS provider will immediately send notifications to all subscriptions with
filter criteria matching the document.

This operation is also used to delete an existing document from the space associated
with the DDS provider. For the delete of a document the DDS requester issues a new
document version with an expire time set to a reasonably short period in the future. This
updated document propagates through the space to each NSA, updating the previous
version to have the immediate expire time. All NSA receiving the document will then
have an expired version.

nsa – The source NSA associated with the generation and management of the document
within the GDS.

type - The unique string identifying the type of this document.

id – The identifier of the document. This value must be unique in the context of the NSA
and type values.

version - The version of the document, or more specifically, the date this version of the
document was created. Any updates to the document MUST be tagged with a new
version.

expires - The date this version of the document expires and should be deleted from
document space and any requesters caching the document.

signature - An OPTIONAL digital signature of the document contents.

content - The content of the document modeled by this document meta-data.

In response to this operation the following information is returned:

GWD-R 16 Dec 2016

NSI-WG 20

status – A status indication as to whether the operation was successful or failed. For the
case of operation failure informative error information must be provided.

document – The updated document (content + meta-data) from within the DDS.

lastDiscoveredTime – The time within the DDS provider that this document was updated.

addSubscription(requesterId, callback, filter)
 RETURNS status, [subscription], and [lastModifiedTime]

This operation subscribes a DDS requester for document event notifications based on the
supplied filter. Notifications will be delivered to the DDS requester’s protocol endpoint
specified in the callback parameter. This operation returns the newly created
subscription including the DDS provider generated subscription id, and the
lastModifiedTime indicating the time the subscription was created.

Once a subscription has been successfully created on the DDS provider, the provider will
immediately send notifications for all documents matching the filter criteria excluding the
event filter (In this case it consider that the event filter is set to All). This allows a DDS
requester to initialize its local cache by getting a complete list of existing documents they
are interested in monitoring. For example, if the event filter had been set to New for all
documents, then this initialization behavior will send all matching documents as if they
were just discovered.

requesterId - The identifier that the DDS requester would like to use for unique
identification. An NSA must use its unique NSA identifier for the requesterId.

callback – The DDS requester’s endpoint that will receive the notifications delivered for
this subscription.

filter - The filter criteria to apply to document events to determine if a notification should
be sent to the DDS requester.

In response to this operation the following information is returned:

status – A status indication as to whether the operation was successful or failed. For the
case of operation failure informative error information must be provided.

subscription – The created subscription from within the DDS that will contain the unique
subscription identifier.

lastModifiedTime – The time within the DDS provider that this subscription was created.

editSubscription(id, requesterId, callback, filter)
RETURNS status, [subscription], and [lastModifiedTime]

This operation allows a DDS requester to edit an existing subscription subject to access
policies. Once a subscription has been successfully edited on the DDS provider, the
provider will immediately send notifications for all documents matching the filter criteria
excluding the event filter (consider the event filter is set to All). This operation returns the
updated subscription and the lastModifiedTime indicating the time the subscription was
updated.

GWD-R 16 Dec 2016

NSI-WG 21

id – The DDS provider assigned subscription identifier returned by the addSubscription()
operation.

requesterId - The identifier the DDS requester would like to use for unique identification.
An NSA must use its unique NSA identifier for requesterId.

callback – The DDS requester’s protocol endpoint that will receive the notifications
delivered for this subscription.

filter - The filter criteria to apply to document events to determine if a notification should
be sent to the DDS requester.

In response to this operation the following information is returned:

status – A status indication as to whether the operation was successful or failed. For the
case of operation failure informative error information must be provided.

subscription – The edited subscription from within the DDS.

lastModifiedTime – The time within the DDS provider that this subscription was edited.

deleteSubscription(id) RETURNS status, and [subscription]

This operation deletes the subscription associated with id from the DDS provider subject
to access policies. The deleted subscription is returned.

id – The DDS provider assigned subscription identifier returned by the addSubscription()
operation.

In response to this operation the following information is returned:

status – A status indication as to whether the operation was successful or failed. For the
case of operation failure informative error information must be provided.

subscription – The deleted subscription from within the DDS.

getSubscriptions([requesterId], [lastModifiedTime])
 RETURNS status, list of [0..n] subscription, and [lastModifiedTime]

This operation returns a list of subscriptions and the time of the latest subscription
change on the DDS provider. If no filter parameters are supplied then all subscriptions
on the provider will be returned subject to access policies. The following optional
parameters can be supplied, and will be applied using logical AND:

requesterId – Return only subscriptions for this unique requester identifier.

lastModfiedTime – Provides a time context to the DDS provider requesting all
subscriptions that have been created or modified since the time specified in this
parameter.

In response to this operation the following information is returned:

status – A status indication as to whether the operation was successful or failed. For the
case of operation failure informative error information must be provided.

GWD-R 16 Dec 2016

NSI-WG 22

list of [0..n] subscription – A list of subscriptions within the target DDS provider matching
the query parameters.

lastModifiedTime – Time context indicating the most recent time a subscription within the
DDS provider has been created or updated.

getSubscription(id, [lastModifiedTime])
 RETURNS status, [subscription], and [lastModifiedTime]

This operation returns a single subscription identified by the id parameter and the time
this subscription was last modified subject to access policies.

id – The DDS provider assigned subscription identifier returned by the addSubscription()
operation.

LastModifiedTime – This OPTIONAL parameter provides a time context to the DDS
provider NSA requesting the subscription only be returned if it has been modified since
the time specified in this parameter.

In response to this operation the following information is returned:

status – A status indication as to whether the operation was successful or failed. For the
case of operation failure informative error information must be provided.

subscription – The subscription within the target DDS provider matching the query
parameters.

lastModifiedTime – Time context indicating the most recent time this subscription was
created or updated.

getAll([lastDiscoveredTime]) RETURNS status, list of [0..n] subscription, list of [0..n] document,
list of [0..n] local document, and [lastDiscoveredTime]

This operation returns a collection of subscriptions, documents, and local documents
discovered since lastDiscoveredTime (treating lastDiscoveredTime as lastModifiedTime
in the case of subscriptions) subject to access policies. The time of the last
discovered/modified element is also returned.

lastDiscoveredTime – This OPTIONAL parameter provides a time context to the DDS
provider NSA requesting the subscriptions and documents only be returned if it has been
modified since the time specified in this parameter.

In response to this operation the following information is returned:

status – A status indication as to whether the operation was successful or failed. For the
case of operation failure informative error information must be provided.

list of [0..n] subscription – A list of subscriptions within the target DDS provider matching
the query parameters.

list of [0..n] document – A list of documents within the target DDS provider matching the
query parameters.

GWD-R 16 Dec 2016

NSI-WG 23

list of [0..n] local document – A list of local documents within the target DDS provider
matching the query parameters.

lastDiscoveredTime – Time context indicating the most recent time a document or
subscription within the DDS provider has been discovered, created, or updated.

notificationCallback(list of [0..n] notification) RETURNS status

The DDS requester exposes this API method to receive notifications from a DDS provider
matching a previously registered active subscription.

list of [0..n] notification – A list of document notifications matching a previously active
registered subscription.

In response to this callback the DDS requester returns the following information:

status – A status indication as to whether the operation was successful or failed. For the
case of operation failure informative error information must be provided.

9 NSA Bootstrap Procedure

This section forms a normative part of this recommendation.

One of the important uses of the NSI Document Distribution Service is the simplification of NSA
provisioning through dynamic retrieval of the NSA Description Document. Utilizing the meta-data
contained in a peer NSA’s Description Document it is possible to programmatically configure
most of the information required to bring up the NSI suite of protocols. This section describes a
basic procedure that can be followed that is compliant with the NSI 2.0 protocol suite.

To bring up NSI communication between two peer NSAs, the NSA administrators must configure
a local peering relationship:

1. Exchange TLS certificates and NSI Document Distribution Service endpoints with the
system administrator of the peer DDS agent.

2. Provision a remote peer TLS certificate in the local NSA’s local trust store to enable
transport communications.

3. Provision a peer certificate DN in NSA authorization module if additional application level
validation is desired.

4. Provision the NSI Document Distribution Service URL in NSA for bootstrap procedure.

On NSA peering initialization:

1. The local NSA connects to Document Distribution Service on a peer NSA using the
configured endpoint and TLS as a transport.

2. The local NSA performs a getLocalDocuments() operation to retrieve the peer NSA’s
Description Document and any other documents associated with the peer NSA.

3. The NSA identifier of the peer NSA and all associated Networks are now known.
4. For each NSI service on local NSA, determine highest common interface version

described in the peer NSA’s Description Document. The decision about the version of
the interface to use is made by the NSA in the RA role

5. Utilize interfaces and feature information as need.

For uRA (requester only NSA) this procedure is optional if the administrator would rather
manually provision the required information.

GWD-R 16 Dec 2016

NSI-WG 24

10 Peer flooding and version sequencing

This section forms a normative part of this recommendation.

Due to the selective connectivity between NSAs and the transfer latency between any pair, it is
important that the NSI Document Distribution Service facilitate convergence of information over
all the DDS providers. Figure 8 shows an example of such a scenario.

Figure 4 – Document flooding.

1. At time=T0, NSA-A (a uPA) produces a document A0 (i.e. document “A”, version “0”) and

pushes it to NSA-C (an AG)
2. At time=T0, NSA-B (a uPA) produces a document B0 and pushes it to NSA-C and NSA-D

(an AG)
3. At time=T1, NSA-D sends a subscribe to NSA-C for all documents
4. At time=T2, NSA-A produces a document A2 and pushes it to NSA-C
5. At time=T2, NSA-C receives document B0 from NSA-B and sends a copy to NSA-D (base

on the subscribe request time=T1)
6. At time=T2, NSA-D receives document B0 from NSA-B
7. At time=T4, NSA-A produces a document A4 and pushes it to NSA-C
8. At time=T4, NSA-C receives document A0 from NSA-A and sends a copy to NSA-D
9. At time=T4, NSA-D receives document B0 from NSA-C (base on the subscribe request at

time=T1) but discards it because it already has a copy of document B0 (from NSA-B
received at time=T2)

10. At time=T6, NSA-C receives document A2 (which deprecates A0) from NSA-A and sends
a copy to NSA-D

11. At time=T6, NSA-D receives document A0 from NSA-C
12. At time=T7, NSA-E (a uPA) sends a request to NSA-D for all documents that it knows

about
13. At time=T8, NSA-C receives document A4 (which deprecates A2) from NSA-A and sends

a copy to NSA-D
14. At time=T8, NSA-D receives document A2 (which deprecates A0) from NSA-C

GWD-R 16 Dec 2016

NSI-WG 25

15. At time=T8, NSA-E receives document B0 and A0 from NSA-D
16. At time=T10, NSA-D receives document A4 (which deprecates A2) from NSA-C
17. At time=T11, NSA-E sends a request to NSA-D for all new documents that it (NSA-D) has

learned about since time=T7
18. At time=T12, NSA-E receives document A4 (which deprecates A0) from NSA-D

11 REST-based Protocol Profile

This section forms a normative part of this recommendation.
The NSI Document Distribution Service is implemented using a REST-based design pattern to
create an HTTP based web service. This provides a lighter weight design than the NSI CS SOAP
based specification, and simplifies the overall protocol stack for a discovery service that needs to
be as simple as possible. This section provides a mapping from the abstract Document
Distribution Service operations to concrete HTTP binding for the protocol. More information on
the REST design pattern and best practices can be found in [FIELDING] and [RICH].

Table 2 describes the basic resources modeled in the Document Distribution Service REST API
and the HTTP methods supported on the resources. As a standard design pattern, this protocol
uses the HTTP GET method of retrieving and querying resources, the POST method for creating
new instances of resources, the PUT method for updating a resource, and the DELETE method
for deleting a resource.

Table 2 – Resources.

Resource Methods Description
collection GET This root resource contains a collection of zero or more

subscriptions and documents held within the NSA.
subscriptions GET, POST This resource represents a group of zero or more subscription

instances.
subscription GET, PUT, DELETE This resource represents a single subscription instance.
documents GET, POST This resource represents a group of zero or more document

instances.
document GET, PUT This resource represents a single document instance.
local GET This resource represents a group of zero or more document

instances associated with the local NSA.

GWD-R 16 Dec 2016

NSI-WG 26

Table 3 describes the URI template mappings for the resources previously described.

Table 3 – URIs.

Resource URI Description
collection / Using root URI with a GET operation will return a collection of

zero or more subscriptions and documents held within the
NSA.

subscriptions /subscriptions Using this URI with a GET operation will return a group of zero
or more subscription instances.

Using this URI with a POST operation will create a new
subscription with the supplied criteria.

subscription /subscriptions/{subscriptionId} Use this URI template to access a single subscription instance
based on subscription identifier.

Using a GET operation will get the subscription identified by
{subscriptionId}.

Using a PUT operation will update the subscription identified
by {subscriptionId} with the values supplied in the PUT body
(subscriptionRequest element).

Using a DELETE operation will remove the subscription
identified by {subscriptionId}.

documents /documents Using this URI with a GET operation will return a group of zero

or more document instances.

Using this URI with a POST operation will create a new
document with the supplied values (document element).

documents /documents/{nsaId} Use this URI template to access a list of document instances
associated with an NSA identifier.

Using this URI with a GET operation will return a group of zero
or more document instances associated with the NSA
identified by {nsaId}.

documents /documents/{nsaId}/{type} Use this URI template to access a list of document instances
associated with an NSA identifier and specific document type.

Using this URI with a GET operation will return a group of zero
or more document instances of the document type {type}
associated with the NSA identified by {nsaId}.

document /documents/{nsaId}/{type}/{id} Use this URI template to access a single document instance
associated with an NSA identifier, document type, and
document identifier.

Using this URI with a GET operation will return a single
document instance (document element) associated with the
document identifier {id}, the type {type}, and the NSA identified
by {nsaId}.

Using a PUT operation will update the document identified by
{id} with the values supplied in the PUT body (document
element). This can only be done by an authorized entity. This
is the mechanism to provide an updated version of the
document.

local /local Using this URI with a GET operation will return a group of zero
or more document instances associated with the local NSA.

GWD-R 16 Dec 2016

NSI-WG 27

11.1 Content Encodings

The NSI Document Distribution Service Protocol mappings utilize custom MIME types carried in
the Content-Type and Accept HTTP header parameters to identify the version of the resources
carried in the HTTP body. Resources are intentionally defined to be generic enough that they
should not need to be up-versioned. In the case that the protocol needs to identify a change in
format of the resource, a new MIME type can be created.

On the HTTP POST and PUT request the Content-Type parameter identifies the version of
resource carried in the body of the operation, and the Accept parameter identifies the version of
resource acceptable on output. The HTTP response contains a Content-Type parameter
identifying the version of resource contained in the response.

 The following string uniquely identifies this version of the document distribution service:

“vnd.ogf.nsi.dds.v1”

The following MIME type is defined to identify the XML content encoding for this specific version
of the service:

“application/vnd.ogf.nsi.dds.v1+xml”

The default content encoding for XML MUST also be supported for the newest version of the
service:

“application/xml”

Further content encodings, including JSON, MAY be specified in a future version of the standard
as needed.

11.2 Operations

This section describes the mappings of the abstract Document Distribution Service API
operations to the physical REST-based service.

11.2.1 getDocuments

Method: GET /documents
This operation returns all document instances discovered within the document space, or a subset
of documents based on supplied query parameters. Zero or more document instances are
returned in the documents element. Any results returned are based on the permissions of the
DDS requester.

The URI template “/documents/{nsa}/{type}” can be used as an alternative to, or in conjunction
with, the use of query parameters. Performing a GET on “/documents/{nsa}/” returns all
documents associated with the specified NSA. Performing a GET on “/documents/{nsa}/{type}”
returns all documents of {type} from the specified NSA.

Header Parameters
The following header parameters are supported for the documents resource.

Parameter Value Description
Accept String Identifies the content type encoding requested for

GWD-R 16 Dec 2016

NSI-WG 28

the returned results. Must be a content type
supported by the protocol.

If-Modified-Since RFC1123 date string Constrains the GET request to return only those
documents that have been created or updated
since the time specified in this parameter.

If the query on the documents resource would have
returned results, but applying these criteria results
in an empty set of documents, a 304 (not modified)
response will be returned without any message-
body.

Query Parameters
The following query parameters are supported for the subscriptions resource. Query parameters
are applied with a logical AND when there is more than one.

Parameter Value Description
id String Return all document resources containing the

specified Id.
nsa String Returns all document resources containing the

specified nsa identifier. Cannot be used if the
{nsa} URI component is provided.

type String Returns all document resources containing the
specified type. Cannot be used if the {type} URI
component is provided.

summary True/false Returns summary results of any documents
matching the query criteria. Summary results
includes all document meta-data but not the
signature or document contents.

Returns
The following information can be returned in response to the query.

Status Code Element Description

200 documents Returns the documents element containing all document
resources matching the query. If no documents match the
query, then an empty documents element is returned.

304 N/A Successful operation where there were no changes to any
document resource given the If-Modified-Since criteria.
Returns no message body.

400 error Returned if a DDS requester specifies an invalid request. An
error element will be included populated with appropriate
error information.

401 error Returned if the DDS requester is not authorized to perform
the requested operation or access the targeted resource. An
error element will be included populated with appropriate
error information.

500 error Returned if an internal server error occurred during the
processing of this request. An error element will be included
populated with appropriate error information.

Example

GWD-R 16 Dec 2016

NSI-WG 29

The following example shows a valid GET request on the “/documents” resource with a type
query parameter. The result is a list of document resources matching the query parameter after
any access control was applied:

GET /documents?type=vnd.ogf.nsi.topology.v2+xml HTTP/1.1
Accept: application/vnd.ogf.nsi.dds.v1+xml

HTTP/1.1 200 OK
Date: Mon, 10 Feb 2014 22:12:59 GMT
Content-Length: 648
Last-Modified: Mon, 10 Feb 2014 22:12:05 GMT
Content-Type: application/vnd.ogf.nsi.dds.v1+xml
<?xml version="1.0" encoding="UTF-8"?>
<tns:documents xmlns:tns="http://schemas.ogf.org/nsi/2013/04/discovery/types"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <tns:document id="urn:ogf:network:example.com:2013:network:candycaneforest"
 version="2014-02-10T22:20:58Z" expires="2014-02-11T22:20:58Z">
 <nsa>urn:ogf:network:example.com:2013:nsa:vixen</nsa>
 <type>vnd.ogf.nsi.topology.v2+xml</type>
 <signature>...</signature>
 <content>...</content>
 </tns:document>
 <tns:document id="urn:ogf:network:example.com:2013:network:lincolntunnel"
 version="2014-02-10T22:15:10Z" expires="2014-02-11T22:15:10Z">
 <nsa>urn:ogf:network:example.com:2013:nsa:prancer</nsa>
 <type>vnd.ogf.nsi.topology.v2+xml</type>
 <signature> ... </signature>
 <content> ... </content>
 </tns:document>
</tns:documents>

11.2.2 getLocalDocuments

Method: GET /local
A DDS requester can perform a GET operation on the special “/local” URI when the DDS
requester would like to discover all documents associated with the local NSA. The local NSA
returns a documents element containing a list of zero or more document instances associated
with the local NSA. This operation is equivalent to performing a GET operation on the URI
“/documents/{nsa}”, however, for “/local” the DDS requester is not required to have previous
knowledge of the local NSA identifier.

The URI template “/local/{type}” can be used as an alternative to, or in conjunction with, the use
of query parameters. Performing a GET on “/local/{type}/” will return all documents of {type}
associated with the local NSA.

Header Parameters
The following header parameters are supported for the documents resource.

Parameter Value Description
Accept String Identifies the content type encoding requested for

the returned results. Must be a content type
supported by the protocol.

If-Modified-Since RFC1123 date string Constrains the GET request to return only those
documents that have been created or updated
since the time specified in this parameter.

If the query on the documents resource would have
returned results, but applying these criteria results
in an empty set of documents, a 304 (not modified)

GWD-R 16 Dec 2016

NSI-WG 30

response will be returned without any message-
body.

Query Parameters
The following query parameters are supported for the subscriptions resource. Query parameters
are applied with a logical AND when there is more than one.

Parameter Value Description
id String Returns all document resources containing the

specified Id.
type String Returns all document resources containing the

specified type.
summary True/false Returns summary results of any documents

matching the query criteria. Summary results
includes all document meta-data but not the
signature or document content.

Returns
The following information can be returned in response to the query.

Status Code Element Description

200 local Returns the documents element containing all document
resources matching the query. If no documents match the
query, then an empty documents element is returned.

304 NA Successful operation where there were no changes to any
document resource given the If-Modified-Since criteria.
Returns no message body.

400 error Returned if a DDS requester specifies an invalid request. An
error element will be included populated with appropriate
error information.

401 error Returned if the DDS requester is not authorized to perform
the requested operation or access the targeted resource. An
error element will be included populated with appropriate
error information.

500 error Returned if an internal server error occurred during the
processing of this request. An error element will be included
populated with appropriate error information.

Example
The following example shows a valid GET request on the “/local” resource with a type query
parameter. The result is a list of document resources matching the query parameter after any
access control was applied:

GET /local?type=vnd.ogf.nsi.topology.v2+xml HTTP/1.1
Accept: application/vnd.ogf.nsi.dds.v1+xml

HTTP/1.1 200 OK
Date: Mon, 10 Feb 2014 22:12:59 GMT
Content-Length: 648
Last-Modified: Mon, 10 Feb 2014 22:12:05 GMT
Content-Type: application/vnd.ogf.nsi.dds.v1+xml
<?xml version="1.0" encoding="UTF-8"?>
<tns:local xmlns:tns="http://schemas.ogf.org/nsi/2013/04/discovery/types"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <tns:document id="urn:ogf:network:example.com:2013:network:candycaneforest"

GWD-R 16 Dec 2016

NSI-WG 31

 version="2014-02-10T22:20:58Z" expires="2014-02-11T22:20:58Z">
 <nsa>urn:ogf:network:example.com:2013:nsa:vixen</nsa>
 <type>vnd.ogf.nsi.topology.v2+xml</type>
 <signature>...</signature>
 <content>...</content>
 </tns:document>
 <tns:document id="urn:ogf:network:example.com:2013:network:lincolntunnel"
 version="2014-02-10T22:15:10Z" expires="2014-02-11T22:15:10Z">
 <nsa>urn:ogf:network:example.com:2013:nsa:prancer</nsa>
 <type>vnd.ogf.nsi.topology.v2+xml</type>
 <signature> ... </signature>
 <content> ... </content>
 </tns:document>
</tns:local>

11.2.3 addDocument

Method: POST /documents
The POST operation on the “/documents” resource will create a new document using the
information supplied in the document element contained in the POST body. A successful
operation will return the new document resource. This operation has restricted access for DDS
requesters and is made available by the DDS provider based on access control permissions.

Once a document has been successfully created on the DDS provider, the provider will
immediately send notifications to all subscriptions with filter criteria matching the document.

Header Parameters
The following header parameters are supported for the request for a new document resource.

Parameter Value Description
Content-Type String Identifies the content type encoding of the POST body

contents. Must be a content type supported by the
protocol.

Accept String Identifies the content type encoding requested for the
returned results. Must be a content type supported by
the protocol.

Body Parameters
The POST request must contain the document element containing the parameters of the
document resource to be created.

Parameter Value Description

Id xsd:string The identifier of the document. This value must be unique
in the context of the nsa and type values.

version xsd:dateTime The version of the document. Typically the date this
version of the document was created. Any updates to the
document must be tagged with a new version.

expires xsd:dateTime The date this version of the document expires and should
be deleted from the NSA (local DS instance) and any DDS
requesters caching the document.

Nsa xsd:anyURI The source NSA associated with the generation and
management of the document.

type xsd:string The unique string identifying the type of this document.
signature ContentType The OPTIONAL digital signature of the document content.
content ContentType The content of the document modeled by this document

resource.

GWD-R 16 Dec 2016

NSI-WG 32

Returns
The following information can be returned in response to the POST.

Status Code Element Description

201 document Returns a copy of the new document resource created as the
result of a successful operation.

The HTTP Location header field will contain the direct URI
reference of the new document resource. It will be
structured using the URI template
$root/documents/{nsa}/{type}/{id}.

400 error Returned if a DDS requester specifies an invalid request. An
error element will be included populated with appropriate
error information.

401 error Returned if the DDS requester is not authorized to perform
the requested operation or access the targeted resource. An
error element will be included populated with appropriate
error information.

409 error A document already exists with the same name (nsa/type/id).
An update of an existing document should use the PUT
operation.

500 error Returned if an internal server error occurred during the
processing of this request. An error element will be included
populated with appropriate error information.

Example
The following example shows a valid POST request on the “/documents” resource:

POST /documents HTTP/1.1
Accept: application/vnd.ogf.nsi.dds.v1+xml
Content-Type: application/vnd.ogf.nsi.dds.v1+xml
<?xml version="1.0" encoding="UTF-8"?>
<tns:document xmlns:tns="http://schemas.ogf.org/nsi/2013/04/discovery/types"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 id="urn:ogf:network:example.com:2013:network:candycaneforest"
 version="2014-02-10T22:20:58Z" expires="2014-02-11T22:20:58Z">
 <nsa>urn:ogf:network:example.com:2013:nsa:vixen</nsa>
 <type>vnd.ogf.nsi.topology.v2+xml</type>
 <signature>...</signature>
 <content>...</content>
</tns:document>

HTTP/1.1 201 Created
Date: Mon, 10 Feb 2014 22:21:59 GMT
Content-Length: 563
Last-Modified: Mon, 10 Feb 2014 22:21:58 GMT
Content-Type: application/vnd.ogf.nsi.dds.v1+xml
Location:
/documents/urn:ogf:network:example.com:2013:nsa:vixen/vnd.ogf.nsi.topology.v2+xml/urn:ogf:
network:example.com:2013:network:candycaneforest
<?xml version="1.0" encoding="UTF-8"?>
<tns:document xmlns:tns="http://schemas.ogf.org/nsi/2013/04/discovery/types"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 id="urn:ogf:network:example.com:2013:network:candycaneforest"
 version="2014-02-10T22:20:58Z" expires="2014-02-11T22:20:58Z">
 <nsa>urn:ogf:network:example.com:2013:nsa:vixen</nsa>
 <type>vnd.ogf.nsi.topology.v2+xml</type>
 <signature>...</signature>
 <content>...</content>
</tns:document>

GWD-R 16 Dec 2016

NSI-WG 33

11.2.4 getDocument

Method: GET /documents/{nsa}/{type}/{id}
This operation will return a specific document instance discovered within the document space,
subject to access policy, based on the URI template “/documents/{nsa}/{type}/{id}”, where {nsa} is
the NSA sourcing the document, {type} is the type of document, and {id} is the identifier of the
specific document. The matching document is returned in a single document element.

Header Parameters
The following header parameters are supported for the subscriptions resource.

Parameter Value Description
Accept String Identifies the content type encoding requested for

the returned results. Must be a content type
supported by the protocol.

If-Modified-Since RFC1123 date string Constrains the GET request to return the matching
document only if it has been updated since the time
specified in this parameter.

If the subscription resource does not meet these
criteria, a 304 (not modified) response will be
returned without any message-body.

Query Parameters
None.

Returns
The following information can be returned in response to the GET of a subscription.

Status Code Element Description

200 document Successful operation returns the document identified by
{nsa}/{type}/{id} in a document element.

The Last-Modified header parameter will contain the time this
document resource was last discovered.

304 NA Successful operation where there were no changes to the
document resource given the If-Modified-Since criteria.
Returns no message body.

400 error Returned if a DDS requester specifies an invalid request. An
error element will be included populated with appropriate
error information.

401 error Returned if the DDS requester is not authorized to perform
the requested operation or access the targeted resource. An
error element will be included populated with appropriate
error information.

404 error Returned if the requested document was not found. An error
element will be included populated with appropriate error
information.

500 error Returned if an internal server error occurred during the
processing of this request. An error element will be included
populated with appropriate error information.

GWD-R 16 Dec 2016

NSI-WG 34

Example
The following example shows a valid GET request on the document resource identified by the
URI
“/documents/urn:ogf:network:example.com:2013:nsa:vixen/vnd.ogf.nsi.topology.v2+xml/urn:ogf:n
etwork:example.com:2013:network:candycaneforest”. The result is a single document resource:

GET
/documents/urn:ogf:network:example.com:2013:nsa:vixen/vnd.ogf.nsi.topology.v2+xml/urn:ogf:
network:example.com:2013:network:candycaneforest HTTP/1.1
Accept: application/vnd.ogf.nsi.dds.v1+xml

HTTP/1.1 200 OK
Date: Mon, 10 Feb 2014 22:21:59 GMT
Content-Length: 563
Last-Modified: Mon, 10 Feb 2014 22:21:58 GMT
Content-Type: application/vnd.ogf.nsi.dds.v1+xml
<?xml version="1.0" encoding="UTF-8"?>
<tns:document xmlns:tns="http://schemas.ogf.org/nsi/2013/04/discovery/types"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 id="urn:ogf:network:example.com:2013:network:candycaneforest"
 version="2014-02-10T22:20:58Z" expires="2014-02-11T22:20:58Z">
 <nsa>urn:ogf:network:example.com:2013:nsa:vixen</nsa>
 <type>vnd.ogf.nsi.topology.v2+xml</type>
 <signature>...</signature>
 <content>...</content>
</tns:document>

11.2.5 updateDocument

Method: PUT /documents/{nsa}/{type}/{id}
The PUT operation on the “/documents/{nsa}/{type}/{id}” resource will allow a DDS requester to
edit the document corresponding to the identifier {id}, subject to access policy, using the
information supplied in the document element contained in the PUT body. A successful operation
will return the modified document and trigger any associated notifications within the NSA.

A document is deleted from the document space by updating it’s expire date to a reasonably
short period in the future. This updated document will get propagated throughout the document
space and then expire, removing it from the space.

Header Parameters
The following header parameters are supported for the request edit a document resource.

Parameter Value Description
Content-Type String Identifies the content type encoding of the PUT body

contents. Must be a content type supported by the
protocol.

Accept String Identifies the content type encoding requested for the
returned results. Must be a content type supported by
the protocol.

Body Parameters
The PUT request must contain the document element containing the existing parameters of the
document resource if they were not modified, as well as any new/edited values.

Parameter Value Description
id xsd:string The identifier of the document. This value must be

GWD-R 16 Dec 2016

NSI-WG 35

unique in the context of the nsa and type values.
version xsd:dateTime The version of the document. Typically the date this

version of the document was created. Any updates to
the document must be tagged with a new version.

expires xsd:dateTime The date this version of the document expires and
should be deleted from the NSA (document server) and
any DDS requesters caching the document.

nsa xsd:anyURI The source NSA associated with the generation and
management of the document.

type xsd:string The unique string identifying the type of this document.
signature ContentType The OPTIONAL digital signature of the document

content.
content ContentType The content of the document modeled by this document

resource.

Returns
The following information can be returned in response to the PUT.

Status Code Element Description

200 document Returns a copy of the modified document resource as the
result of a successful operation.

400 error Returned if a DDS requester specifies an invalid request. An
error element will be included populated with appropriate
error information.

401 error Returned if the DDS requester is not authorized to perform
the requested operation or access the targeted resource. An
error element will be included populated with appropriate
error information.

404 error Returned if the requested document was not found. An error
element will be included populated with appropriate error
information.

500 error Returned if an internal server error occurred during the
processing of this request. An error element will be included
populated with appropriate error information.

Example
The following example shows a valid PUT request on the document
“/documents/urn:ogf:network:example.com:2013:nsa:vixen/vnd.ogf.nsi.topology.v2+xml/urn:ogf:n
etwork:example.com:2013:network:candycaneforest” with updated version and expire attributes.

PUT
/documents/urn:ogf:network:example.com:2013:nsa:vixen/vnd.ogf.nsi.topology.v2+xml/urn:ogf:
network:example.com:2013:network:candycaneforest HTTP/1.1
Accept: application/vnd.ogf.nsi.dds.v1+xml
Content-Type: application/vnd.ogf.nsi.dds.v1+xml
<?xml version="1.0" encoding="UTF-8"?>
<tns:document xmlns:tns="http://schemas.ogf.org/nsi/2013/04/discovery/types"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 id="urn:ogf:network:example.com:2013:network:candycaneforest"
 version="2014-02-12T22:20:58Z" expires="2014-02-13T22:20:58Z">
 <nsa>urn:ogf:network:example.com:2013:nsa:vixen</nsa>
 <type>vnd.ogf.nsi.topology.v2+xml</type>
 <signature>...</signature>
 <content>...</content>
</tns:document>

HTTP/1.1 200 OK

GWD-R 16 Dec 2016

NSI-WG 36

Date: Mon, 12 Feb 2014 22:20:59 GMT
Content-Length: 563
Last-Modified: Mon, 12 Feb 2014 22:20:58 GMT
Content-Type: application/vnd.ogf.nsi.dds.v1+xml
Location: /
documents/urn:ogf:network:example.com:2013:nsa:vixen/vnd.ogf.nsi.topology.v2+xml/urn:ogf:n
etwork:example.com:2013:network:candycaneforest
<?xml version="1.0" encoding="UTF-8"?>
<tns:document xmlns:tns="http://schemas.ogf.org/nsi/2013/04/discovery/types"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 id="urn:ogf:network:example.com:2013:network:candycaneforest"
 version="2014-02-12T22:20:58Z" expires="2014-02-13T22:20:58Z">
 <nsa>urn:ogf:network:example.com:2013:nsa:vixen</nsa>
 <type>vnd.ogf.nsi.topology.v2+xml</type>
 <signature>...</signature>
 <content>...</content>
</tns:document>

11.2.6 getSubscriptions

Method: GET /subscriptions
Return a subscriptions element containing a list of zero or more subscription instances based on
supplied parameters and permissions of the DDS requester, subject to access policy.

Header Parameters
The following header parameters are supported for the subscriptions resource.

Parameter Value Description
Accept String Identifies the content type encoding requested for

the returned results. Must be a content type
supported by the protocol.

If-Modified-Since RFC1123 date string Constrains the GET request to return only those
subscriptions that have been created or updated
since the time specified in this parameter.

If the query on the subscriptions resource would
have returned results, but applying these criteria
results in an empty set of documents, a 304 (not
modified) response will be returned without any
message-body.

Query Parameters
The following query parameters are supported for the subscriptions resource.

Parameter Value Description
requesterId String Returns all subscription resources containing

the specified requesterId.

Returns
The following information can be returned in response to the query.

Status Code Element Description

200 subscriptions Returns all subscription resources matching the query in a
subscriptions element. If no subscriptions match the query,
then an empty subscriptions element is returned.

304 NA Successful operation where there were no changes to any

GWD-R 16 Dec 2016

NSI-WG 37

subscription resources matching the query filter given the If-
Modified-Since criteria. Returns no message body.

400 error Returned if a DDS requester specifies an invalid request. An
error element will be included populated with appropriate
error information.

401 error Returned if the DDS requester is not authorized to perform
the requested operation or access the targeted resource. An
error element will be included populated with appropriate
error information.

500 error Returned if an internal server error occurred during the
processing of this request. An error element will be included
populated with appropriate error information.

Example
The following example shows a valid GET request on the “/subscriptions” resource with a
requesterId query parameter. The result is a list of subscription resources matching the query
parameter after any access control is applied:

GET /subscriptions?requesterId=urn:ogf:network:example.com:2013:nsa:dasher HTTP/1.1
Accept: application/vnd.ogf.nsi.dds.v1+xml

HTTP/1.1 200 OK
Date: Mon, 10 Feb 2014 22:12:59 GMT
Content-Length: 648
Last-Modified: Mon, 10 Feb 2014 22:12:05 GMT
Content-Type: application/vnd.ogf.nsi.dds.v1+xml
<?xml version="1.0" encoding="UTF-8"?>
<tns:subscriptions xmlns:tns="http://schemas.ogf.org/nsi/2013/04/discovery/types"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <tns:subscription

id="9e223d413578"
href="/subscriptions/9e223d413578"
version=”2014-02-10T22:12:05Z”>

 <requesterId>urn:ogf:network:example.com:2013:nsa:dasher</requesterId>
 <callback>http://dasher.example.com/discovery/callback</callback>
 <filter>
 <include>
 <event>All</event>
 </include>
 </filter>
 </tns:subscription>
</tns:subscriptions>

11.2.7 addSubscription

Method: POST /subscriptions
The POST operation on the “/subscriptions” resource will create a new subscription using the
information supplied in the subscriptionRequest element contained in the POST body, subject to
access policy. A successful operation will return the new subscription.

Once a subscription has been successfully created on the server, the server will immediately
send notifications for all documents matching the filter criteria independent of the event filter.

Header Parameters
The following header parameters are supported for the request for a new subscription resource.

Parameter Value Description
Content-Type String Identifies the content type encoding of the POST body

GWD-R 16 Dec 2016

NSI-WG 38

contents. Must be a content type supported by the
protocol.

Accept String Identifies the content type encoding requested for the
returned results. Must be a content type supported by
the protocol.

Body Parameters
The POST request must contain the subscriptionRequest element containing the initial
parameters of the subscription resource to be created.

Parameter Value Description
requesterId xsd:string The identifier the requesting DDS requester

would like to use for unique identification. An
NSA must use its unique NSA identifier for
requesterId.

callback xsd:anyURI The HTTP endpoint on the DDS requester host
that will receive the notifications delivered for
this subscription.

filter FilterType The filter criteria to apply to document events to
determine if a notification should be sent to the
DDS requester.

Returns
The following information can be returned in response to the POST.

Status Code Element Description

201 subscription Returns a copy of the new subscription resource created as
the result of a successful operation.

The HTTP Location header field will contain the URI of the
new subscription resource.

400 error Returned if a DDS requester specifies an invalid request. An
error element will be included populated with appropriate
error information.

401 error Returned if the DDS requester is not authorized to perform
the requested operation or access the targeted resource. An
error element will be included populated with appropriate
error information.

500 error Returned if an internal server error occurred during the
processing of this request. An error element will be included
populated with appropriate error information.

Example
The following example shows a valid POST request on the “/subscriptions” resource:

POST /subscriptions HTTP/1.1
Accept: application/vnd.ogf.nsi.dds.v1+xml
Content-Type: application/vnd.ogf.nsi.dds.v1+xml
<?xml version="1.0" encoding="UTF-8"?>
<tns:subscriptionRequest
 xmlns:tns="http://schemas.ogf.org/nsi/2013/04/discovery/types"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <requesterId>urn:ogf:network:example.com:2013:nsa:dasher</requesterId>
 <callback>http://dasher.example.com/discovery/callback</callback>
 <filter>

GWD-R 16 Dec 2016

NSI-WG 39

 <include>
 <event>All</event>
 </include>
 </filter>
</tns:subscriptionRequest>

HTTP/1.1 201 Created
Date: Mon, 10 Feb 2014 22:12:59 GMT
Content-Length: 405
Last-Modified: Mon, 10 Feb 2014 22:12:05 GMT
Content-Type: application/vnd.ogf.nsi.dds.v1+xml
Location: /subscriptions/9e223d413578
<?xml version="1.0" encoding="UTF-8"?>
<tns:subscription

id="9e223d413578"
href="/subscriptions/9e223d413578"
version=”2014-02-10T22:12:05Z”>

 <requesterId>urn:ogf:network:example.com:2013:nsa:dasher</requesterId>
 <callback>http://dasher.example.com/discovery/callback</callback>
 <filter>
 <include>
 <event>All</event>
 </include>
 </filter>
</tns:subscription>

11.2.8 getSubscription

Method: GET /subscriptions/{id}
Returns a subscription element containing the subscription instance identified by the {id}
parameter of the subscription, subject to access policy.

Header Parameters
The following header parameters are supported for the subscriptions resource.

Parameter Value Description
Accept String Identifies the content type encoding requested for

the returned results. Must be a content type
supported by the protocol.

If-Modified-Since RFC1123 date string Constrains the GET request to return the matching
subscription only if it has been updated since the
time specified in this parameter.

If the subscription resource does not meet these
criteria, a 304 (not modified) response will be
returned without any message-body.

Query Parameters
None.

Returns
The following information can be returned in response to the GET of a subscription.

Status Code Element Description

200 subscription Successful operation returns the subscription identified by id
in a subscription element.

The Last-Modified header parameter will contain the time this

GWD-R 16 Dec 2016

NSI-WG 40

subscription resource was last modified.
304 NA Successful operation where there were no changes to the

subscription resource identified by id given the If-Modified-
Since criteria. Returns no message body.

400 error Returned if a DDS requester specifies an invalid request. An
error element will be included populated with appropriate
error information.

401 error Returned if the DDS requester is not authorized to perform
the requested operation or access the targeted resource. An
error element will be included populated with appropriate
error information.

404 error Returned if the requested subscription was not found. An
error element will be included populated with appropriate
error information.

500 error Returned if an internal server error occurred during the
processing of this request. An error element will be included
populated with appropriate error information.

Example
The following example shows a valid GET request on the resource identified by
id=”9e223d413578”, and URI “/subscriptions/9e223d413578”. The result is a single subscription
resource matching the specified id:

GET /subscriptions/9e223d413578 HTTP/1.1
Accept: application/vnd.ogf.nsi.dds.v1+xml

HTTP/1.1 200 OK
Date: Mon, 10 Feb 2014 22:12:59 GMT
Content-Length: 405
Last-Modified: Mon, 10 Feb 2014 22:12:05 GMT
Content-Type: application/vnd.ogf.nsi.dds.v1+xml
<?xml version="1.0" encoding="UTF-8"?>
<tns:subscription

id="9e223d413578"
href="/subscriptions/9e223d413578"
version=”2014-02-10T22:12:05Z”>

 <requesterId>urn:ogf:network:example.com:2013:nsa:dasher</requesterId>
 <callback>http://dasher.example.com/discovery/callback</callback>
 <filter>
 <include>
 <event>All</event>
 </include>
 </filter>
</tns:subscription>

11.2.9 editSubscription

Method: PUT /subscriptions/{id}
The PUT operation on the “/subscriptions/{id}” resource will allow a DDS requester to edit the
subscription corresponding to the identifier {id}, subject to access policy, using the information
supplied in the subscriptionRequest element contained in the PUT body. A successful operation
will return the modified subscription.

Header Parameters
The following header parameters are supported for the update request for a subscription
resource.

GWD-R 16 Dec 2016

NSI-WG 41

Parameter Value Description
Content-Type String Identifies the content type encoding of the PUT body

contents. Must be a content type supported by the
protocol.

Accept String Identifies the content type encoding requested for the
returned results. Must be a content type supported by
the protocol.

Body Parameters
The PUT request must contain the subscriptionRequest element containing the existing
parameters of the subscription resource if they were not modified, as well as any new/edited
values. For example, if the filter parameter is being edited, then the requesterId and callback URI
must be supplied with their existing values.

Parameter Value Description
requesterId xsd:string The identifier the requesting DDS requester

would like to use for unique identification. An
NSA must use its unique NSA identifier for
requesterId.

callback xsd:anyURI The HTTP endpoint on the DDS requester that
will receive the notifications delivered for this
subscription.

filter FilterType The filter criteria to apply to document events to
determine if a notification should be sent to the
DDS requester.

Returns
The following information can be returned in response to the PUT.

Status Code Element Description

200 subscription Returns a copy of the modified subscription resource as the
result of a successful operation.

400 error Returned if a DDS requester specifies an invalid request. An
error element will be included populated with appropriate
error information.

401 error Returned if the DDS requester is not authorized to perform
the requested operation or access the targeted resource. An
error element will be included populated with appropriate
error information.

404 error Returned if the requested subscription was not found. An
error element will be included populated with appropriate
error information.

500 error Returned if an internal server error occurred during the
processing of this request. An error element will be included
populated with appropriate error information.

Example
The following example shows a valid PUT request on the “/subscription/9e223d413578” resource,
editing the filter to include a new Updated event for the NSA “dasher”. Notice that only those
parameters that can be edited are included. In addition, the updated subscription resource will
have a new version number corresponding to this update.

PUT /subscriptions/9e223d413578 HTTP/1.1

GWD-R 16 Dec 2016

NSI-WG 42

Accept: application/vnd.ogf.nsi.dds.v1+xml
Content-Type: application/vnd.ogf.nsi.dds.v1+xml
<?xml version="1.0" encoding="UTF-8"?>
<tns:subscriptionRequest
 xmlns:tns="http://schemas.ogf.org/nsi/2013/04/discovery/types"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <requesterId>urn:ogf:network:example.com:2013:nsa:dasher</requesterId>
 <callback>http://dasher.example.com/discovery/callback</callback>
 <filter>
 <include>
 <event>New</event>
 </include>
 <include>
 <event>Updated</event>
 <or><nsa>urn:ogf:network:example.com:2013:nsa:prancer</nsa></or>
 </include>
 </filter>
</tns:subscriptionRequest>

HTTP/1.1 200 OK
Date: Mon, 10 Feb 2014 22:20:59 GMT
Content-Length: 556
Last-Modified: Mon, 10 Feb 2014 22:20:58 GMT
Content-Type: application/vnd.ogf.nsi.dds.v1+xml
<?xml version="1.0" encoding="UTF-8"?>
<tns:subscription

id="9e223d413578"
href="/subscriptions/9e223d413578"
version=”2014-02-10T22:20:58Z”>

 <requesterId>urn:ogf:network:example.com:2013:nsa:dasher</requesterId>
 <callback>http://dasher.example.com/discovery/callback</callback>
 <filter>
 <include>
 <event>All</event>
 </include>
 <include>
 <event>Updated</event>
 <or><nsa>urn:ogf:network:example.com:2013:nsa:prancer</nsa></or>
 </include>
 </filter>
</tns:subscription>

11.2.10 deleteSubscription

Method: DELETE /subscriptions/{id}
Deletes the subscription resource identified by the {id} URI parameter if access control
permissions allow the DDS requester to perform the delete operation on the target resource.

Header Parameters
None.

Query Parameters
None.

Returns
The following information can be returned in response to the DELETE of a subscription.

Status Code Element Description

204 NA Successful delete operation returns no content.
400 error Returned if a DDS requester specifies an invalid request. An

error element will be included populated with appropriate

GWD-R 16 Dec 2016

NSI-WG 43

error information.
401 error Returned if the DDS requester is not authorized to perform

the requested operation or access the targeted resource. An
error element will be included populated with appropriate
error information.

404 error Returned if the requested subscription was not found. An
error element will be included populated with appropriate
error information.

500 error Returned if an internal server error occurred during the
processing of this request. An error element will be included
populated with appropriate error information.

Example
The following example shows a valid DELETE request on the resource identified by
id=”9e223d413578”, and URI “/subscriptions/9e223d413578”. The result is a single subscription
resource matching the specified id:

DELETE /subscriptions/9e223d413578 HTTP/1.1

HTTP/1.1 204 No Content
Date: Mon, 10 Feb 2014 22:12:59 GMT

11.2.11 Notifications

When a document event occurs matching a registered subscription the DDS provider must issue
a notification to the DDS requester endpoint identified in the subscription resource. Multiple
events can be grouped and delivered together in a single notification if these events occur within
a reasonable period of time of each other. Notification delivery should not be delayed.

Notifications are also sent when a subscription is first created and will include any documents
matching the initial filter criteria.

A failure in notification delivery SHOULD result in the deletion of the subscription. Retries are
possible but are not required. Notifications should not be discarded without deleting the
subscription. To detect delivery failures the DDS requester MUST periodically verify that
subscriptions are still valid on the DDS provider.

By creating a subscription, the DDS requester has entered a contractual agreement to expose an
HTTP endpoint capable of receiving a POST operation with a message body containing a
notifications element using the content encoding of the original subscription.

Method: POST <DDS requester supplied endpoint>
The POST operation on the “<DDS requester supplied endpoint>” is a remote call from the DDS
provider holding the subscription to the DDS requester endpoint registered in the subscription.
The DDS requester must return an HTTP 202 status code in response to the POST indicating it
has successfully accepted the notification. Any other return code results in a deletion of the
subscription.

A server may periodically issue a POST to the DDS requester endpoint with a notification element
containing zero elements. This should not be considered an error and the DDS requester MUST
return an HTTP 202 status code in response. The server to check the validity of a subscription
can use this.

Header Parameters

GWD-R 16 Dec 2016

NSI-WG 44

The following header parameters are supported for the notification request to the DDS requester
endpoint.

Parameter Value Description
Content-Type String Identifies the content type encoding of the POST body

contents. Must be identical to the value as used by the
DDS requester on subscription.

Body Parameters
The POST request must contain the notifications element, which will contain the list of zero or
more notifications matching the subscription filter.

Parameter Value Description
providerId xsd:anyURI The identifier of the DDS provider generating

the notification. This is the provider on which
the subscription was created.

id xsd:string The identifier of the subscription that generated
the notifications.

href xsd:anyURI The URI reference for subscription that
generated the notification. This can be used to
directly access the subscription.

discovered xsd:dateTime The most recent document discovery time for
the server in the context of when the notification
was generated.

notification NotificationListType A list of zero or more notifications matching the
subscription filter criteria.

Returns
The DDS requester receiving the notification must return an HTTP 202 status code in response to
the POST. Any other status code will result in a deletion of the subscription.

Status Code Element Description

202 NA Indicates the subscribed DDS requester has accepted the
notification for processing.

Example
The following example shows a notification POST request on the “/requesterEndpoint” resource:

POST /requesterEndpoint HTTP/1.1
Content-Type: application/vnd.ogf.nsi.dds.v1+xml
<?xml version="1.0" encoding="UTF-8"?>
<tns:notifications xmlns:tns="http://schemas.ogf.org/nsi/2013/04/discovery/types"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 providerId="urn:ogf:network:example.com:2013:nsa:vixen"
 id="9e223d413578"

href="/subscriptions/9e223d413578">
 <discovered>2014-02-10T22:20:58Z</discovered>
 <tns:notification>
 <discovered>2014-02-10T22:20:58Z</discovered>
 <event>New</event>
 <document id="urn:ogf:network:example.com:2013:network:lincolntunnel"
 version="2014-02-10T22:15:10Z" expires="2014-02-11T22:15:10Z">
 <nsa>urn:ogf:network:example.com:2013:nsa:prancer</nsa>
 <type>application/vnd.ogf.nsi.topology.v2+xml</type>
 <signature> ... </signature>
 <content> ... </content>
 </document>

GWD-R 16 Dec 2016

NSI-WG 45

 </tns:notification>
</tns:notifications>

HTTP/1.1 202 Accepted
Date: Mon, 10 Feb 2014 22:12:59 GMT
Content-Length: 0

12 Security Considerations

Documents carried by the NSI Document Distribution Service must be verifiable by DDS
requesters and DDS providers within the GDS (e.g. the requester agent must be able to
determine that the content of the document was not altered during delivery, and is in fact, the
same document published by the source provider). The NSI Document Distribution Service
includes an element in the document meta-data to allow for the association of a digital signature
by the publishing NSA, which can then be used by each requester within the GDS to validate the
authenticity of the attached document. The type of digital signature and algorithms used is left for
definition outside of this specification since it may be document specific.

It is also assumed that exchange of documents between the DDS requester and provider roles is
secured to the level of other protocols within the NSI protocol suite. This security must include
authentication, authorization, and confidentiality. To maintain consistency with other NSI
specifications, the following security strategy is incorporated from [OGF NSI-CS].

A DDS deployment MUST use TLS to ensure secure communication between DDS requester
and DDS provider entities. TLS provides message integrity, confidentiality and authentication via
the X.509 certificates, and protects against replay attacks. TLS version 1.2 MUST be supported.

Trust between DDS servers is pairwise and MUST be established out-of-band.

Authorization is done above the TLS transport at the DDS application level. Protection MUST be
provided against unauthorized entities changing document entries within the DDS. A DDS server
SHOULD use the X.509 certificate DN of the requesting DDS entry as the identifying attribute for
authorization.

To address the individual DDS API security requirements the following implementation is
recommended:

1. Notifications MUST only be accepted from trusted “peer” DDS providers for which valid

subscriptions have been created. Unsolicited notification MUST be discarded.

A DDS requester creating remote subscriptions maintains a list consisting of the following
pairs [remote subscriptionId, provider’s X.509 certificate DN]. When a notification arrives
from a peer DDS server the X.509 certificate DN on the incoming notification TLS connection
and the subscriptionId from the incoming notification message is compared against the stored
provider DN/subscriptionId pair. If they match then the notification is accepted, if they do not
match then the notification is rejected.

2. Addition of new documents and updates to existing documents within a DDS provider MUST
be restricted to authorized DDS requesters.

A DDS provider maintains a list of X.509 certificates DN for DDS requesters allowed to
created or modify documents stored within the GDS. Additional access control policies will
need to be defined identifying:

• The allowable value for the owning NSA element.

GWD-R 16 Dec 2016

NSI-WG 46

• The types of documents a DDS requester may create or modify.

3. Read access (get operations) SHOULD be restricted to only authorized DDS requesters.

A DDS provider maintains a list of X.509 certificates DN for DDS requesters allowed read
access to the GDS. Additional read granularity based on the DDS requester DN MAY be
provided if required.

4. Creation of subscription-based notifications SHOULD be restricted to authorized DDS

requesters.

A DDS provider maintains a list of X.509 certificates DN for DDS requesters allowed to
subscribe for notifications on documents stored within the GDS. Additional subscription
granularity (document type, instance, etc.) based on the DDS requester DN may be provided
if required.

5. Editing and deletion of subscriptions SHOULD be restricted to the DDS requester associated

with the subscription.

A DDS provider creating local subscriptions maintains a list consisting of the following pairs
[subscriptionId, requester’s X.509 certificate DN]. When a DDS requester attempts to modify
or delete a subscription, the DDS provider compares the X.509 certificate DN on the incoming
client TLS connection and the subscriptionId from the incoming request message against the
stored requester DN/subscriptionId pair. If they match then the requested operation is
accepted, if they do not match then the operation is rejected. Additional operation granularity
based on the DDS requester DN may be provided if required.

13 Glossary

Aggregator NSA (AG) The Aggregator NSA is a Provider Agent that acts as both a
requester and provider NSA. It can service requests from other
NSA, perform path finding, and distribute segment requests to child
NSA for processing.

Connection Service (CS) The NSI Connection Service is a service that allows an RA to
request and manage a Connection from a PA. See [OGF NSI-CS].

Document Distribution Service (DDS) The NSI Document Distribution Service is a RESTful web service
allows the exchange of documents between the DDS requester and
provider agent participating in a Global Document Space. The NSA
Description Document is an example of information exchanged
using the DDS.

DDS Requester The client that request documents from the DDS provider

DDS Provider The server that provides DDS documents to the DDS requester

Global Document Space (GDS) A logical space that consists of all documents published by the set
of interconnected DDS providers implementing the DDS.

Network Service Agent (NSA) The Network Service Agent is a concrete piece of software that
sends and receives NSI Messages. The NSA includes a set of
capabilities that allow Network Services to be delivered.

Network Service Interface (NSI) The NSI is the interface between RAs and PAs. The NSI defines a
set of interactions or transactions between these NSAs to realize a
Network Service.

Network Services Framework (NSF) The Network Services framework describes an NSI message-based
platform capable of supporting a suite of Network Services such as

GWD-R 16 Dec 2016

NSI-WG 47

the Connection Service and the Topology Service. See [OGF
NSF].

NSA Description document The NSA Description document encapsulates descriptive meta-data
associated with an NSA such as all NSI services and associated
protocol interfaces offered by the NSA.

NSI Topology The NSI Topology defines a standard ontology and a schema to
describe network resources that are managed to create the NSI
service. The NSI Topology as used by the NSI CS (and in future
other NSI services) is described in [OGF NSI-TOP].

Requester/Provider Agent (RA/PA) An NSA acts in one of two possible roles relative to a particular
instance of an NSI. When an NSA requests a service, it is called a
Requester Agent (RA). When an NSA realizes a service, it is called
a Provider Agent (PA). A particular NSA may act in different roles at
different interfaces.

NSI Service Definition A document describing the service offered by an NSA and it’s
underlying Network. A Network can offer multiple services, and
therefore, have multiple Service Definitions defined.

Service Plane The collection of network resources over which the service is
delivered.

Simple Object Access Protocol
(SOAP)

SOAP is a protocol specification for exchanging structured
information in the implementation of Web Services in computer
networks.

Ultimate PA (uPA) The ultimate PA is a Provider Agent that has an associated NRM.

Ultimate RA (uRA) The Ultimate RA is a Requester Agent is the originator of a service
request.

XML Schema Definition (XSD) XSD is a schema language for XML. See [W3C XSD]

eXtensible Markup Language (XML) XML is a markup language that defines a set of rules for encoding
documents in a format that is both human-readable and machine-
readable.

14 Contributors

John H. MacAuley, ESnet, macauley@es.net

15 Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual property or other
rights that might be claimed to pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights might or might not be
available; neither does it represent that it has made any effort to identify any such rights. Copies
of claims of rights made available for publication and any assurances of licenses to be made
available, or the result of an attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this specification can be obtained from the
OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights, which may cover technology that may be required to
practice this recommendation. Please address the information to the OGF Executive Director.

GWD-R 16 Dec 2016

NSI-WG 48

16 Disclaimer

This document and the information contained herein is provided on an “As Is” basis and the OGF
disclaims all warranties, express or implied, including but not limited to any warranty that the use
of the information herein will not infringe any rights or any implied warranties of merchantability or
fitness for a particular purpose.

17 Full Copyright Notice

Copyright (C) Open Grid Forum (2012-2014). Some Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published and distributed, in whole or in part, without restriction of any kind, provided that the
above copyright notice and this paragraph are included as references to the derived portions on
all such copies and derivative works. The published OGF document from which such works are
derived, however, may not be modified in any way, such as by removing the copyright notice or
references to the OGF or other organizations, except as needed for the purpose of developing
new or updated OGF documents in conformance with the procedures defined in the OGF
Document Process, or as required to translate it into languages other than English. OGF, with the
approval of its board, may remove this restriction for inclusion of OGF document content for the
purpose of producing standards in cooperation with other international standards bodies.
The limited permissions granted above are perpetual and will not be revoked by the OGF or its
successors or assignees.

18 References

[RFC 2119]. Scott Bradner. Key Words for Use in RFCs to Indicate Requirement Levels, RFC
2119. The Internet Society. March 1997. http://tools.ietf.org/html/rfc2026

[RFC 6350] Simon Perreault. vCard Format Specification RFC 6350 (Standards Track), August

2011. URL http://tools.ietf.org/html/rfc6350.

[RFC 6351] S. Perreault. xCard: vCard XML Representation RFC 6351 (Standards Track),

August 2011. URL http://tools.ietf.org/html/rfc6351.

[GFD.213] Guy Roberts, et al. “OGF Network Service Framework v2.0”, Group Working Draft

(GWD), candidate Recommendation Proposed (R-P), January 28, 2014.

[GFD.212] Guy Roberts, et al. “OGF NSI Connection Service v2.0”, Group Working Draft

(GWD), candidate Recommendation Proposed (R-P), January 12, 2014.

[OGF NSI-ND] John MacAuley, et al. “Network Service Interface NSA Description Document

v1.0”, Group Working Draft (GWD), candidate Recommendation Proposed (R-P),
June 3, 2015.

[OGF NSI-NSIPF] John MacAuley, et al. “GFD-I.217 NSI Signaling and pathfinding”, Grid Forum

Document Informational, May 1, 2015

[OGF NML] OGF GFD.206: Network Markup Language Base Schema version 1,

http://www.gridforum.org/documents/GFD.206.pdf

[W3C XSD] W3C XML “Schema Definition Language (XSD) 1.1 Part 2: Datatypes”,

http://www.w3.org/TR/xmlschema11-2/#anyURI

GWD-R 16 Dec 2016

NSI-WG 49

[FIELDING] R. T. Fielding. Architectural Styles and  the Design of Network-based Software

Architectures. UNIVERSITY OF CALIFORNIA, IRVINE, 2000, Chapter 5.

[RICH] L. Richardson, et al. Restful Web Services. O'Reilly Media; First Edition, May 15, 2007.

19 Appendix I –Topology distribution requirements

This appendix is informational only.

The key motivation for the development of the NSI DDS is to be able share NSI topology
documents. The following requirements were identified.

• The solution must allow NSI topology information to be shared between NSAs.
• The solution must allow AG NSAs to aggregate topology.
• The solution must support chain based path signaling.
• The solution must support tree based path signaling.
• The solution must support centralized path finding for source-based routing decisions.
• The solution must support distributed path finding for hop-by-hop routing decisions.
• NSA description document must include <peersWith> and <feature> elements are used

to build a directed control plane graph for message routing.
• NSA description document must include nsaId to networkId mappings to determine which

NSA gets messages for a specific network.
• NSA description document must include interface elements for protocol endpoints.
• The solution must allow the creation of a full view of network topology to perform

advanced "intelligent" routing decisions.
• Service description documents for all networks must be able to determine the constraints

and parameters of the services offered.
• The solution must be able to support application/project/deployment specific aggregators

for use by specialized user groups.
• The solution must be able to deploy core aggregators that perform path finding but are

user agnostic. These aggregators will not know the identity of the user, nor the end user
authentication schemes (uPA specific).

• In most cases the uRA associated with the end user will have no concept of path finding
or network topology, so must be able to delegate the path finding function to an
aggregator within the network.

20 Appendix II – Document payload sizes and rate of change

This appendix is informational only.

Document Payload Sizes
With any flooding-based protocol it is important to understand both the behavior and volume of
data to be exchanged by the protocol. By building these data models it is possible to determine
the operational parameters of the protocol, and understand the limiting factors. In the case of the
NSI Document Distribution Service there are two documents currently defined that will need to be
supported by the protocol. These documents and associated sizes are shown below.

Document Uncompressed Compressed
NSA Description Document 5 KB 2 KB
NSI Topology (1,000 ports) 1.5 MB 85 KB

GWD-R 16 Dec 2016

NSI-WG 50

NSI Topology (300 ports) 450 KB 26 KB

Table 4 – Physical document sizes

The NSA Description Document [OGF NSI-ND] is a relatively small XML document with an
estimated upper limit of 5 Kbytes in size, and a compressed size of 2 Kbytes. The larger of the
two documents is the NML Topology Document [OGF NSI-NML], which is directly dependent on
the number of logical ports being modeled within a Network. In Table 4, a fully specified NSI
Topology Document was defined using the XML representation for a Network of 1,000
bidirectional ports using PortGroup summarization. This reference model assumed 30% E-NNI
(inter-domain) and 70% UNI (client) ports. When all 1,000 ports were modeled it resulted in an
uncompressed document size of 1.5 Mbytes and a compressed size of 85 Kbytes. If only the E-
NNI ports were modeled for path computation, then the document size was reduced to 450
Kbytes uncompressed and 26 Kbytes compressed. Reducing the information model will have
impact on advanced path finding (i.e. adaptation) and is open for further study.

To further reduce document sizes an alternative representation such as JSON could be used to
remove the verbosity of the current XML definitions.

It should be noted that NSI Topology Documents represent the bulk of document data held within
the GDS. The volume of this data is directly related to the number of Networks advertised by
uPAs, and the number of ports publically visible within these networks. Aggregator NSAs only
generate NSA Description Documents, while RA generate no documents.

Global network size Combined sizes
(uncompressed)

Combined sizes
(compressed)

10,000 networks 14.6 GB 850 MB
5,000 networks 7.3 GB 425 MB
1,000 networks 1.5 GB 85 MB
500 networks 750 MB 42 MB

Table 5 – Combined document sizes for average network size of 1,000 ports

Table 5 shows the combined document sizes for interconnected Network sizes ranging from 500
Networks through 10,000 Networks each advertising 1,000 ports within their NSI Topology
Documents. Numbers are provided for both uncompressed and compressed document content.

Global network size Combined sizes
(uncompressed)

Combined sizes
(compressed)

10,000 networks 4.3 GB 273 MB
5,000 networks 2.2 GB 137 MB
1,000 networks 444 MB 27 MB
500 networks 222 MB 14 MB

Table 6 – Combined document sizes for average network size of 300 ports

In Table 6 we see similar numbers but with each Network only reporting 300 ports within their NSI
Topology Documents. These numbers would represent the advertising of only the inter-network
E-NNI ports.

Document rate of change
The DDS protocol does not dictate a specific period to update or refresh a document. This
behavior is dependent on the type of data being modeled within the document published to the
GDS. When a new version of a document is available, it is published into the GDS using a new
version. An NSA can also re-publish an existing document into the DDS if it would like to refresh
the current version of the document. If the version of the document is already present, the re-

GWD-R 16 Dec 2016

NSI-WG 51

published version will be ignored. If however if it is not, it will be added to the GDS following the
defined document versioning rules.

The DDS protocol is agnostic to document content and has no facility to provide a mechanism for
incremental document updates. This is left for future work.

There is an expectation that larger documents distributed by the DDS protocol will be relatively
static in nature requiring infrequent updates. The more frequent a document requires updating,
the more impact it has on bandwidth consumed for flooding between providers. Taking the
maximum (850 MB) and minimum (42 MB) values from Table 5 we can see a large gap in the
bandwidth requirements if all documents within the GDS were updated once a day.

• 850 MB over 24-hour period is an average 81 Kb/s * # of peers.
• 42 MB over 24-hour period is an average 4 Kb/s * # of peers.

Based on the relatively static nature of the NSA Description and the NSI Topology documents we
can expect updates less frequently that once a day. As new document types are defined and
propagated through the DDS care will need to be given to avoid excessive strain on resources.

21 Appendix III – DDS provider Pseudo Code

The following appendix contains example pseudo code for the DDS provider function. The
pseudo code describes the DDS abstract API logic, and can be used to implement the DDS
function within an NSI deployment.

The NSI CS Aggregator NSA will deploy a full DDS provider performing both requester and
provider functions. The Aggregator NSA registers for document notification from all peer NSA,
and delivers document notifications to all subscribed peers. The Aggregator also publishes
documents associated with its own NSA such as an NSA description document. An Aggregator
would use the addDocument/updateDocument API or some locally defined mechanism to publish
these documents into the local DDS provider instance, thereby allowing them to be propagated to
all peers forming the GDS.

The NSI CS uPA NSA does not require access to documents published by other NSA within the
GDS. For this reason, the uPA has two implementation options for integration into the DDS. The
first is to use a DDS requester to publish its documents (addDocument/updateDocument API) into
an Aggregator that will maintain the lifecycle of the documents on behalf of the uPA. This will
require a prearranged agreement between the uPA and Aggregator.

The second option is for the uPA to deploy a DDS provider but only enable the provider role. In
this configuration the DDS provider allows peer Aggregators to subscribe for notifications on
document events relating to the uPA’s documents, but does not itself subscribe to any peer NSA
for document notifications. This will result in only the uPA’s documents being contained in the
local DDS provider, with all peer NSA being updated with uPA document notifications.

PROGRAM DdsServer:

 // Global variables holding configuration, state, and discovered documents.
 DECLARE a list variable called Peers holding configuration information for all peers;
 DECLARE a map variable called GlobalDocumentSpace holding all known documents in the
 GDS(indexed by unique document identifier);
 DECLARE a map variable called LastDiscovered holding discovered date/time values for
 each document (indexed by unique document identifier);

GWD-R 16 Dec 2016

NSI-WG 52

 DECLARE a map variable called MySubscriptions holding local subscriptions on remote
 DDS providers (indexed by peer containing subscription);
 DECLARE a map variable called PeerSubscriptions holding remote DDS provider
 subscriptions on local DDS provider(indexed by peer owning subscription);
 DECLARE a string variable called MyNsaId holding the local NSA identifier;
 DECLARE a time variable called SubscriptionAuditInterval holding the time between
 subscription audit intervals;
 DECLARE a time variable called ExpireAuditInterval holding the time between document
 expiry audit intervals;

 // start() initializes the system and registers subscriptions with all remote DDS
 // server Peers.
 PROCEDURE start() {
 // Initialize the DDS system.
 READ Peers from list of peer NSA from configuration;
 READ SubscriptionAuditInterval from configuration;
 READ ExpireAuditInterval from configuration;
 READ MyNsaId from configuration;
 READ GlobalDocumentSpace from storage discarding any expired documents;

 SET MySubscriptions to an empty map<peer, subscription>;
 SET PeerSubscriptions to an empty map<peer, subscription>;

 // For simplification register for all document events on all Peers configured as
 // a provider role. Each peer will send a full list of documents present in their
 // document space.
 FOR each peer in Peers with a provider role DO
 // First we need to delete any existing subscriptions we may have on this
 // peer.
 CALL peer.getSubscriptions(MyNsaId)

RETURNING status, subscriptions, and lastModifiedTime;
 IF status is success THEN
 FOR each subscription in subscriptions DO
 CALL peer.deleteSubscription(subscription.id);
 ENDFOR;
 ENDIF;

 // Add the new subscription and store it for later auditing.
 CALL peer.addSubscription(MyNsaId, notificationCallback,
 filter(include event All)) RETURNING status, subscription, and
 lastModifiedTime;
 IF status is success and subscription is present THEN
 STORE <peer, subscription> in MySubscriptions;
 ENDIF;
 ENDFOR;

 // Schedule maintenance tasks.
 SCHEDULE subscriptionAudit() at SubscriptionAuditInterval;
 SCHEDULE documentExpireAudit() at ExpireAuditInterval;
 }

 // subscriptionAudit() verifies there is an active subscription on all configured DDS
 // Peers. It will create a new subscription if one does not exist, and will delete any
 // subscriptions no longer in use.
 PROCEDURE subscriptionAudit() {
 // oldSubscriptions will hold the list of MySubscriptions we need to clean up when
 // audit is completed.
 DECLARE a map variable called oldSubscriptions to hold the list of MySubscriptions
 to clean up when audit is completed (indexed by peer containing the
 subscription);
 SET oldSubscriptions to copy of MySubscriptions;

 // Audit subscription for each of our configured Peers.
 FOR each peer in Peers with a provider role DO
 SET subscription to MySubscriptions.get(peer);

 IF subscription is present THEN
 // Get subscription for this peer.

GWD-R 16 Dec 2016

NSI-WG 53

 CALL peer.getSubscription(subscription.id) RETURNING oldSubscription;

 // Remove this subscription from our cleanup list.
 REMOVE oldSubscription from oldSubscriptions;

 IF oldSubscription is present THEN
 // This subscription is still valid so proceed to next iteration.
 CONTINUE;
 ENDIF;

 // This subscription is no longer valid.
 REMOVE subscription from MySubscriptions;

 ENDIF;

 // We do not have a subscription for this peer so create one.
 CALL peer.addSubscription(MyNsaId, notificationCallback,
 filter(include event All)) RETURNING newSubscription;

 IF newSubscription is present THEN
 STORE <peer, newSubscription> in MySubscriptions;
 ENDIF;
 ENDFOR;

 // Now remove any MySubscriptions no longer needed.
 FOR each subscription in oldSubscriptions DO
 SET peer to subscription.peer;
 CALL peer.deleteSubscription(subscriptionId);
 ENDFOR;

 // Schedule our next audit run.
 SCHEDULE subscriptionAudit() at SubscriptionAuditInterval;
 }

 // documentExpireAudit() - removes any expired documents from the local document
 // space.
 PROCEDURE documentExpireAudit() {
 FOR each document in GlobalDocumentSpace DO
 IF document.expires is in past THEN
 REMOVE document from GlobalDocumentSpace;
 ENDIF;
 ENDFOR;

 // Schedule our next audit run.
 SCHEDULE documentExpireAudit() at ExpireAuditInterval;
 }

 // notificationCallback() is the notification callback endpoint for delivery of
 // subscription events from remote DDS Peers.
 API notificationCallback(notifications) RETURNS status {
 VALIDATE parameters notifications RETURNING failed if invalid;

 // Reject the notification if not from a valid peer.
 IF notifications.providerId not in list of Peers with a provider role THEN
 RETURN status of failed(invalid peer);
 ENDIF;

 // Reject the notification if not a valid subscription.
 IF notifications.id not in list of MySubscriptions THEN
 RETURN status of failed(invalid subscription);
 ENDIF;

 // Process each notification, storing new/updated documents and propagating any
 // changes to peers.
 FOR each notification in notifications DO
 // Get document out of notification.
 SET document to notification.document;

GWD-R 16 Dec 2016

NSI-WG 54

 // Create a unique document identifier for indexing.
 CALL uid(document.nsa, document.type, document.id) RETURNING uid;

 // If an old version of the document is present make sure this is a newer
 // version before storing and propagating.
 SET oldDocument to GlobalDocumentSpace.get(uid);
 IF oldDocument is present THEN
 IF oldDocument.version is less than document.version THEN
 REPLACE oldDocument in GlobalDocumentSpace with document;
 STORE current date/time in LastDiscovered indexed by uid;
 CALL propagateDocument(providerId, UPDATE, document);
 ENDIF;
 ELSE
 STORE document in GlobalDocumentSpace indexed by uid;
 STORE current date/time in LastDiscovered for uid;
 CALL propdateDocument(providerId, NEW, document);
 ENDIF;
 ENDFOR;
 }

 // propdateDocument() sends document notification events to all DDS peer subscribed
 // for the document event type.
 PROCEDURE propagateDocument(providerId, event, document) {
 // Inspect each subscription to see if it matches this document event.
 FOR each subscription in PeerSubscriptions DO
 // Do not send the document event back to the originating provider.
 IF subscription.requesterId equals providerId THEN
 CONTINUE;
 ENDIF;

 // If the subscription matches the document even propagate.
 IF subscription.filter matches event and document THEN
 SET callback to subscription.callback;
 SET notification to new notification(MyNsaId, event, document);
 CALL callback(notification) RETURNING status;

 // Subscription may no longer be valid. Delete and let peer
 // re-register their next audit.
 IF status is not success THEN
 DELETE subscription from PeerSubscriptions;
 ENDIF;
 ENDIF;
 ENDFOR;
 }

 // getDocuments() returns a list of documents and the time of the latest document
 // change on the DDS provider.
 API getDocuments([nsa], [type], [id], [lastDiscoveredTime])
 RETURNS status, a list of [0..n] document, and [lastDiscoveredTime] {
 VALIDATE parameters nsa, type, id, and lastDiscoveredTime
 RETURNING status of failed(invalid parameter) if invalid;

 DECLARE a list variable called results to hold documents matching the
 query filter;
 DECLARE a date/time variable called newLast to hold the time of the most recently
 discovered document;

 SET newLast to Date(0);

 IF lastDiscoveredTime is absent THEN
 SET lastDiscoveredTime to Date(0);
 ENDIF;

 // Inspect each document in the GDS for a match.
 FOR each document in GlobalDocumentSpace DO
 // Create a unique document identifier for indexing.
 CALL uid(document.nsa, document.type, document.id) RETURNING uid;

GWD-R 16 Dec 2016

NSI-WG 55

 // Determine if this document meets any lastDiscoveredTime criteria.
 DECLARE a date/time variable called currentLast to hold the current document’s
 last discovered time;
 SET currentLast to LastDiscovered.get(uid);
 IF currentLast is later than lastDiscoveredTime THEN
 // Now match on the other criteria.
 IF document matches filter(nsa, type, id) THEN
 STORE document in results;

 // Track the latest discovered time.
 IF currentLast is later than newLast THEN
 STORE currentLast in newLast;
 ENDIF;
 ENDIF;
 ENDIF;
 ENDFOR;

 RETURN status of success, results, and newLast;
 }

 // getLocalDocuments() returns a list of documents associated with the queried DDS
 // provider and the time of the latest document change on that provider.
 API getLocalDocuments([type], [id], [lastDiscoveredTime])
 RETURNS status, a list of [0..n] document, and [lastDiscoveredTime] {
 CALL getDocuments(MyNsaId, type, id, lastDiscoveredTime)
 RETURNS results and newLast;
 RETURN results and newLast;
 }

 // getDocument() returns the requested document and the time of the latest change
 // on the document.
 API getDocument(nsa, type, id, [lastDiscoveredTime])
 RETURNS status, [document], and [lastDiscoveredTime] {
 CALL getDocuments(nsa, type, id, lastDiscoveredTime) RETURNS results and newLast;
 RETURN results and newLast;
 }

 // addDocument() adds a new document to the space associated with the DDS provider.
 API addDocument(nsa, type, id, version, expires, [signature], content)
 RETURNS status, [document], and [lastDiscoveredTime] {
 VALIDATE nsa, type, id, version, expires, signature, and content
 RETURNING status of failed(invalid parameter) if invalid;

 // Build the unique document identifier and determine if document already exists.
 CALL uid(document.nsa, document.type, document.id) RETURNING uid;
 SET document to GlobalDocumentSpace.get(uid);

 // A document can only be added when one does not already exist.
 IF document is present THEN
 RETURN status of failed(document exists);
 ENDIF;

 // Add the new document.
 SET document to
 new document(nsa, type, id, version, expires, signature, content);
 STORE document in GlobalDocumentSpace indexed by uid;

 // Update the lastDiscoveredTime.
 SET lastDiscoveredTime as current date/time;
 STORE lastDiscoveredTime in LastDiscovered indexed by uid;

 // Send the new document event to all peers.
 CALL propagateDocument(MyNsaId, NEW, document);

 RETURN status of success, document, and lastDiscoveredTime;
 }

 // updateDocument - updates an existing document within the space associated with the
 // DDS provider.

GWD-R 16 Dec 2016

NSI-WG 56

 API updateDocument(nsa, type, id, version, expires, [signature], content)
 RETURNS status, [document], and [lastDiscoveredTime] {
 VALIDATE nsa, type, id, version, expires, signature, and content
 RETURNING status of failed(invalid parameter) if invalid;

 // Build the unique document identifier and retrieve the document for update.
 CALL uid(document.nsa, document.type, document.id) RETURNING uid;
 SET document to GlobalDocumentSpace.get(uid);

 // A document must be present to update.
 IF document is not present THEN
 RETURN status of failed(document does not exists);
 ENDIF;

 // Update only if this is a new document.
 IF document.version is not less than version THEN
 RETURN status of failed(invalid version);
 ENDIF;

 // Replace existing document with the updated document.
 SET updatedDocument to
 new document(nsa, type, id, version, expires, signature, content);
 REPLACE document in GlobalDocumentSpace with updatedDocument;

 // Update the lastDiscoveredTime.
 SET lastDiscoveredTime as current date/time;
 STORE lastDiscoveredTime in LastDiscovered indexed by uid;

 // Send document update event to all peers.
 CALL propagateDocument(MyNsaId, UPDATE, document);

 RETURN status of success, document, and lastDiscoveredTime;
 }

 // addSubscription() subscribes a requester for document event notifications based on
 // the supplied filter.
 API addSubscripton(requesterId, callback, filter)
 RETURNS status, [subscription], and [lastModifiedTime] {
 VALIDATE requesterId, callback, and filter
 RETURNING status of failed(invalid parameter) if invalid;

 // Verify this requesting peer is configured for a requester role.
 IF requesterId not in list of Peers with a requester role THEN
 RETURN status of failed(invalid peer);
 ENDIF;

 // Create the new subscription with a new unique subscription identifier.
 SET subscription to new subscription(requesterId, callback, filter);
 STORE subscription in PeerSubscriptions indexed by subscription.id;

 // Save the of this subscription’s creation for lastModifiedTime queries.
 SET lastModifiedTime as current date/time;
 STORE lastModifiedTime in LastModified indexed by subscription.id;

 // Send a notification for all documents matching the new filter but with document
 // event All.
 FOR each document in GlobalDocumentSpace DO
 IF subscription.filter matches document THEN
 SET callback to subscription.callback;
 SET notification to new notification(MyNsaId, All, document);
 CALL callback(notification) RETURNING status;
 IF status is not success THEN
 DELETE subscription from PeerSubscriptions;
 RETURN status of failed(invalid endpoint);
 ENDIF;
 ENDIF;
 ENDFOR;

 RETURN status of success, subscription, and lastModifiedTime;

GWD-R 16 Dec 2016

NSI-WG 57

 }

 // editSubscription() allows an existing subscription to be edited.
 API editSubscription(id, requesterId, callback, filter)
 RETURNS status, [subscription], and [lastModifiedTime] {
 VALIDATE id, requesterId, callback, and filter
 RETURNING status of failed(invalid parameter) if invalid;

 // Get the current subscription.
 SET subscription to PeerSubscriptions.get(id);

 // A subscription must be present to update.
 IF subscription is not present THEN
 RETURN status of failed(subscription does not exists);
 ENDIF;

 // Update the subscription.
 SET newSubscription to new subscription(requesterId, callback, filter);
 REPLACE subscription in PeerSubscriptions with newSubscription;

 // Updated the last modified time.
 SET lastModifiedTime as current date/time;
 STORE lastModifiedTime in LastModified indexed by subscription.id;

 // Build a list of notifications based on documents matching the updated filter
 // criteria.
 DECLARE a list variable called notifications to hold a list of notification for
 each document matching filter criteria;
 FOR each document in GlobalDocumentSpace DO
 IF newSubscription.filter matches document THEN
 SET notification to new notification(MyNsaId, All, document);
 STORE notification in notifications;
 ENDIF;
 ENDFOR;

 // Send list of notifications to the subscriber.
 SET callback to newSubscription.callback;
 CALL callback(notifications) RETURNING status;
 IF status is not success THEN
 DELETE newSubscription from PeerSubscriptions;
 RETURN status of failed(invalid endpoint);
 ENDIF;

 RETURN status of success, newSubscription, and lastModifiedTime;
 }

 // deleteSubscription() deletes the subscription associated with id from the provider
 // NSA.
 API deleteSubscription(id) RETURNS status, and [subscription] {
 VALIDATE id RETURNING status of failed(invalid parameter) if invalid;

 // Get the subscription.
 SET subscription to PeerSubscriptions.get(id);

 // A subscription must be present to delete.
 IF subscription is not present THEN
 RETURN status of failed(subscription not found);
 ENDIF;

 DELETE subscription from PeerSubscriptions;

 RETURN status of success and subscription;
 }

 // getSubscriptions() returns a list of subscriptions and the time of the latest
 // subscription change on the provider NSA.
 API getSubscriptions([requesterId], [lastModifiedTime])
 RETURNS status, list of [0..n] subscription, and [lastModifiedTime] {
 VALIDATE requesterId and lastModifiedTime

GWD-R 16 Dec 2016

NSI-WG 58

 RETURNING status of failed(invalid parameter) if invalid;

 DECLARE a list variable called results to hold the matching list of subscriptions;
 DECLARE a date/time variable called newLast to hold the most recent
 lastModifiedTime;

 SET newLast to Date(0);

 // If a lastModifiedTime filter was not provided set to start of time so all
 // subscriptions are more recent.
 IF lastModifiedTime is absent THEN
 SET lastModifiedTime to Date(0);
 ENDIF;

 // Add subscriptions that match the requested filter.
 FOR each subscription in PeerSubscriptions DO
 DECLARE a date/time variable called currentLast to hold this subscription's
 lastModifiedTime;
 SET currentLast to LastModified.get(subscription.id);
 IF currentLast is later than lastModifiedTime THEN
 IF subscription matches filter(requesterId, lastModifiedTime) THEN
 STORE subscription in results;

 IF currentLast is later than newLast THEN
 STORE currentLast in newLast;
 ENDIF;
 ENDIF;
 ENDIF;
 ENDFOR;

 RETURN status of success, results, and newLast;
 }

 // getSubscription() returns a single subscription identified by the id parameter and
 // the time this subscription was last modified.
 API getSubscription(id, [lastModifiedTime])
 RETURNS status, [subscription], and [lastModifiedTime] {
 VALIDATE id and lastModifiedTime
 RETURNING status of failed(invalid parameter) if invalid;

 // Get the subscription.
 SET subscription to PeerSubscriptions.get(id);

 // A subscription must be present for this to be successful.
 IF subscription is not present THEN
 RETURN status of failed(subscription not found);
 ENDIF;

 DECLARE a date/time variable called currentLast to hold this subscription's
 lastModifiedTime;
 SET currentLast to LastModified.get(subscription.id);

 // If a lastModifiedTime filter was not provided set to start of time so all
 // subscriptions are more recent.
 IF lastModifiedTime is absent THEN
 SET lastModifiedTime to Date(0);
 ENDIF;

 IF currentLast is later than lastModifiedTime THEN
 RETURN status of success and subscription;
 ELSE
 RETURN status of success(not modified);
 ENDIF;
 }

 // getAll() returns a collection of subscriptions, documents, and local documents
 // discovered since lastDiscoveredTime (treating lastDiscoveredTime as
 // lastModifiedTime in the case of subscriptions). The time of the last
 // discovered/modified element is also returned.

GWD-R 16 Dec 2016

NSI-WG 59

 API getAll([lastDiscoveredTime])
 RETURNS status, list of [0..n] subscription, list of [0..n] document,
 list of [0..n] local document, and [lastDiscoveredTime] {
 VALIDATE lastDiscoveredTime
 RETURNING status of failed(invalid parameter) if invalid;

 DECLARE a list variable called subscriptions to hold the matching list of
 subscriptions;
 DECLARE a list variable called documents to hold the matching list of documents;
 DECLARE a list variable called local to hold the matching list of local documents;
 DECLARE a variable called status to hold the return status of method calls;
 DECLARE a date/time variable called recentTime to hold the lastDiscoveredTime;
 DECLARE a date/time variable called currentLast to hold the individual call
 results;

 CALL getSubscriptions(NULL, lastModifiedTime)
 RETURNING status, subscriptions, and recentTime;
 IF status is failed THEN
 RETURN status;
 ENDIF;

 CALL getDocuments(NULL, NULL, NULL, lastDiscoveredTime)
 RETURNING status, documents, and currentLast;
 IF status is failed THEN
 RETURN status;
 ENDIF;

 IF currentLast is later than recentTime THEN
 SET recentTime to currentLast;
 ENDIF;

 CALL getLocalDocuments(NULL, NULL, lastDiscoveredTime)
 RETURNING status, local, and lastDiscoveredTime;
 IF status is failed THEN
 RETURN status;
 ENDIF;

 IF currentLast is later than recentTime THEN
 SET recentTime to currentLast;
 ENDIF;

 RETURN status of success, subscriptions, documents, local, and recentTime;
 }

END;

22 Appendix IV – NSI Document Distribution Service Schema

<?xml version="1.0" encoding="UTF-8"?>
<!--
The OGF takes no position regarding the validity or scope of any intellectual
property or other rights that might be claimed to pertain to the implementation
or use of the technology described in this document or the extent to which any
license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Copies of
claims of rights made available for publication and any assurances of licenses
to be made available, or the result of an attempt made to obtain a general
license or permission for the use of such proprietary rights by implementers or
users of this specification can be obtained from the OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights,
patents or patent applications, or other proprietary rights, which may cover
technology that may be required to practice this recommendation. Please
address the information to the OGF Executive Director.

This document and the information contained herein is provided on an "As Is"
basis and the OGF disclaims all warranties, express or implied, including but

GWD-R 16 Dec 2016

NSI-WG 60

not limited to any warranty that the use of the information herein will not
infringe any rights or any implied warranties of merchantability or fitness
for a particular purpose.

Copyright (C) Open Grid Forum (2009-2012). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and
derivative works that comment on or otherwise explain it or assist in its
implementation may be prepared, copied, published and distributed, in whole or
in part, without restriction of any kind, provided that the above copyright
notice and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by removing
the copyright notice or references to the OGF or other organizations, except as
needed for the purpose of developing Grid Recommendations in which case the
procedures for copyrights defined in the OGF Document process must be followed,
or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by
the OGF or its successors or assignees.

Open Grid Forum NSI Document Distribution Service Protocol v1.0.

Description: This is the NSI Document Distribution Protocol types schema for
the reference web services implementation of the OGF NSI Document Distribution
Service v1.0. The Document Distribution Service provides the primary mechanism
for information discovery within the Network Service Framework suite of protocols.
Comments and questions can be directed to the mailing list group
mailing list (nsi-wg@ogf.org).
-->
<xsd:schema targetNamespace="http://schemas.ogf.org/nsi/2014/02/discovery/types"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://schemas.ogf.org/nsi/2014/02/discovery/types"
 version="1.0">

 <xsd:annotation>
 <xsd:appinfo>ogf_nsi_discovery_protocol_v1_0.xsd 2014-02-20</xsd:appinfo>
 <xsd:documentation xml:lang="en">
 This is an XML schema document describing the OGF NSI Document
 Distribution Service Protocol v1.0.
 </xsd:documentation>
 </xsd:annotation>

 <!-- Collection for root resource definition. -->
 <xsd:element name="collection" type="tns:CollectionType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 This root resource contains a collection of zero or more
 subscriptions and documents held within the NSA.

 HTTP operations: GET
 URI: /

 HTTP Parameters:
 Accept - Identifies the content type encoding requested for
 the returned results. Must be a content type supported by the
 protocol.

 If-Modified-Since - Return only entries discovered or
 modified since this time.

 Query Parameters: None

 Returns (code, element):
 200 collection
 Return collection element containing all subscription
 and document resources matching the query. If no
 subscriptions or documents match the query, then an empty
 documents collection is returned.

GWD-R 16 Dec 2016

NSI-WG 61

 304 None
 Successful operation where there were no changes to any
 subscription or document resource given the If-Modified-Since
 criteria. Returns no message body.

 400 error
 Returned if a client specifies an invalid request. An
 error element will be included populated with appropriate
 error information.

 500 error
 Returned if an internal server error occurred during the
 processing of this request. An error element will be
 included populated with appropriate error information.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>

 <xsd:complexType name="CollectionType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Type definition for a collection of discoverable resources.
 This type contains a list of subscriptions and docuemnts
 matching the query parameters. Extensibility is added to
 allow inclusion of resources from other namespaces as needed.

 Elements:

 subscriptions - A list of subscription resources within the
 system.

 documents - A list of document resources stored within the
 document space of this provider.

 local - A list of document resources published by the local
 provider.

 other - Provides a flexible mechanism allowing additional elements
 to be provided from other namespaces without needing to update
 this schema definition.

 Attributes:

 other - Provides a flexible mechanism allowing additional attributes
 to be provided from other namespaces without needing to update
 this schema definition.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element ref="tns:subscriptions" minOccurs="0" />
 <xsd:element ref="tns:documents" minOccurs="0" />
 <xsd:element ref="tns:local" minOccurs="0" />
 <xsd:any namespace="##other" processContents="lax" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:complexType>

 <!-- A list of subscriptions. -->
 <xsd:element name="subscriptions" type="tns:SubscriptionListType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 The subscriptions resource contains a collection of zero or
 more subscriptions held within the provider NSA.

 HTTP operations: GET
 URI: /subscriptions

 HTTP Parameters:

GWD-R 16 Dec 2016

NSI-WG 62

 Accept - Identifies the content type encoding requested for
 the returned results. Must be a content type supported by the
 protocol.

 If-Modified-Since - Constrains the GET request to return only
 those subscriptions that have been created or updated since the
 time specified in this parameter.

 Query Parameters:
 requesterId - Return all subscription resources containing the
 specified requesterId.

 Returns (code, element):

 200 subscriptions
 Return all subscription resources matching the query in a
 subscriptions element. If no subscriptions match the query,
 then an empty subscriptions element is returned.

 304 None
 Successful operation where there were no changes to any
 subscription resources matching the query filter given the
 If-Modified-Since criteria. Returns no message body.

 400 error
 Returned if a DDS requester specifies an invalid request. An error
 element will be included populated with appropriate error
 information.

 500 error
 Returned if an internal server error occurred during the
 processing of this request. An error element will be included
 populated with appropriate error information.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>

 <xsd:complexType name="SubscriptionListType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Type definition for a list of subscription resources.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element ref="tns:subscription" minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" processContents="lax" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:complexType>

 <!-- A signle subscription resource definition. -->
 <xsd:element name="subscription" type="tns:SubscriptionType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 The subscription resource contains a single subscription from
 the provider NSA.

 HTTP operations: GET
 URI: /subscriptions/{id}
 {id} is the unique subscription identifier.

 HTTP Parameters:
 Accept - Identifies the content type encoding requested for
 the returned results. Must be a content type supported by the
 protocol.

 If-Modified-Since - Constrains the GET request to return only
 the subscription if it has been updated since the time specified

GWD-R 16 Dec 2016

NSI-WG 63

 in this parameter.

 Query Parameters: None

 Returns (code, element):

 200 subscription
 Successful operation returns the subscription identified by
 id in a subscription element. The Last-Modified header
 parameter will contain the time this subscription resource
 was last modified.

 304 None
 Successful operation where there were no changes to the
 subscription resource identified by id given the
 If-Modified-Since criteria. Returns no message body.

 400 error
 Returned if a DDS requester specifies an invalid request. An error
 element will be included populated with appropriate error
 information.

 404 error
 Returned if the requested subscription was not found. An
 error element will be included populated with appropriate
 error information.

 500 error
 Returned if an internal server error occurred during the
 processing of this request. An error element will be included
 populated with appropriate error information.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>

 <xsd:complexType name="SubscriptionType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 This type models the subscription resource.

 Elements:

 requesterId - The identifier of the DDS requester that created
 the subscription. An NSA must use its unique NSA identifier for
 requesterId.

 callback - The HTTP endpoint on the DDS requester that will receive
 the notifications delivered for this subscription.

 filter - The filter criteria to apply to document events to determine
 if a notification should be sent to the DDS requester.

 other - Provides a flexible mechanism allowing additional elements
 to be provided from other namespaces without needing to update
 this schema definition.

 Attributes:

 id - The provider assigned subscription identifier.

 href - The direct URI reference to the resource.

 version - The version of the subscription. Indicates the last
 time the subscription was modified.

 other - Provides a flexible mechanism allowing additional attributes
 to be provided from other namespaces without needing to update
 this schema definition.
 </xsd:documentation>

GWD-R 16 Dec 2016

NSI-WG 64

 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="requesterId" type="xsd:string" />
 <xsd:element name="callback" type="xsd:anyURI" />
 <xsd:element name="filter" type="tns:FilterType" minOccurs="0" />
 <xsd:any namespace="##other" processContents="lax" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="id" use="required" type="xsd:string" />
 <xsd:attribute name="href" use="required" type="xsd:anyURI" />
 <xsd:attribute name="version" use="required" type="xsd:dateTime" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:complexType>

 <xsd:element name="subscriptionRequest" type="tns:SubscriptionRequestType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 The subscriptionRequest is a collection of parameters from the
 subscription resource that is used to create a new subscription
 resource or update an existing subscription resource.

 Once a subscription has been successfully created or updated on
 the provider the server will immediately send notifications for
 all documents matching the filter criteria independent of the
 event filter.

 HTTP operations: POST (create), PUT (update)
 URI: /subscriptions

 HTTP Parameters:
 Content-Type - Identifies the content type encoding of the POST
 body contents. Must be a content type supported by the protocol.

 Accept - Identifies the content type encoding requested for
 the returned results. Must be a content type supported by the
 protocol.

 If-Modified-Since - Constrains the GET request to return only
 the subscription if it has been updated since the time specified
 in this parameter.

 Query Parameters: N/A

 Returns (code, element):

 201 subscription
 Returns a copy of the new subscription resource created as
 the result of a successful operation. The HTTP Location
 header field will contain the URI of the new subscription
 resource.

 400 error
 Returned if a DDS requester specifies an invalid request. An error
 element will be included populated with appropriate error
 information.

 403 error
 The server understood the request, but is refusing to fulfill
 it. Authorization will not help and the request SHOULD NOT be
 repeated. An error element will be included populated with
 appropriate error information.

 500 error
 Returned if an internal server error occurred during the
 processing of this request. An error element will be included
 populated with appropriate error information.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>

GWD-R 16 Dec 2016

NSI-WG 65

 <xsd:complexType name="SubscriptionRequestType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 This type models a subset of parameters from the subscription
 resource used during creation and updates.

 Elements:

 requesterId - The identifier the DDS requester would like to
 use for unique identification. An NSA must use its unique NSA
 identifier for requesterId.

 callback - The HTTP endpoint on the DDS requester that will receive
 the notifications delivered for this subscription.

 filter - The filter criteria to apply to document events to determine
 if a notification should be sent to the DDS requester.

 other - Provides a flexible mechanism allowing additional elements
 to be provided from other namespaces without needing to update
 this schema definition.

 Attributes:

 other - Provides a flexible mechanism allowing additional attributes
 to be provided from other namespaces without needing to update
 this schema definition.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="requesterId" type="xsd:string" />
 <xsd:element name="callback" type="xsd:anyURI" />
 <xsd:element name="filter" type="tns:FilterType" minOccurs="0" />
 <xsd:any namespace="##other" processContents="lax" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:complexType>

 <xsd:complexType name="FilterType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 This type is the base notification filter for subscriptions.
 The include element specifies the document event match criteria
 to include, while the exclude element specifies those to
 specifically exclude. The include will be evaluated first, then
 the exclude will be applied.

 Elements:

 include – Include notifications matching these criteria.

 exclude - Exclude the notifications matching these criteria.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="include" type="tns:FilterCriteriaType" minOccurs="0"
 maxOccurs="unbounded" />
 <xsd:element name="exclude" type="tns:FilterCriteriaType" minOccurs="0"
 maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="FilterCriteriaType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 This type models the criteria that can be included in the
 notfication filter for subscriptions.

GWD-R 16 Dec 2016

NSI-WG 66

 Elements:

 event – The type of document event that will generate a
 notification. Currently only three events are supported (All,
 New, Updated). At least one of event criteria must be
 supplied. The default event criteria is All.

 or – Any document matching any of the supplied nsa, document
 type, or document id values.

 and - Any document matching all of the supplied nsa, document
 type, or document id values (logical AND).
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="event" type="tns:DocumentEventType" default="All"
 minOccurs="1" maxOccurs="3" />
 <xsd:element name="or" type="tns:FilterOrType" minOccurs="0"
 maxOccurs="unbounded" />
 <xsd:element name="and" type="tns:FilterAndType" minOccurs="0"
 maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>

 <xsd:simpleType name="DocumentEventType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 This is a simple string type enumerating the types of document
 events that can be included in a filter.

 All - Matches all document events.

 New - Matches new documents that are discovered in the space.

 Updated - Matches existing documents in the space that are updated.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="All"/>
 <xsd:enumeration value="New"/>
 <xsd:enumeration value="Updated"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:complexType name="FilterAndType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 This filter criteria type lists elements that can be matched in a
 document as part of the decision to generate or not generate a
 notification. The supplied nsa, document type, and document id
 values are evaluted as a logical AND so that all included values
 must match.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="nsa" type="xsd:anyURI" minOccurs="0" />
 <xsd:element name="type" type="xsd:string" minOccurs="0" />
 <xsd:element name="id" type="xsd:string" minOccurs="0" />
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="FilterOrType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 This filter criteria type lists elements that can be matched in a
 document as part of the decision to generate or not generate a
 notification. The supplied nsa, document type, and document id
 values are evaluted as a logical OR so that any included values

GWD-R 16 Dec 2016

NSI-WG 67

 that match result in a criteria match.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:choice maxOccurs="unbounded">
 <xsd:element name="nsa" type="xsd:anyURI" />
 <xsd:element name="type" type="xsd:string" />
 <xsd:element name="id" type="xsd:string" />
 </xsd:choice>
 </xsd:sequence>
 </xsd:complexType>

 <!-- A list of notifications. -->
 <xsd:element name="notifications" type="tns:NotificationListType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 When a document event occurs matching a registered subscription
 the provider must issue a notification to the requester endpoint
 identified in the subscription resource. This element is sent
 in the body of a POST request to the requester endpoint.

 Multiple events can be grouped and delivered together in a single
 notification if these events occur within a reasonable period of
 time of each other. Notification delivery should not be delayed.

 Notifications are also sent when a subscription is first created,
 and after a subscription is modified. This notification will
 include any documents matching the filter criteria.

 HTTP operations: POST
 URI: /requester-supplied-endpoint

 HTTP Parameters:

 Content-Type - Identifies the content type encoding of the POST
 body contents. Must be identical to the value as used by the
 DDS requester on subscription.

 Query Parameters: N/A

 Returns (code, element):

 202 None
 Indicates the subscribed DDS requester has accepted the notification
 for processing. The DDS requester receiving the notification must
 return an HTTP 202 status code in response to the POST.
 Any other status code will result in a deletion of the
 subscription.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>

 <xsd:complexType name="NotificationListType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Type definition for a list of notifications.

 Elements:

 notification - A list of zero or more notifications matching the
 subscription filter criteria.

 Attributes:

 providerId - The identifier of the provider generating the
 notification. This is the provider on which the subscription
 was created.

 id - The identifier of the subscription that generated the

GWD-R 16 Dec 2016

NSI-WG 68

 notifications.

 href - The URI reference for subscription that generated the
 notification. This can be used to directly access the
 subscription.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element ref="tns:notification" minOccurs="0" maxOccurs="unbounded" />
 </xsd:sequence>
 <xsd:attribute name="providerId" use="required" type="xsd:anyURI" />
 <xsd:attribute name="id" use="required" type="xsd:string" />
 <xsd:attribute name="href" use="required" type="xsd:anyURI" />
 </xsd:complexType>

 <!-- A single notfication. -->
 <xsd:element name="notification" type="tns:NotificationType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 This element models a single document notification and is
 included in the notifications element.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>

 <xsd:complexType name="NotificationType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 This type models a single document notification event.

 Elements:

 discovered - The time this document event was detected on the
 provider. It is not the time the notification was generated.
 It also should be noted that this time could be a considerable
 period in the past if the notification was sent as the result
 of a subscription creation or edit.

 event - The type of document event this notification represents.

 document - The document metadata entry associated with the
 notification.

 other - Provides a flexible mechanism allowing additional element
 to be provided from other namespaces without needing to update
 this schema definition.

 Attributes:

 other - Provides a flexible mechanism allowing additional attributes
 to be provided from other namespaces without needing to update
 this schema definition.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="discovered" type="xsd:dateTime" />
 <xsd:element name="event" type="tns:DocumentEventType" />
 <xsd:element name="document" type="tns:DocumentType" />
 <xsd:any namespace="##other" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:complexType>

 <!-- A list of documents. -->
 <xsd:element name="documents" type="tns:DocumentListType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 The documents element models a list of documents from the

GWD-R 16 Dec 2016

NSI-WG 69

 document space.

 HTTP operations: GET
 URI: /documents/{nsa}/{type}

 The documents element contains document resources discovered
 within the document space, or a subset of documents based on
 supplied query parameters. Zero or more document instances will
 be returned in a documents element.

 The URI template “/documents/{nsa}/{type}” can be used as an
 alternative to, or in conjunction with, the use of query
 parameters. Performing a GET on “/documents/{nsa}/” will
 return all documents associated with the specified NSA.
 Performing a GET on “/documents/{nsa}/{type}” will return
 all documents of {type} from the specified NSA.

 HTTP Parameters:

 Accept - Identifies the content type encoding requested for
 the returned results. Must be a content type supported by the
 protocol.

 If-Modified-Since - Constrains the GET request to return only
 those documents that have been created or updated since the
 time specified in this parameter.

 Query Parameters:

 id (string) - Return all document resources containing the specified Id.

 nsa (string) - Return all document resources containing the
 specified nsa identifier. Cannot be used if the {nsa} URI
 component is provided.

 type (string) - Return all document resources containing the
 specified type. Cannot be used if the {type} URI component is
 provided.

 summary (none) - Will return summary results of any documents
 matching the query criteria. Summary results includes all
 document meta-data but not the signature or document content.

 Returns (code, element):

 200 documents
 Return all document resources matching the query in a
 documents element. If no documents match the query,
 then an empty documents element is returned.

 304 None
 Successful operation where there were no changes to any
 subscription resources matching the query filter given the
 If-Modified-Since criteria. Returns no message body.

 400 error
 Returned if a DDS requester specifies an invalid request. An error
 element will be included populated with appropriate error
 information.

 500 error
 Returned if an internal server error occurred during the
 processing of this request. An error element will be included
 populated with appropriate error information.

 HTTP operations: POST
 URI: /documents

 The POST operation on the “/documents” resource will create a

GWD-R 16 Dec 2016

NSI-WG 70

 new document using the information supplied in the document
 element contained in the POST body. A successful operation
 will return the new document resource. This operation has
 restricted access for DDS requesters and is made available by the
 server based on access control permissions.

 Once a document has been successfully created on the server,
 the server will immediately send notifications to all
 subscriptions with filter criteria matching the document.

 HTTP Parameters:

 Content-Type - Identifies the content type encoding of the POST
 body contents. Must be a content type supported by the protocol.

 Accept - Identifies the content type encoding requested for
 the returned results. Must be a content type supported by the
 protocol.

 If-Modified-Since - Constrains the GET request to return only
 those documents that have been created or updated since the
 time specified in this parameter.

 Body Parameters:

 document - The document to add to the document space of the
 local provider.

 Returns (code, element):

 201 document
 Returns a copy of the new document resource created as the
 result of a successful operation. The HTTP Location header
 field will contain the direct URI reference of the new
 document resource. It will be structured using the URI
 template $root/documents/{nsa}/{type}/{id}.

 400 error
 Returned if a DDS requester specifies an invalid request. An error
 element will be included populated with appropriate error
 information.

 403 error
 The server understood the request, but is refusing to fulfill
 it. Authorization will not help and the request SHOULD NOT
 be repeated. An error element will be included populated
 with appropriate error information.

 409 error
 A document already exists with the same name (nsa/type/id).
 An update of an existing document should use the PUT
 operation.

 500 error
 Returned if an internal server error occurred during the
 processing of this request. An error element will be
 included populated with appropriate error information.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>

 <xsd:element name="local" type="tns:DocumentListType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 The local element models a list of documents from the document
 space published by the local provider NSA.

 HTTP operations: GET
 URI: /local/{type}

GWD-R 16 Dec 2016

NSI-WG 71

 The local element contains document resources published by the
 local provider, or a subset of documents based on supplied query
 parameters. Zero or more document instances will be returned in
 a local element.

 A DDS requester can perform a GET operation on the special “/local” URI
 when it would like to discover all documents associated with the
 local provider NSA. This operation is equivalent to performing a
 GET operation on the URI “/documents/{nsa}”, however, for “/local”
 the DDS requester is not required to have previous knowledge of the
 provider NSA identifier.

 The URI template “/local/{type}” can be used as an alternative to,
 or in conjunction with, the use of query parameters. Performing
 a GET on “/local/{type}/” will return all documents of {type}
 associated with the local NSA.

 HTTP Parameters:

 Accept - Identifies the content type encoding requested for
 the returned results. Must be a content type supported by the
 protocol.

 If-Modified-Since - Constrains the GET request to return only
 those documents that have been created or updated since the
 time specified in this parameter.

 Query Parameters:

 id (string) - Return all document resources containing the
 specified Id.

 type (string) - Return all document resources containing the
 specified type. Cannot be used if the {type} URI component is
 provided.

 summary (none) - Will return summary results of any documents
 matching the query criteria. Summary results includes all
 document meta-data but not the signature or document content.

 Returns (code, element):

 200 local
 Return all document resources matching the query in a
 documents element. If no documents match the query,
 then an empty documents element is returned.

 304 None
 Successful operation where there were no changes to any
 document resources matching the query filter given the
 If-Modified-Since criteria. Returns no message body.

 400 error
 Returned if a DDS requester specifies an invalid request. An error
 element will be included populated with appropriate error
 information.

 500 error
 Returned if an internal server error occurred during the
 processing of this request. An error element will be included
 populated with appropriate error information.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>

 <xsd:complexType name="DocumentListType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

GWD-R 16 Dec 2016

NSI-WG 72

 This type provides a list of zero or more documents.

 Elements:

 document - The document meta-data entry within the document space.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element ref="tns:document" minOccurs="0" maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>

 <!-- A single document. -->
 <xsd:element name="document" type="tns:DocumentType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 The document element models the metadata for a single document
 from the document space.

 HTTP operations: GET
 URI: /documents/{nsa}/{type}/{id}

 This operation will return a specific document instance
 discovered within the document space based on the URI template
 “/documents/{nsa}/{type}/{id}”, where {nsa} is the NSA sourcing
 the document, {type} is the type of document, and {id} is the
 identifier of the specific document. The matching document is
 returned in a single document element.

 HTTP Parameters:

 Accept - Identifies the content type encoding requested for
 the returned results. Must be a content type supported by the
 protocol.

 If-Modified-Since - Constrains the GET request to return only
 those documents that have been created or updated since the
 time specified in this parameter.

 Query Parameters: None.

 Returns (code, element):

 200 local
 Successful operation returns the document identified by
 {nsa}/{type}/{id} in a document element. The Last-Modified
 header parameter will contain the time this document resource
 was last discovered.

 304 None
 Successful operation returns the document identified by
 {nsa}/{type}/{id} in a document element. The Last-Modified
 header parameter will contain the time this document resource
 was last discovered.

 400 error
 Returned if a DDS requester specifies an invalid request. An error
 element will be included populated with appropriate error
 information.

 404 error
 Returned if the requested document was not found. An error
 element will be included populated with appropriate error
 information.

 500 error
 Returned if an internal server error occurred during the
 processing of this request. An error element will be included
 populated with appropriate error information.

GWD-R 16 Dec 2016

NSI-WG 73

 HTTP operations: PUT
 URI: /documents/{nsa}/{type}/{id}

 The PUT operation on the “/documents/{nsa}/{type}/{id}” resource
 will allow a DDS requester to edit the document corresponding to the
 identifier {id}, using the information supplied in the document
 element contained in the PUT body. A successful operation will
 return the modified document and trigger any associated
 notifications within the NSA.

 A document is deleted from the document space by updating it’s
 expire date to a reasonably short period in the future. This
 updated document will get propagated throughout the document
 space and then expire, removing it from the space.

 HTTP Parameters:

 Content-Type - Identifies the content type encoding of the PUT
 body contents. Must be a content type supported by the
 protocol.

 Accept - Identifies the content type encoding requested for
 the returned results. Must be a content type supported by the
 protocol.

 Body Parameters:

 document - The document to update in the document space of the
 local provider. The PUT request must contain the document
 element containing the existing parameters of the document
 resource if they were not modified, as well as any new/edited
 values.

 Returns (code, element):

 200 document
 Returns a copy of the modified document resource as the
 result of a successful operation.

 400 error
 Returned if a DDS requester specifies an invalid request. An
 error element will be included populated with appropriate
 error information.

 403 error
 The server understood the request, but is refusing to fulfill
 it. Authorization will not help and the request SHOULD NOT be
 repeated. An error element will be included populated with
 appropriate error information.

 404 error
 Returned if the requested document was not found. An error
 element will be included populated with appropriate error
 information.

 500 error
 Returned if an internal server error occurred during the
 processing of this request. An error element will be included
 populated with appropriate error information.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>

 <xsd:complexType name="DocumentType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 The DocumentType type definition models all data relating to
 a single document exchanged within the network. Meta-data

GWD-R 16 Dec 2016

NSI-WG 74

 associated with the document, document signature, and the
 document itself is encapsulated in this type. The type
 itself is structured such that it does not need to be
 manipulated between receiving and propagating to a peer.

 A document is uniquely named within the network by the tuple
 of nsa, type, and id. The identifier (id) element itself does
 not need to be unique within the network; it must just be unique
 within the context of the nsa and type elements. These rules
 allow the reuse of the same id value for a document of different
 types under the same source NSA. This is important for both
 searching, and for associating the same naming attribute to
 related documents.

 An NSA must not modify the content of a DocumentType before
 propagating on to a peer unless that NSA is the owner of the
 document.

 Elements:

 nsa - The source NSA associated with the generation and management
 of the document within the network. This is assumed to be the NSA
 to which the document relates, however, there may be situations
 such as proxy publishing where this assumption is not true.

 For example, if the document being generated is the NSA Description
 Document for NSA “urn:ogf:network:example.com:2013:nsa:vixen”, then
 the nsa element should contain is the NSA identifier
 “urn:ogf:network:example.com:2013:nsa:vixen”.

 type - The unique string identifying the type of this document.
 A document type is defined by the type and release of a data
 document. For example, NSI Topology version 1.0 and a NSI
 Topology version 2.0 would be considered two different document
 types:
 - vnd.ogf.nsi.topology.v1+xml
 - vnd.ogf.nsi.topology.v2+xml

 The NSA Description Document 1.0 is defined as the type:
 - vnd.ogf.nsi.nsa.v1+xml

 signature - The OPTIONAL digital signature of the document
 content.

 content - The content of the document modeled by this document
 resource. The document containted in this element must be
 encoded as a MIMW string following the content transfer encoding
 rules as defined in RFC1341.

 other - Provides a flexible mechanism allowing additional elements
 to be provided from other namespaces without needing to update
 this schema definition.

 Attributes:

 id - The identifier of the document. This value must be unique
 in the context of the nsa and type element values within the
 global document space.

 version - The version of the document, or more specifically, the
 date this version of the document was created. Any updates to the
 document must be tagged with a new version.

 expires - The date this version of the document expires and
 should be deleted from the Global Document Space by an NSA and
 any DDS requesters caching the document.

 other - Provides a flexible mechanism allowing additional attributes
 to be provided from other namespaces without needing to update

GWD-R 16 Dec 2016

NSI-WG 75

 this schema definition.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="nsa" type="xsd:anyURI" />
 <xsd:element name="type" type="xsd:string" />
 <xsd:element name="signature" type="tns:ContentType" minOccurs="0" />
 <xsd:element name="content" type="tns:ContentType" minOccurs="0" />
 <xsd:any namespace="##other" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </xsd:sequence>
 <xsd:attribute name="id" use="required" type="xsd:string" />
 <xsd:attribute name="href" use="optional" type="xsd:anyURI" />
 <xsd:attribute name="version" use="required" type="xsd:dateTime" />
 <xsd:attribute name="expires" use="required" type="xsd:dateTime" />
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:complexType>

 <xsd:complexType name="ContentType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 This simple string type is used to hold a document contents or
 digital signature within the document metadata. Elements of
 is type use the contentTransferEncoding and contentType
 attributes to describe the encoding of the document within
 this string value. The document meta-data "type" element
 identifies the document type itself.

 When encoding a document to be contained in this element, the
 contentType attribute is applied first using rules defined in
 RFC1341 (section 4), followed by the contentTransferEncoding
 attribute using rules defined in RFC1341 (section 5). As an
 example, an NSI topology document version 2 is encoded as
 follows:

 type="vnd.ogf.nsi.topology.v2+xml"
 contentType="application/x-gzip"
 contentTransferEncoding="base64"

 In this case the "vnd.ogf.nsi.topology.v2+xml" document type
 (XML) is compressed using gzip into a binary encoding, then
 base64 encoded before being stored in the content element for
 addition to the DDS.

 When decoding the contents contained in this element, the
 contentTransferEncoding attribute is applied first using rules
 defined in RFC1341 (section 5), followed by the contentType
 attribute using rules defined in RFC1341 (section 4). As an
 example, an NSI Description Document version 1 is encoded as
 follows:

 type="vnd.ogf.nsi.nsa.v1+xml"
 contentType="application/x-gzip"
 contentTransferEncoding="base64"

 In this case the "vnd.ogf.nsi.nsa.v1+xml" document type
 (XML) will need to decoded from base64 as indicated by the
 contentTransferEncoding attribute, then decompressed using
 gzip from the binary encoding into the resulting XML as
 specified by the type.

 Attributes:

 contentType - This attribute is used to specify the nature
 of the data in the body of the content element, by giving type
 and subtype identifiers, and by providing auxiliary information
 that may be required for certain document types. RFC1341
 (section 4) describes this in more detail.

GWD-R 16 Dec 2016

NSI-WG 76

 contentTransferEncoding - This attribute is used to indicate
 the type of transformation that has been used in order
 to represent the body in an acceptable manner for transport in
 the string content element of the document meta-data. The
 supported values of this attribute are defined in RFC1341
 (section 5).
 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="contentType" use="optional" type="xsd:string" />
 <xsd:attribute name="contentTransferEncoding" use="optional"
 type="xsd:string" />
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>

 <xsd:element name="error" type="tns:ErrorType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 The error element is returned in an HTTP response when an error
 has occured servicing the request on the provider.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>

 <xsd:complexType name="ErrorType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 This type models errors returned from Document Distribution
 Service operations.

 Elements:

 code - The integer error code for the specific error.

 label - A character string label for the error.

 description - A detailed description of error.

 resource - The resource that caused the error.

 Attributes:

 id - The unique identifier of the error for correlation with logs.

 date - The date and time the error occured.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="code" type="xsd:int" />
 <xsd:element name="label" type="xsd:string" />
 <xsd:element name="description" type="xsd:string" />
 <xsd:element name="resource" type="xsd:anyURI" />
 </xsd:sequence>
 <xsd:attribute name="id" use="required" type="xsd:string" />
 <xsd:attribute name="date" use="required" type="xsd:dateTime" />
 </xsd:complexType>
</xsd:schema>

