Grid Certificate Profile

Todo list

We have Distribution is unlimited here and under the copyright heading. 3
Shouldn’t this section contain one of the following statements: Group Working Draft (GWD); Grid Final Draft (GFD); Grid Recommendation; Obsolete. This document is replaced by/obsoleted by GFD-I.xxx; Historical. 3
Add citation mark: gfd125. 3
Missing? Document Change History section containing e.g. Updated to conform to GFD-C.152 and cite gfd152. 3
Document should refer either to GFD.125 or GFD-C.125 consistently. 4
basicConstraints and keyUsage are extensions and should be normaltext? 7
CheckOK: Removed “in use,” from “such as OpenSSL in use, version 0.9.8 and above” converted the space n-dash space ‘–’ comments to English m-dashes ‘—’ 7
NB Didn’t we agree that extensions were not to be italicised only attributes. 7
Is this serial number or serialNumber? 7
authorityKeyIdentifier is in italics – we agreed that only attributes and latin was to be italicised IIRC. 7
Suggest “guidance given in X.521” 8
Should be “If a UTF8String” 8
Should the following attributes be in italic? 8
Country Locality capitals also highlighted in v06a? 8
Added italics to common name below 9
Should have and in title 9
Should be consistant with other headings (either include abbreviations here or exclude them later) 9
Should the paragraph not be earlier in the document? 9
should be “(O)” 9
changed “+” to “and later” in footnote 10

David L. Groep, Nikhef*
Mike Jones, University of Manchester*
Michael Helm, LBNL/ESNet
Jens Jensen, RAL/STFC
Milan Sova, CESNET
Scott Rea, DigiCert Inc.
Reimer Karlsen-Masur, DFN
Ursula Epting, KIT
June 2013
should be “in favour of the string rfc822Name=\textit{emailAddress}”
Check Me: Chnaged from subjectAlternativeName
SAN also changed
should be “sign emails”
Again: Extensions here have been marked up in italics for attributes
Should the following attributes be in italic
Should extensions AKI and SKI, start with a capital
Check if these extensions shoul be in italics
extension italics again?
DigitalSignature should be italics
Check: m-dash changed before trust
Should these attributes be in italic?
Country, Locality, should be capitalised?
serialNumber attribute italics?
Attribute Name or extenstion.
Capitalization of C and L.
sort labels out
following section needs work
fix labels ref to section 6.1
consistancy in Attribute quote and italics
fix labels footnote 7 and 2.3.5
get section label in footnote
Should these attributes be in italic?
Country, Locality, should be capitalised?
Why is there an asterix?
RFC3280bis need updating
CA
SHOULD Yellow
section 5 in footnote check it
Check footnote reference
corrected spelling of representation
Unable to get a shaded box for verbatim for now
Un italicised SEQUENCE
italics in quotes in footnote quote?
need to update the RSA statement
reference to url
Should this footnote be NOT RECOMMENDED to support non RSA algorithms
footnote needs updating.
correctly reference URL
Status of This Document

This document provides recommendations to the Grid community. Distribution is unlimited.

We have Distribution is unlimited here and under the copyright heading.

Shouldn’t this section contain one of the following statements: Group Working Draft (GWD); Grid Final Draft (GFD); Grid Recommendation; Obsolete. This document is replaced by/obsoleted by GFD-I.xxx; Historical

Obsolesces

This document obsoletes GFD-C.125.

Missing? Document Change History section containing e.g. Updated to conform to GFD-C.152 and cite gfd152.

Copyright Notice

Abstract

This document provides guidance for the use of directory names, attributes, and extensions in X.509 certificates, such that they are usable by the majority of the grid infrastructures today. The intended audience for this document includes issuers of X.509 certificates for use in grid infrastructures, and implementers of X.509 validation software for grid purposes.

Interoperability for X.509 identity certificates between the issuers of certificates and the software that interprets them is increasingly more important as the number of participants in grids that rely on a X.509 certificates grows. It is difficult to predict which particular software will be used by the parties relying on the certificate, and how this software interprets specific name forms, attributes, and extensions. This document gives guidance and defines explicit restrictions on the certificate profile to ensure the certificate is interpreted by the relying party in the way the issuer intended. It specifies and further restricts the certificate format as defined in RFC 5280 and the X.509 standard.

davidg@nikhef.nl, mike.jones@manchester.ac.uk
This document extends the guidance in GFD.125 by specifying additional constraints and providing further clarification.

Contents

Abstract ... 3

1 Scope of this document 6

2 Self-signed and subordinate Certification Authority certificates 7
 2.1 General provisions 7
 2.2 Serial Number ... 7
 2.3 Issuer and Subject names 8
 2.3.1 commonName ... 9
 2.3.2 domainComponent, countryName, organisationName, organisationalUnitName 9
 2.3.3 serialNumber .. 10
 2.3.4 emailAddress .. 10
 2.3.5 userID or uid .. 10
 2.4 Extensions in CA certificates 11
 2.4.1 basicConstraints 11
 2.4.2 keyUsage ... 11
 2.4.3 extendedKeyUsage 12
 2.4.4 authorityInfoAccess 12
 2.4.5 certificatePolicies 13
 2.4.6 cRLDistributionPoints 13
 2.4.7 Authority and Subject Key Identifier 13
 2.4.8 nameConstraints 14

3 End-entity certificates 14
 3.1 General provisions 14
 3.2 Subject distinguished names 14
 3.2.1 String encoding of the RDN components 15
 3.2.2 PrintableString encoding 15
 3.2.3 commonName .. 16
 3.2.4 domainComponent (DC), country (C), stateOrProvinceName (ST), locality (L), organizationName (O), and organisationalUnitName (OU) 17
 3.2.5 serialNumber .. 18
 3.2.6 emailAddress .. 18
 3.2.7 userID and uniqueldentifier 18
 3.3 Extensions in end-entity certificates 18
 3.3.1 basicConstraints 19

davidg@nikhef.nl, mike.jones@manchester.ac.uk
3.3.2 keyUsage .. 19
3.3.3 extendedKeyUsage .. 20
3.3.4 nsCertType ... 21
3.3.5 nsPolicyURL, nsRevocationURL 21
3.3.6 nsComment .. 21
3.3.7 cRLDistributionPoints .. 21
3.3.8 subjectKeyIdentifier .. 22
3.3.9 authorityKeyIdentifier .. 22
3.3.10 subjectAlternativeName, issuerAlternativeName 22
3.3.11 authorityInformationAccess 22
4 General Considerations .. 23
 4.1 ASN.1 Structure of the DN and ordering of the RDN components 23
 4.2 Keys, key lengths and hashes 24
 4.3 Maximum key lengths .. 25
5 Directory Names and String Representations 25
6 Security Considerations .. 27
7 Contributors .. 28
8 Intellectual Property Statement 28
9 Disclaimer ... 29
10 Full Copyright Notice .. 29
11 References ... 29
1 Scope of this document

This document provides guidance for the use of attributes and extensions in X.509 [9] certificates such that they are usable by the majority of the grid infrastructures today. This guidance must be interpreted in the context of RFC 5280 [3], i.e., all certificates must be compliant to RFC 5280 in addition to any limitations imposed by the guidelines in this document.

Specific attention has been given to the representation of the subject and issuer distinguished names as strings, since in much of the grid software it is this string rendering, and not the actual sequence of relative distinguished names, which is used for identification and subsequent authorization purposes. This imposes specific additional constraints on such names, and on the set of attributes which can be used in these names, to ensure wide interoperability of the certificates.

If a particular extension or attribute is not discussed in this document, this should not be construed as meaning the extension or attribute is either harmless or useful; it means that at the time of writing it was not in widespread use, and was therefore not needed for interoperability. It may or may not be harmless and may or may not cause interoperability problems. It is recommended that specific interoperability testing is performed prior to including any such extensions or attributes.

The key words “MUST”, “MUST NOT”, “SHOULD”, “SHOULD NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” are to be interpreted as described in RFC 2119 [2].
2 Self-signed and subordinate Certification Authority certificates

2.1 General provisions

All Certification Authority (CA) certificates MUST be in X.509 version 3 format, i.e., the version number MUST be set to the value "2", as the use of specific extensions such as basicConstraints and keyUsage is required.

For the message digest that protects the certificate integrity, known-weak signatures or hash functions, such as MD5, MUST NOT be used in new certificates. The current most secure hash function that is supported by the entire target audience of the CA SHOULD be used. In particular SHA-2 or better SHOULD be used and at least as strong as SHA-1 MUST be used.

2.2 Serial Number

The serial number of each CA certificate SHOULD be unique among all certificates representing that CA.

Note that modern hashes, such as SHA-256, are supported in recent versions of the majority of software (such as OpenSSL version 0.9.8 and above) so SHA-1 is no longer the only available value at the time of writing.

If a root or intermediate CA certificate is re-issued with the same serial number—for example in the case that only the lifetime is extended but the key pair remains the same—web browsers using the Mozilla NSS code base will issue a user warning and the import will fail (tested in Spring 2007), but if installation of the new certificate is attempted in Microsoft Internet Explorer it will overwrite the old one (tested in versions up to and including version 6). For Internet Explorer 7 and later (and verified up till IE version 9), both certificates will be in the trust store, but the most recently imported certificate will always be used. Thus, for NSS-based browsers the old certificate has to be removed from the certificate store first, and for IE7+ that is advised.

1Note that modern hashes, such as SHA-256, are supported in recent versions of the majority of software (such as OpenSSL version 0.9.8 and above) so SHA-1 is no longer the only available value at the time of writing.

2If a root or intermediate CA certificate is re-issued with the same serial number—for example in the case that only the lifetime is extended but the key pair remains the same—web browsers using the Mozilla NSS code base will issue a user warning and the import will fail (tested in Spring 2007), but if installation of the new certificate is attempted in Microsoft Internet Explorer it will overwrite the old one (tested in versions up to and including version 6). For Internet Explorer 7 and later (and verified up till IE version 9), both certificates will be in the trust store, but the most recently imported certificate will always be used. Thus, for NSS-based browsers the old certificate has to be removed from the certificate store first, and for IE7+ that is advised.

davidg@nikhef.nl, mike.jones@manchester.ac.uk
If the end-entity certificates include an `authorityKeyIdentifier` extension with the issuer’s serial number, the serial number SHOULD remain the same on re-issuing of the CA certificate. Note that including the attribute serial number in `authorityKeyIdentifier` extension in end-entity certificate is discouraged.

2.3 Issuer and Subject names

Only a limited number of attribute types are well supported by all of the current software implementations when used as part of the Issuer or Subject Distinguished Name (DN). Therefore, only the following attribute types SHOULD be used, as they can be considered “safe”: `domainComponent` (DC), `countryName` (C), `stateOrProvinceName` (ST), `localityName` (L), `organisaionName` (O), `organisationalUnitName` (OU) and `commonName` (CN). Use of other attributes in distinguished names MAY result in incompatible representations, and thus SHOULD NOT be used.

To ensure uniqueness and reproducibility of the string renderings of DNs, the ASN.1 SEQUENCE MUST only contain ASN.1 SETs of length 1. Other SET lengths MUST NOT be used.

Contrary to what may be deduced from the guidance given from X.521, multiple instances of the `organisationName` attribute MAY be used in a single DN. It has been confirmed by experience that all known software used in grid deployments today correctly handles their representation, and will collate the attributes in the proper order. Also, multiple instances of the `commonName` attribute MAY be used.

Note, however, that the visual rendering of a multiple `organisationName` (O) or multiple `commonName` (CN) attributes in many browsers may not be complete, and usually only the first or the last of these is displayed to the user. This only affects the visual representation, since much of the known grid middleware uses the entire DN for subject identification. If no O or OU attributes appear in the DN, browsers\(^3\) might not use other components to show affiliation.

All Relative Distinguished Name (RDN) components in distinguished names MUST be compliant with RFC 4630 [6] and in addition SHOULD be encoded as PrintableString. If an UTF8String is used for encoding, the RDN MUST NOT contain characters that cannot be expressed in printable 7-bit ASCII, as these characters have inconsistent representations.

\(^3\)In particular this applies to browsers based on the Mozilla NSS code base.
Country Locality capitals also highlighted in v06a?

<table>
<thead>
<tr>
<th>Issuer and authority subject name RDN component recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required</td>
</tr>
<tr>
<td>Advised to use</td>
</tr>
<tr>
<td>Optional</td>
</tr>
<tr>
<td>Should not be used</td>
</tr>
</tbody>
</table>

2.3.1 commonName

Added italics to common name below

The countryName SHOULD be used in the subject distinguished name of a CA root certificate, as it allows easy visual recognition of the CA name. As the CN of the subject DN is often the most prominently displayed name of the CA, the CN SHOULD be a descriptive explicit string distinguishing the authority’s name. In addition the use of the “O” entry is encouraged.

2.3.2 domainComponent, countryName, organisationName, organisationalUnitName

Should be consistant with other headings (either include abreviations here or exclude them later)

Should the paragraph not be earlier in the document?

The distinguished name is usually made up of a combination of the attribute types “DC”, “C”, “ST”, “L”, “O”, “OU” and “CN”.

To ensure uniqueness and proper delegation, the use of domainComponent (DC) naming corresponding to a registered DNS name owned by the authority at the beginning of the issuer and subject name RDN sequence is strongly encouraged. In that case, the ASN.1 SEQUENCE MUST start with the domainComponent representing the top-level domain, for example “DC=org” or “DC=eu”.

The use of at least one descriptive organisationName O attribute in the DN is encouraged.

If a countryName (C) component is included in the issuer DN, it SHOULD reflect the country in which the issuer is based.

4Having a countryName of just “CN=CA” will result in the display name of the CA in many browsers to show just the string ‘CA’ as the name, which may result in confusion.
2.3.3 **serialNumber**

The attribute type `serialNumber` {2.5.4.5} MUST NOT be used in any Name⁵.

2.3.4 **emailAddress**

The attribute type `emailAddress` MUST NOT be used in DNs. It has been deprecated in RFC 5280, in favour of having an `rfc822EmailAddress` should be “in favour of the string rfc822Name=emailAddress” in the subjectAltName X.509v3 extension, and many recent mail clients can deal with `subjectAltName` ⁶.

In all cases, the CA certificate itself is not usually used to send email, so mail client support is not an issue to be considered for CA certificates.

2.3.5 **userID or uid**

The attribute type `userID` or `uid` {0.9.2342.19200300.100.1.1} MUST NOT be used in Names. The attribute `uniqueIdentifier` {2.5.4.45} MUST NOT be used in Names. Additionally, it is not relevant for CA certificates of any kind.⁷

⁵The `serialNumber` attribute was originally intended to describe the serial number of a device [10]. There have been discussions on the PKIX mailing lists on whether it was also appropriate for persons, and then only to distinguish different persons with the same commonName from each other. In particular, it is not intended to contain the certificate serial number.

There is another reason not to use the `serialNumber` attribute: versions of OpenSSL up to and including version 0.9.6 use a non-standard string representation “SN” for this attribute. This representation collides with the recognised abbreviated representation of the `surname` attribute. This representation has changed in OpenSSL 0.9.7 and later to read “serialNumber”, so depending on the OpenSSL version used the string representations of DNs with the `serialNumber` RDN attribute type will differ, leading to problems in authorization.

String representation issues with the `emailAddress` attribute in DNs are caused by OpenSSL, where versions up to and including 0.9.6 used the non-standard string representation “Email” for this attribute type, and later versions use “emailAddress”, thus resulting in different string representations for the same DN and leading to problems in subsequent authorisation decisions.

⁷The string representation of the `userID` or `uid` attribute is not uniquely defined. OpenSSL versions up to and including 0.9.6 have no string representation for this, and this omission has resulted in some versions of the Globus Toolkit that use this OpenSSL version to forcibly re-code the string representation of this attribute to read “USERID”. Recent OpenSSL versions stringify it to the RFC 4514 standard representation “uid”, resulting in a non-unique representation. Note that both “uid” and “userid” are valid standard string representation of the attribute with OID 0.9.2342.19200300.100.1.1, with “userid” defined in RFC 1274 and “uid” in 4514. The `uniqueIdentifier` attribute, with OID 2.5.4.45, has been string encoded in OpenSSL as “uid”, also colliding with the “userID” attribute name.
2.4 Extensions in CA certificates

For operation as a CA certificate, only basicConstraints and keyUsage extensions need to be present in the (root or subordinate) certificate. To be functional as an issuer certificate, there is no a priori requirement by (grid) software for any other extensions in the certificate.

Summary of extensions and attribute usage

<table>
<thead>
<tr>
<th>Required</th>
<th>Advised to use</th>
<th>Optional</th>
<th>Should not be used</th>
</tr>
</thead>
<tbody>
<tr>
<td>basicConstraints, keyUsage</td>
<td>AuthorityKeyIdentifier, SubjectKeyIdentifier</td>
<td>for all CAs: cRLDistributionPoints, for subordinate CAs: certificatePolicies, authorityInformationAccess</td>
<td>extendedKeyUsage, nsPolicyURL, nsRevocationURL, nsComment, nsCertType, nameConstraints (for grid-only CAs)</td>
</tr>
</tbody>
</table>

2.4.1 basicConstraints

The basicConstraints extension MUST be included in CA certificates, and it MUST be set to “CA: TRUE”. This extension SHOULD be marked as critical.

2.4.2 keyUsage

The keyUsage extension MUST be included in CA certificates, and it SHOULD be marked as critical.

For a CA certificate, keyCertSign MUST be set, and crlSign MUST be set if the CA certificate is used to directly sign issued CRLs.

While the criticality is intended for a CA to make the use of its certificates more robust, not all verification systems currently in use (specifically those outside of the grid context proper) do not factor the criticality of many of these extensions. Especially for CAs that serve a wider community, marking basicConstraints as critical may break other applications, which is the reason it is not marked as such in a sizeable fraction of the CA certificates preinstalled in browsers (as of September 2007, the root store in Microsoft Windows XP contained 85 out of 200 CAs that were not compliant [13]). For new CAs that do not face known incompatibilities, it is strongly recommended to set basicConstraints and mark it critical.

There may be CAs that either do not issue CRLs at all, since their end-entity certificates have a short...
It is RECOMMENDED to set no more than these two values10. For proper operation it is not required to have more than \textit{keyCertSign} and \textit{cRLSign} in the CA certificate and adding additional values may convey an impression to relying parties that the CA certificate is used for purposes other than signing and issuing certificates and related signing services. The CA thus ensures that the permitted use of public keys is minimal and relevant to the goals of its PKI, particularly for its own public key (in the CA certificate)11.

2.4.3 extendedKeyUsage

The \textit{extendedKeyUsage} extension SHOULD NOT be included in CA certificates12. If present, it MUST NOT be marked critical.

2.4.4 authorityInfoAccess

The \textit{authorityInfoAccess} (AIA) extension for subordinate CAs MAY include OCSP information13 and issuing CA location. \textit{nsCertType}, \textit{nsComment}, \textit{nsPolicyURL}, \textit{nsRevocationURL}. The \textit{ns*} attributes are deprecated and MUST NOT be included in any new CA certificates.14
2.4.5 *certificatePolicies*

The presence of a *certificatePolicies* extension is not harmful, but adding this extension in self-signed root CA certificates permanently binds this CA certificate to the particular instance of the policies referenced and is thus not advisable\(^ \text{15} \). The certificatePolicies extension MAY be set for subordinate CAs and if set MUST include only policy OIDs. If present, it SHOULD NOT be marked critical.

2.4.6 *cRLDistributionPoints*

The *cRLDistributionPoints* (CDP) extension MAY be present in a self-signed root CA certificate, but MUST be included in end-entity certificates and SHOULD be included in any intermediate CA certificates\(^ \text{16} \) that issues CRLs.

For subordinate CAs, where a CDP is present, it MUST contain at least one http URI\(^ \text{17} \).

2.4.7 **Authority and Subject Key Identifier**

A *subjectKeyIdentifier* extension MUST be included in CA certificates to aid in validation path construction. An *authorityKeyIdentifier* MUST be included in all CA certificates unless the certificate is self-signed\(^ \text{18} \). If included for a self-signed root certificate the *authorityKeyIdentifier’s subjectKeyIdentifier* and *subjectKeyIdentifier* MUST be the same.

If either of these extensions is included, it SHOULD include only the *keyIdentifier* attribute and no other attributes.

\(^ \text{15} \) Any change in the policy requires re-issuing the CA certificate with an updated extension, and re-issuing and re-distributing a CA certificate is a complicated operation. It is therefore advisable to put only long-term stable extensions in a CA certificate.

\(^ \text{16} \) Client software can use the cRLDistributionPoints extension to retrieve CRLs on-demand, although no known grid software implementations today actually support that.

Note that by putting a CRL distribution URL in any CA certificate the authority implies that the URL will not change during the lifetime of the root or subordinate CA certificate, so, if included here, one SHOULD make sure the URL will be stable over the life time of the certificate.

\(^ \text{17} \) The URI should be plain http, and in particular not an https. Although the https connection in theory does not need to be validated, many client tools do this by default and will fail in absence of proper certificate, especially if the web site is not secured with a certificate issued by the CA itself. The CRL returned is signed and integrity protected anyway. The cRLDistributionPoints extension MAY contain other URIs.

\(^ \text{18} \) Not including the subject- or authorityKeyIdentifier is not known to break any grid software.
2.4.8 nameConstraints

The extension nameConstraints (OID 2.5.29.30) is not relevant for grid purposes today and its use is NOT RECOMMENDED.\(^{19}\)

3 End-entity certificates

3.1 General provisions

All end-entity certificates MUST be in X.509 version 3 format, i.e. the version number MUST be set to the value “2”, as the use of specific extensions, such as basicConstraints and keyUsage, is required.

The serial number of each issued certificate MUST be unique amongst all certificates issued by the same issuer DN.

For the message digest that protects the certificate integrity, known-weak signatures or hash functions (such as MD5) MUST NOT be used in new certificates. Note that modern hashes, such as SHA-256, are supported by the majority of OpenSSL versions in use, so SHA-2 is currently RECOMMENDED if the software in the entire community supports it. At least a SHA-1 hash or stronger MUST be used.

3.2 Subject distinguished names

The same general considerations mentioned for CA certificate subject names also apply to subject names in end-entity certificates.

Relative Distinguished Name (RDN) attribute types other than “DC”, “C”, “ST”, “L”, “O”, “OU”, and “CN” SHOULD NOT be used.

To ensure uniqueness and proper delegated ownership of the certificate subject name space, the use of domainComponent RDN components corresponding to a duly registered DNS name citerfc1591 of the authority at the start of the distinguished name is strongly encouraged. Thus, the ASN.1 SEQUENCE MUST begin with the domainComponent attribute corresponding to the top-level domain (e.g. “org”, or “eu”), and then be followed by the subordinate domain name components.

\(^{19}\)The interpretation of the nameConstraints extension varies significantly between implementations and therefore SHOULD be avoided in CA certificates, and is not relevant for end-entity certificates. Note that this applies to CA-defined namespace constraints, and this is completely independent of any constraints on the subject signing namespace to be defined by the relying party, and which is to be independently enforced by software (for example via ‘dot-signing-policy’ files in the Globus Toolkit software).
3.2.1 String encoding of the RDN components

All Relative Distinguished Name (RDN) components in distinguished names MUST be compliant with RFC 4630 [6] and in addition SHOULD be encoded as PrintableString. If an UTF8String is used for encoding, the RDN MUST NOT contain characters that cannot be expressed in printable 7-bit ASCII, as these characters have inconsistent representations.

3.2.2 PrintableString encoding

RFC 2252 defines PrintableString as consisting of 'a'–'z', 'A'–'Z', '0'–'9', and the characters 'n', '{', '}', '+', ',', '-', '.', '/', ':', '?', '\', that is, upper and lower case alphanumeric, double quote, left and right parentheses, plus, comma, minus/hyphen, dot (period), forward slash, colon, question mark, and space. This set is almost consistent with the PrintableString definition of RFC 1778, differing only in allowing '‘' (single quote), instead of '' (double quote).

The double quote MUST NOT be used.

The single quote SHOULD NOT be used. The colon (";") SHOULD NOT be used.

The CA MUST ensure that case or consecutive spaces are not used to distinguish between users (e.g. users with the same name).

20 Non-7-bit ASCII characters have different string representations in different pieces of software, and cannot easily be passed around between locales, or be read from log files. Use of such characters will result in undefined or inconsistent behaviour, e.g. in subsequent authorizations.

21 OpenSSL uses forward slash ("/") in the one-line string representation to separate RDNs, making the use of the forward slash potentially confusing. But since there is always an equal sign (=) after the name of a RDN component in this representation and the equal sign is not part of the allowed character set, a proper parser should be able to parse this correctly.

22 OpenSSL follows RFC1778’s definition of PrintableString.

23 The COLON (";") character is used as a field separator in ‘htpassword’ files with FakeBasicAuth as used in Apache mod_ssl and cannot be escaped in that format. Subjects with a colon in their DN will not be listable in this file format.

24 While printableString encodings are supposed to be case insensitive [7], in practice most grid software uses case sensitive comparisons. A related problem is found with consecutive spaces which are supposed to be collapsed to a single space.
3.2.3 commonName

A commonName attribute MUST be used in the subject DN of an end-entity certificate. If the commonName is not encoded as printableString, it SHOULD be encoded as UTF8String.

To prevent name collisions between different entities, mainly in issuing personal certificates, a number or other allowed distinguishing characters can be added to the CN to ensure uniqueness. It is usually allowed for an entity to have more than one subject DN assigned.

For certificates issued to networked entities, typically the (primary) FQDN of the server is included in the commonName. For regular network entity certificates, there MUST NOT be any additional characters in the commonName.

Some grid middleware contains a design flaw that allows implicit wildcard matching of the domainname in the commonName attribute, where the first component of the domainname containing a dash ("-"") is stripped of all characters from the dash onwards, and then matched to the FQDN in the commonName.

Note that for name-based virtual hosting, additional FQDNs can be asserted in the subjectAlternativeName extension in multiple dNSName attributes.

Many browsers use only the commonName to label certificates in their certificate stores. It should be noted that past versions of the FreeRadius (http://www.freeradius.org/) uses only the commonName for its authorization decision. No grid middleware is known to act in this manner.

Adding qualifiers to the CN is preferred over adding other attributes to the subject DN, such as the uid’s or serialNumber attributes that MUST NOT be used.

Some components of some grid middleware also recognize Kerberos-style “service” names in the CN as well that look like “servicename/fqdn”. In the majority of the cases, a “normal” server certificate without the “servicename/”-qualifier can be used as well – although the documentation of the middleware will not always state that clearly. It is recommended to phase out the “servicename/”-qualifiers where possible.

This refers in particular to the Globus Toolkit, at least up to and including version 5.

For example: a certificate issued to “CN=grid.example.org” can be used for successfully proving the identity of “grid-ce.example.org” as well as “grid-se.example.org” and “grid.example.org” itself.

Many modern browsers, such as Microsoft Internet Explorer version 6 and higher, or Mozilla Firefox versions 1.5 and higher, will recognize these additional dNSNames in the subjectAlternativeName and recognize...
3.2.4 \textit{domainComponent (DC), country (C), stateOrProvinceName (ST), Locality (L), organizationName (O), and organizationalUnitName (OU)}

To ensure subject name uniqueness and proper namespace delegation, the use of domain-Component (DC) naming corresponding to a registered DNS name owned by the authority at the beginning of the issuer and subject name RDN sequence is strongly encouraged. In that case, the ASN.1 SEQUENCE MUST start with the domainComponent representing the top-level domain, for example “DC=org” or “DC=eu”.

It is customary to encode the \textit{domainComponent} as an IA5String31. Since all known software correctly parses all incoming encodings, all of PrintableString, IA5String and UTF8String MAY be used to encode \textit{domainComponent}, with IA5String being preferred, and the characters 0-9, a-z, A-Z, '-' (hyphen) and '_' (underscore) allowed.

If the Country attribute is used, the value of this attribute SHOULD contain the two-letter ISO3166 encoding of the country’s name32, 33. The country, if used, MUST be used at most once. Any of the \textit{stateOrProvinceName} (ST), \textit{Locality} (L), \textit{organizationName} (O), and \textit{organizationalUnitName} (OU) attributes MAY be used and have their usual meaning.

The use of at least one descriptive \textit{organizationName} O attribute in the DN is RECOMMENDED.
3.2.5 serialNumber

The AttributeType "serialNumber" (i.e. 2.5.4.5) MUST NOT be used in any Name34. Specifically, the serialNumber attribute MUST NOT be used to re-encode the certificate serial number in the subject name35.

3.2.6 emailAddress

The attribute pkcs9email ("emailAddress") MUST NOT be used in subject names36. If used, by RFC 5280 email addresses MUST be encoded in RFC 822 "addr-spec" format (section 6.1) and they MUST be encoded as IA5String.

3.2.7 userID and uniqueIdentifier

The attribute type "userID" (i.e. OID 0.9.2342.19200300.100.1.1) and uniqueIdentifier (i.e. OID 2.5.4.45) MUST NOT be used in Names37. Both attribute types are also known as uid.

3.3 Extensions in end-entity certificates

For use of an end-entity certificate with grid software, at least either of the extendedKeyUsage or nsCertType38 extensions MUST be present, where the use of the extendedKeyUsage extension is preferred. Including basicConstraints is RECOMMENDED.

For end-entity certificates issued to networked entities (servers or services), the use of the subjectAlternativeName extensions with a dNSName attribute is RECOMMENDED. For end-entity certificates that include an rfc822 email address, the subjectAltName extension SHOULD be used, and the email address included in the rfc822Name attribute.

34See footnote 5 to section 2.3.3 for clarification.

35Not only is such use of serialNumber redundant, but it also makes renewals impossible.

36The emailAddress attribute in the subject DN has been deprecated in RFC5280 [3], in favour of having an rfc822EmailAddress in the subjectAlternativeName extension. Many recent mail clients are able to deal with the subjectAlternativeName. Parsing issues with this attribute are caused by OpenSSL, which in versions up to and including 0.9.6 used the non-standard string representation “Email” for this attribute type, whereas other software renders it as “E”, or as the numeric OID.

37See footnote 7 to section 2.3.5 for clarification.

38The use of nsCertType is deprecated, see section 3.3.5.
End-entity certificates MUST include the `keyUsage` extension and it is RECOMMENDED that an end-entity certificate also includes the extensions `certificatePolicies`, and `cRLDistributionPoints`.

There is no a priori requirement by grid software for any other extension in end entity certificates.

<table>
<thead>
<tr>
<th>End-entity subject extensions and attribute recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required</td>
</tr>
<tr>
<td>Advised to use</td>
</tr>
<tr>
<td>Optional</td>
</tr>
<tr>
<td>Should not be used</td>
</tr>
</tbody>
</table>

3.3.1 `basicConstraints`

The `basicConstraints` extension is RECOMMENDED to be included in end-entity certificates. The `pathLenConstraint` attribute MUST NOT be present.

If the CA software is capable of generating the basicConstraints extension with a `cA` attribute even if its value is “CA:FALSE”, this extension MUST be included in end-entity certificates, and its value MUST be set to “CA:FALSE”.

When present, this extension MUST be marked critical.

3.3.2 `keyUsage`

The `keyUsage` extension MUST be included in end-entity certificates, and it MUST be marked critical.

For an end-entity certificate, it depends on certificate usage which values need to be set.

The `digitalSignature` and `keyEncipherment` values MUST be set for authentication in SSL sessions, and thus for typical grid usage, as otherwise grid authentication will not work.

39 According to the ASN.1 encoding rules, a value “CA:FALSE” for basicConstraints is the default and thus should not need to be encoded as an extension, but recent discussion (on RFC3280bis) has made clear that it would be strongly advisable to include it.

It is not known if there is client software that will incorrectly allow signing of subordinate certificates if this extension is absent.

40 Note that RFC 5280 forbids the use of pathLenConstraints in end-entity certificates. If it is included anyway, it MUST allow for an unlimited path length to allow the user to issue proxy certificates [14].
These two are the only values that are actually required.

The `keyAgreement`, `encipherOnly`, and `decipherOnly` values primarily apply to DH keys, and need not normally be asserted in an end-entity certificate.

The `nonRepudiation (contentCommitment)` value SHOULD NOT be set for server certificates (including “host” and “service” certificates), as it implies that any use of the key would constitute incontrovertible evidence that the signing was done in a conscious way, which is unlikely for a server certificate. It SHOULD NOT be set in other end-entity certificates either, as the claims made by this `keyUsage` are ill-defined or non-verifiable, and its interpretation by clients unclear. If it is set regardless, its assertion in personal end-entity certificates SHOULD be limited to special purposes.

The `dataEncipherment` value is RECOMMENDED in order to enable use of the certificates with specific implementations of message-level security mechanisms where messages are to be encrypted.\(^{41}\)

The `keyCertSign` and `cRLSign` MUST NOT be set in an end-entity certificate, unless the certificate is explicitly intended for use in indirect CRL signing.\(^{42}\)

The `dataEncipherment` usage is intended to refer to the direct use of the RSA key in enciphering data, and as such ought to bear no relevance to the encryption of documents with a session key, however some web services stacks to date require this usage to be set in order to use the certificate for use in XML encryption and message-level security. This has been verified for exchanging encrypted messages via GSISecureMessage as implemented in the Globus Toolkit middleware. This includes the receiving entity’s certificate that must have the `dataEncipherment` keyUsage extension set if `keyUsage` itself is set to be a critical extension.

\(^{41}\) See also section 2.4.2.

\(^{42}\) This dual-use of host and service certificates action in both a server and a client role is required for, for example, the Network Job Service (NJS) and the Gateway in the Unicore grid middleware, where one NJS may forward a request to another NJS, and in this interaction the NJS acts as a client.

\(^{43}\) Refer to section 5 for all values that could be included in certificates.

41 The `dataEncipherment` usage is intended to refer to the direct use of the RSA key in enciphering data, and as such ought to bear no relevance to the encryption of documents with a session key, however some web services stacks to date require this usage to be set in order to use the certificate for use in XML encryption and message-level security. This has been verified for exchanging encrypted messages via GSISecureMessage as implemented in the Globus Toolkit middleware. This includes the receiving entity’s certificate that must have the `dataEncipherment` keyUsage extension set if `keyUsage` itself is set to be a critical extension.

42 See also section 2.4.2.

43 This dual-use of host and service certificates action in both a server and a client role is required for, for example, the Network Job Service (NJS) and the Gateway in the Unicore grid middleware, where one NJS may forward a request to another NJS, and in this interaction the NJS acts as a client.

44 Refer to section 5 for all values that could be included in certificates.
OCSP responder certificates MUST have oCSPResponder asserted.

3.3.4 nsCertType

This extension is deprecated. It MUST NOT be used in new certificates; the appropriate equivalent values SHOULD be expressed in the extendedKeyUsage extension.\footnote{The extendedKeyUsage and nsCertType extensions are interrelated and do partially cover the same purposes. Either of these has to be present to ensure correct operation of grid and other software, and nsCertType MUST NOT be used. For example for certificates issued to a Unicore NJS service, the nsCertType can be set to “server, client” but the preferred way to expressing this is by setting eKU to “serverAuth, clientAuth”.}

3.3.5 nsPolicyURL, nsRevocationURL

These attributes are deprecated and MUST NOT be used in end-entity certificates. If any of these extensions are included they MUST NOT be marked critical.

3.3.6 nsComment

This attribute is deprecated and SHOULD NOT be used in end-entity certificates. If it is included, this extension MUST NOT be marked critical.

3.3.7 cRLDistributionPoints

The cRLDistributionPoints extensions MUST be present in end-entity certificates, and MUST contain at least one http URI (i.e., not an https URI) although it may contain other URIs.\footnote{See also footnotes to section 2.4.5.} It MUST return the CRL in DER encoded form.

Some software\footnote{Note that OpenSSL is not able to display the values of the reasons and the CRLissuer associated with a DirectoryName or URI.} is unable to handle any values other than a single URI in this extension.

It is RECOMMENDED that the reply returned at the http URI is cacheable.\footnote{This defect is only known to apply to VOMS and VOMS-Admin, at least up to and including VOMS version 1.7.}

davidg@nikhef.nl, mike.jones@manchester.ac.uk
3.3.8 subjectKeyIdentifier

The subjectKeyIdentifier extension MUST NOT be marked critical.

3.3.9 authorityKeyIdentifier

The authorityKeyIdentifier (AKI) is not usually interpreted by the software, and is considered harmless to current known grid software. The AKI extension MUST NOT be marked critical.

If the AKI in an end-entity certificate contains information that changes when the issuer certificate is modified, it may block a ‘smooth’ replacement of issuer certificates (e.g. when updating a CA certificate to modify the expiry date).

Possible attributes in AKI include the directoryName of the authority that issued the issuer certificate, which is safe to include as it should not change, as well as the serial number (which may or may not change), or the keyIdentifier of the end-entity issuing CA. If the keyIdentifier has been generated using one of the two recommended methods from RFC 5280 (i.e. is purely derived from the public key value), it will not impair smooth replacement.

3.3.10 subjectAlternativeName, issuerAlternativeName

The subjectAlternativeName extension SHOULD be present for server certificates (including “host” and “service” certificates in the grid context), and, if present, MUST contain at least one FQDN in the dNSName attribute. If an end-entity certificate needs to contain an rfc822 email address, this rfc822 address SHOULD be included as an rfc822Name attribute in this extension only.

For use with web server certificates, multiple FQDNs dNSName attributes can be added to allow name-based virtual hosting of secured web sites52.

3.3.11 authorityInformationAccess

The authorityInformationAccess extension is the proper place to refer to any OCSP service that the issuer recommends validating software to used.

is RECOMMENDED that the web server return a 200 response to the HTTP GET request, and not a 302 redirection, since such an answer is not normally followed by clients or cached by web caches [4]. It is RECOMMENDED that the CRL be labelled with the correct MIME document type.

52See also footnote to section 3.4.3.
It is RECOMMENDED to include this extension if the issuer operates a production-quality OCSP service. The extension SHOULD NOT be included unless it points to a highly-available service.

The extension MAY also contain a CRL URI, as described in RFC4325, or the location of any higher-level CA certificates, but it should be noted that regardless, a CRL http URI MUST also be included in the `cRLDistributionPoints` extension.

The extension MUST NOT be marked critical.

4 General Considerations

4.1 ASN.1 Structure of the DN and ordering of the RDN components

The subject and issuer distinguished Names (DNs) consist of a sequence (an order-preserving list) of Relative DN (RDN) components sets. As stated in the preceding sections, the length of any RDN set MUST be equal to one (1).

There has, however, not been definitive guidance on the way the RDN components should be ordered in the DN sequence, neither from the X.500 document series (specifically X.521 [11]), nor from sources such as the X.509 Style Guide [5]. The definition of the Name in X.501 [8] defines it as a SEQUENCE OF `RelativeDistinguishedName`, where the SEQUENCE OF is an ASN.1 construct that in the DER encoding should be written out “as-is” in the order in which it is presented. It should not be re-ordered for interpretation.\(^{53}\)

\[
\text{Name ::= SEQUENCE OF RelativeDistinguishedName}
\]

\[
\text{RelativeDistinguishedName ::= SET OF AttributeValueAssertion}
\]

\[
\text{AttributeValueAssertion ::= SEQUENCE \{ attributeType OBJECT IDENTIFIER, attributeValue ANY \}}
\]

\(^{53}\)This ordering applies for comparisons based on the ASN.1 structure. The representation of that ASN.1 SEQUENCE as a string is subject to many discussions and conflicting solutions, as is testified to by the long debates regarding the representation returned by the OpenSSL X509_one_line function and the string representation defined in RFC 4514.
Since many authorization applications and namespace constraining policies are based on wildcard matching of only the trailing part of an OpenSSL one-line string representation rendering of the Name, the SEQUENCE of RelativeDistinguishedNames SHOULD start with the least-varying component (i.e. the static prefix) of the distinguishedName for all issuer and subject names, and MUST start with the least-varying component for any names issued by an issuing authority that issues end-entity certificates, or three or more trusted subordinate authorities54.

4.2 Keys, key lengths and hashes

As explained in NIST special publication 800-57, 1024-bit RSA keys are equivalent in strength to 80-bit symmetric keys, 2048-bit RSA keys to 112-bit symmetric keys and 3072-bit RSA keys to 128-bit symmetric keys \[1\]. RSA claims that 1024-bit keys are likely to become crackable between 2006 and 2010 and that 2048-bit keys are sufficient until 2030 \[12\]. An RSA key length of 3072 bits should be used if security is required beyond 2030. NIST key management guidelines further suggest that 15360-bit RSA keys are equivalent in strength to 256-bit symmetric keys55. As other digital signature and key exchange algorithms are introduced, such as elliptic curve mechanisms, their use should be considered for new certificates provided the entire target audience is capable of dealing with such mechanisms56.

Similar considerations hold for the hash functions used, with the MD5 hash function known

54Discussions around the successor to RFC 3280 have included statements that the SEQUENCE ought to start with the Country or a domainComponent (still in draft). Formerly, it could only be deduced from the examples, and the unclear guidance "In theory it should be a full, proper DN, which traces a path through the X.500 DIT", which usually interpreted “trace” as “start at the root of the tree”.

55See also http://www.keylength.com for a comprehensive overview.

56At of time of writing, only RSA algorithms are sufficiently well supported in clients. It is thus NOT advisable to select non-RSA algorithms.

davidg@nikhef.nl, mike.jones@manchester.ac.uk
to have collisions, and SHA-1 having been shown to provide less than 80 bits of security. Thus, for the message digest that protects the certificate integrity, known-weak signatures or hash functions, such as MD5, MUST NOT be used in new certificates. The most secure hash function that is current supported by the entire target audience of the CA SHOULD be used, but at least SHA-1 or stronger MUST be used57, with SHA-2 being recommended.

4.3 Maximum key lengths

RSA keys longer than 8192 bits have not been evaluated in production deployments. No EC keys have been evaluated in these environments either.

5 Directory Names and String Representations

Although comprehensive texts on the creation of certificate authorities and the configuration of particular CA software exist58, it is considered appropriate to repeat some of this information here. In particular, the ordering of Relative Distinguished Name (RDN) components in a Directory Name and the string representation thereof remains a source of frequent mistakes. An example of the relation between the ASN.1 DN and its various string representations is given below. This section does not contain normative text.

A typical issuer distinguished name that is compliant to the guidelines given in this document could be:

57Note that modern hashes, such as SHA-256, are not supported by the majority of OpenSSL versions in use, so SHA-1 is the only available value as of time of writing.

For expressing these in OpenSSL, e.g., http://www.math.ias.edu/doc/openssl-0.9.7a/openssl.txthttp://www.math.ias.edu/doc/openssl-0.9.7a/openssl.txt
While for an end-entity names “Jürgen Schmidt”, the following forms could be used:
6 Security Considerations

The correct and complete interpretation of any and all parts of a certificate is essential to maintain integrity of the system that relies on them. Inconsistencies in name ordering and representation, as well as the use of non-standard attributes and extensions that are not well tested with the validation software and subsequent authorisation systems may leave holes in a deployment of a grid certificates. Where such adverse interactions are known, they have been highlighted in the corresponding sections of this document. However, the absence of...
any such warnings may not be construed as to mean that no security issues exist.

7 Contributors

This document captures the collective knowledge of many people, and the editors are grateful for the essential contributions made to this document by the members of the International Grid Trust Federation (IGTF, see http://www.gridpma.org/), the individual certification authorities and their staff, and relying parties that have conducted the experiments and tests, and the contributions from the participants in the CAOPS WG.

David L. Groep (Editor)
Nikhef, Dutch National Institute for Sub-atomic Physics, PDP/Grid group
Room: H1.50, PObox 41882, NL-1009DB
Amsterdam
The Netherlands
Email: davidg@nikhef.nl

Michael A. S Jones (Editor)
The University of Manchester
Mimas, Roscoe 5.9, The University of Manchester, Oxford Road
Manchester
United Kingdom
Email: mike.jones@manchester.ac.uk

8 Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to practice this recommendation. Please address the information to the OGF Executive Director.

davidg@nikhef.nl, mike.jones@manchester.ac.uk
9 Disclaimer

This document and the information contained herein is provided on an “As Is” basis and the OGF disclaims all warranties, express or implied, including but not limited to any warranty that the use of the information herein will not infringe any rights or any implied warranties of merchantability or fitness for a particular purpose.

10 Full Copyright Notice

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included as references to the derived portions on all such copies and derivative works. The published OGF document from which such works are derived, however, may not be modified in any way, such as by removing the copyright notice or references to the OGF or other organizations, except as needed for the purpose of developing new or updated OGF documents in conformance with the procedures defined in the OGF Document Process, or as required to translate it into languages other than English. OGF, with the approval of its board, may remove this restriction for inclusion of OGF document content for the purpose of producing standards in cooperation with other international standards bodies.

The limited permissions granted above are perpetual and will not be revoked by the OGF or its successors or assignees.

11 References

