
GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 1 of 54

Data Format Description Language (DFDL) v1.0

Experience Document 1

Status of This Document

Grid Working Document (GWD)

Copyr ight Not ice

Copyr ight © Open Grid Forum, (2013). Some Rights Reserved. Distribut ion is unlimited.

Abstract

This document provides exper ience information to the OGF community on the original Data

Format Descript ion Language (DFDL) 1.0 specif icat ion (GFD-P-R.174).

It lists and describes the non-editor ial errata identif ied in the DFDL 1.0 spec if ication. It

contains all errata up to 2013-09-03.

All errata have been incorporated into a revised Data Format Descript ion Language (DFDL)

1.0 specif icat ion (GFD-P-R.nnn).

Comment [SMH1]: Complete when GFD

number allocated.

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 2 of 54

Contents

1. Introduction... 3
2. Minor Technical Fixes .. 4
3. Major Errata .. 30
4. Revised Grammar ... 47
5. Security Cons iderations ... 49
6. Contr ibutors .. 50
7. Intellectual Property Statement... 51
8. Disclaimer... 52
9. Full Copyright Not ice ... 53
10. References ... 54

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 3 of 54

1. Introduction

This document has been created to list issues encountered by implementers of the original

DFDL 1.0 spec if ication [DFDL], and users of implementations of the DFDL 1.0 spec if ication.
Specif ically, it records all those issues requir ing a non-editorial change to the DFDL 1.0
specif icat ion, in the form of errata.

The OGF GFD process [GFD] recognises three different kinds of error that may be found in
OGF spec if ications:

Editorial fixes. Updates to a document w hich are not w idely announced or publicized.
This category might inc lude headers/footers, spelling, formatting, or simple w ording

changes for clarity.

Minor technical fixes. Updates to a document w hich are not simply editor ial. For example,

an update to an XML schema or addition to a protocol, to bring the document into
agreement w ith current practice.

Major technical fixes. Such f ixes w ill of ten require additional technical review and result
in an updated or replaced document.

The follow ing sections of this document list the errata that fall into the last tw o categories.

All the errata in this document have been incorporated into a revis ion of the DFDL 1.0
specif icat ion [DFDLREV].

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 4 of 54

2. Minor Technical Fixes

The follow ing minor technical f ixes have been ident if ied.

2.1. Section 7.2.2. The ref property needs to state that circular paths are a schema def init ion
error.

2.2. Section 13.13. Clarify w hat packed and BCD calendars mean.
o There is no need to use a separate VDP property. The only place w here a decimal

point can occur is for fractional seconds. This is detectable from the pattern at the

boundary of 's' and 'S ', ie sS.
o Property calendarPatternKind = 'explic it' must be used w ith binary calendar

representations, as the defaults for 'implic it' use non-numeric characters. Schema

def init ion error otherw ise.
o Property binaryCalendarRep should restate the rule f rom property calendarPattern.
o Examples to be prov ided.

2.3. Section 13.11.1. Does not fully state the time zone symbol behav iour. It should say:

z

Time Zone: specif ic non-location Text z, zz, zzz
zzzz

PDT
Pac if ic Day light Time

Z

Time Zone: ISO8601 bas ic format

Time Zone: localized GMT

Text Z, ZZ ZZZ

ZZZZ

-0800, +0000

GMT-08:00, GMT+00:00

O Time Zone: localized GMT Text O
OOOO

GMT-
GMT-08:00

v Time Zone: generic non-location Text v
vvvv

PT
Pac if ic Time

V Time Zone: short time zone ID

long t ime zone ID
exemplar city
generic locat ion.

Text V

VV
VVV
VVVV

uslax

America/Los_Angeles
Los Angeles
Los Angeles Time

x Time Zone: ISO8601 bas ic or

extended format

Text x

xx
xxx

-08, +0530, +0000

-0800, +0000
-08:00, +00:00

X Time Zone: ISO8601 bas ic or
extended format .The UTC

indicator "Z" is used w hen local
time of fset is 0.

Text X
XX

XXX

-08, +0530, Z
-0800, Z

-08:00, Z

Note this table ref lects updates made by erratum 2.121.

2.4. Sections 22.1.1 & 22.2.1. Binary representat ions can have property lengthKind set to
‘delimited’.

2.5. Sections 22.1.2 & 22.2.2. Complex elements can have property lengthKind set to
‘endOfParent ’.

2.6. Throughout. Specif icat ion of ten uses the term 'content region' but it should be more

specif ic in terms of the grammar, and use 'SimpleContent region' or 'ComplexContent region',
or both.

2.7. Section 17. Text says that inputValueCalc and outputValueCalc applies to simple types,
which is not correct. Absorbed into erratum 3.2.

2.8. Section 13.16. In the descript ion of property nilValue, state that nilLiteralCharacter test
takes place on the untrimmed representat ion value.

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 5 of 54

2.9. Section 12.3.3. Clarify that when property lengthUnits is ‘bytes’, using property
lengthKind ‘implic it’ for a string interprets the min/maxLength facets as byte values and not
characters when parsing or unparsing.

2.10. Section 6.3. Bullet for logical value. State that the string must obey the lex ical
representation of the type.

2.11. Section 6.3. Clarify that literal w hite space is only ever used as list token separator, and
that entit ies must be used if literal w hite space is needed as part of the property value.

2.12. Section 6, 7.7. Clar ify that if A.xsd includes B.xsd then A can refer to a variable def ined
in B and reference is via QName in the usual w ay. This is best expressed by simply saying

that DFDL QNames behave like XSDL QNames in section 6. The ex isting text in section 7.7
can be removed.

2.13. Section 9.2. Correct the grammar to ref lect that a pref ix length type can itself have a
pref ix length. This is suff icient to allow the grammar to describe the needed “one more level”
of pref ix (as required for modeling an ASN.1 format) w ithout allow ing recursion.

The updated grammar is in Chapter 4 of this document.

2.14. Section 12.3.4. Clarify that w hen a pref ix length type itself has a pref ix length, the simple
types cannot be the same.

Explic itly list the property restrictions that must apply to a pref ix length type to comply w ith
modeling just SimpleContent region. It is a schema def init ion error if the type specif ies

lengthKind 'delimited' or 'endOfParent' or ‘pattern’ or ‘explicit ’ w here length is an expression,
or a value for init iator or terminator other than empty string, or alignment other than '1', or
leadingSkip or trailingSkip other than '0'.

2.15. Section 13.6. When property textNumberRep is ‘zoned’, the property description should
state that base is assumed to be 10.

2.16. Section 13.2.1. Clarify string literal content of properties escapeCharacter,
escapeEscapeCharacter, extraEscapedCharacters, escapeBlockStart and escapeBlockEnd.

o DFDL character entit ies are allow ed

o The raw byte entity (%#r) is not allow ed
o DFDL Character classes (NL, WSP, WSP+, WSP*, ES) are not allow ed

2.17. Sections 13.4, 13.6, 13.9, 13.12. Clar ify string literal content of properties
textStringPadCharacter, textBooleanPadCharacter, textCalendarPadCharacter and
textNumberPadCharacter.

o DFDL character entit ies are allow ed
o The raw byte entity (%#r) is allow ed subject to the restrictions already documented

for these properties

o DFDL Character classes (NL, WSP, WSP+, WSP*, ES) are not allow ed

2.18. Section 13.6. Clarify string literal content of properties textStandardDecimalSeparator,

textStandardGroupingSeparator, textStandardExponentCharacter, textStandardInf inityRep,
textStandardNaNRep.

o DFDL character entit ies are allow ed

o The raw byte entity (%#r) is not allow ed
o DFDL Character classes (NL, WSP, WSP+, WSP*, ES) are not allow ed

2.19. Section 13.9. Clarify string literal content of properties textBooleanTrueRep and
textBooleanFalseRep.

o DFDL character entit ies are allow ed

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 6 of 54

o The raw byte entity (%#r) is not allow ed
o DFDL Character classes (NL, WSP, WSP+, WSP*, ES) are not allow ed

2.20. Section 13.16. Remove restriction that property nilValue only applies w hen
representation is text. It is not clear w here this originated.

Clarify string literal content of nilValue w hen nilKind is ‘literalValue’:
When representat ion is text:

o DFDL character entit ies are allow ed

o The raw byte entity (%#r) is allow ed
o DFDL Character classes (NL, WSP, WSP+, WSP*, ES) are allow ed.

When representat ion is binary:

o DFDL character entit ies are allow ed
o The raw byte entity (%#r) is allow ed
o DFDL Character class ES is allow ed.

o Other DFDL Character classes (NL, WSP, WSP+, WSP*) are not allow ed.

Clarify string literal content of nilValue w hen nilKind is ‘literalCharacter’:

When representat ion is text:
o DFDL character entit ies are allow ed
o The raw byte entity (%#r) is allow ed subject to the restrictions already documented

for this property
o DFDL Character classes (NL, WSP, WSP+, WSP*, ES) are not allow ed.

When representat ion is binary:

o DFDL character entit ies are allow ed
o The raw byte entity (%#r) is allow ed.
o DFDL Character classes (NL, WSP, WSP+, WSP*, ES) are not allow ed.

2.21. Section 13.6. Change meaning of textNumberCheckPolicy enum 'lax' to align w ith ICU.:

"If ‘lax' and dfdl:textNumberRep is 'standard' then grouping separators are ignored, leading
and trailing w hitespace is ignored, leading zeros are ignored, quoted characters may be
omitted."

2.22. Section 13.6. Disallow the use of empty string for property

textStandardDecimalSeparator, and state property must be set if the pattern contains a '.' or
‘E’ or ‘@ ’ symbol (schema def init ion error otherw ise).

2.23. Section 13.6. Allow decimal separator to be a List of DFDL String Literals or a DFDL
expression. This allow s modelling of the EDIFACT standard w here a user can choose a

dynamic dec imal separator in the ISA header but '.' is alw ays allow ed.

2.24. Section 13.6. Disallow the use of empty string for property

textStandardGroupingSeparator, and state property must be set if the pattern contains a ', '
(schema def inition error otherw ise).

2.25. Section 13.6. When property textNumberPadCharacter is '0' (or an equivalent DFDL
Character Entity) w hich it commonly is, a value of say '00000' w ill get trimmed to the empty
string, w hereas the intent is to trim to '0'. Add a new rule that says the last remaining digit is

never trimmed for text numbers regardless of its value. This rule only applies to the character
‘0’, and not to any other numer ic character nor to DFDL Byte Value Ent ity.

2.26. Section 13.6. Allow the use of empty string for property textStandardExponentCharacter
to model text numbers of the form nnn+mmm. Property must be set even if the pattern does
not contain an 'E' symbol, to match ICU behav iour (schema def init ion error otherw ise).

2.27. Section 13.6. textStandardDecimalSeparator must be ignored w hen the logical type is
not dec imal/f loat/double.

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 7 of 54

2.28. Section 13.6.1.1. Add support for ICU signif icant digits symbol ‘@’. Note that this is not
needed as a change in 13.6.1.2.

2.29. Section 13.6.1.1. Formatting. Uses terms 'minimum/maximum integer/fraction digits' but
does not def ine them. The term ‘maximum integer digits’ is def ined as 309 to match the ICU

default, the other terms are def ined by the pattern content.

2.30. Section 13.9. State that textBooleanTrueRep and textBooleanFalseRep properties are

used af ter trimming w hen parsing, and before padding w hen unparsing. If lengthKind is
‘explic it ’ or ‘implic it ’ and either textPadKind or textTr imKind is ‘none’ then the properties must
have the same length else it is a schema def inition error.

2.31. Section 16.2. State it is a processing error if the stop value is miss ing f rom the data
when parsing.

2.32. Section 12.1.1. Clarify the note af ter Table 14 mean. "Specifying the implic it alignment
in bits does not imply that dfdl:lengthUnits 'bits' can be spec if ied for all simple types". It is

really saying that alignmentUnits and lengthUnits are independent and have their ow n rules
for when they are applicable.

2.33. Section 12.3.. One line descript ions of 'delimited' and 'endOf Parent ' are not w orded
correctly in the property description of lengthKind, and should be improved.

2.34. Section 12.3.2. Rule 3 for resolving ambiguity betw een delimiters, which says "When
the separator and terminator on a group have the same value, the separator has
precedence", needs clarifying to say “When the separator and terminator on a group have the

same value, then at a point w here either separator or terminator could be found, the
separator is tried f irst.”

2.35. Section 17. InputValueCalc. Descript ion talks about returning an empty string being ok if
minLength permits this. Replace sentence w ith a fuller clar if ication that inputValueCalc value
is validated like a parsed value, so schema def init ion error if value does not conform to base

type, and validat ion error if validation enabled and value conforms to base type but not actual
type.

2.36. Section 16. Spec allow s occursCount to be a non-negat ive integer. This is superf luous
as the property is only used w hen occursCountKind is expression. Change so that
occursCount is only allow ed to be a DFDL Expression.

2.37. Section 23.3. Clarify that DFDL express ion syntax "{}" is invalid, as it results in an empty
XPath 2.0 expression, w hich is not legal. In particular, clar ify that setting a property to {} does

not give the same result as setting a property to the empty string.

2.38. Section 11. Specif icat ion does not def init ively list w hich binary reps are subject to

byteOrder. Clarify that byteOrder applies to all Numbers and Calendars w ith representation
binary. Specif ically that is binary integers, packed dec imals, BCD, binary f loats, binary
seconds and binary milliseconds.

2.39. Section 13.11.1. When parsing an xs:date or xs:datetime, if a calendarPattern doesn't
specify some parts (other than time zone), say, calendarPattern="MM", then the Unix epoch

1970-01-01T00:00:00.000 is used to prov ide the missing parts.

Noted that if a pure month or day or year is needed, then this w ould be achieved by a future

DFDL extens ion to expand the supported s imple types to inc lude xs:gMonth, xs:gDay,
xs:gYear types.

2.40. Section 13.6.1.1. The paragraphs that describe the V symbol (virtual point) and P
symbol (scaling factor) talk about ‘number region’. This relates to the BNF and so it should

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 8 of 54

say ‘vpinteger region’ instead, w hich is w here in the pattern the V and P symbols reside.
Table 20 should also be updated so that it matches the BNF.

2.41. Section 13.6.1.2. This section does not explic it ly say that its content is effectively a delta
on section 13.6.1.1. The section should be rewritten to make it clear w hich behav iour is the
same as 13.6.1.1 and w hich is different.

2.42. Section 13.6. Clarify string literal content of property textStandardZeroRep.

o DFDL character entit ies are allow ed

o The raw byte entity (%#r) is not allow ed
o DFDL Character classes (NL, ES) are not allow ed
o DFDL Character classes (WSP, WSP+, WSP*) are allow ed, how ever, WSP* cannot

appear alone as one of the string literals for this property as this w ould allow an
empty string to match as the representat ion. (Cons istent w ith not allow ing the ES
character class entity.)

2.43. Section 13.11. Property calendarTimeZone is def ined as an Enum of type string, but in
reality is better def ined as a String constrained by a regular expression:

(UTC)([+\-]([01]\d|\d)((([:][0-5]\d){1,2})?))?)

See also errata 2.50 and 2.65.

2.44. Section 13.11. Property calendarLanguage is def ined as an Enum of type string, but in
reality is better def ined as a String constrained by a regular expression:

([A-Za-z]{1,8}([\-_][A-Za-z0-9]{1,8})*)

Updated to allow underscores as well as hyphens in calendarLanguage syntax.

2.45. Sections 13.17 and 22. State that property useNilForDefault is only examined w hen
xs:nillable is “true”, and must be set w hen xs:nillable is “true”.

2.46. Section 13.6. Allow mult iple characters for property textStandardExponentCharacter to

handle representations like 1.23x10^4 as ICU allow s that. Note that property name w ill

therefore change to textStandardExponentRep.

2.47. Section 13.6. Change name of property textStandardNanRep to textStandardNaNRep
to ref lect common usage of NaN and avoid typographical errors in models.

2.48. Section 14.1. Spec states that an empty sequence that is the content of a complex type
is a schema def inition error. Many schema processors are not able to distinguish this
condit ion f rom a complex type w ith no content at all (it is not required to do so by the XML

Schema spec if ication). As a complex type w ith no content is not useful in DFDL, change the
spec to state that both condit ions are schema def init ion errors.

2.49. Section 23.3. Clarify that when a property can be either a DFDL String Literal or a
DFDL Expression, then if the value is a DFDL String Literal and the f irst character is ‘{‘ then it
MUST be escaped as ‘{{‘. For such a property, a value ‘{xxx’ w ill be treated as an (invalid)

expression, and not as a string literal.

2.50. Section 13.11. The calendarTimeZone property is used to supply a time zone w hen

there is none in the data (and by implication none in the pattern). How ever this means DFDL
is not compatible w ith XML Schema 1.0 w here "no time zone" is an allow able state for a
calendar infoset value. Further, XML Schema 1.0 validat ion validates a calendar value

against facets according to rules that cater for “no time zone” [XSDL2]. It is des irable
therefore for DFDL to permit a calendar value to have “no time zone”. Accordingly, the
calendarTimeZone property w ill allow a value of empty string to indicate “no time zone”.

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 9 of 54

2.51. Section 13.11. The calendarTimeZone property w ill apply w hen parsing only. This
avoids any problem w ith values changing af ter validat ion has taken place.

2.52. Section 13.11.1. DFDL only allow s 'y' as year symbol in dfdl:calendarPattern. This
only allows positive values, any negative value is ignored unless the 'G' (era) symbol is also
specif ied, and there is no year 0 (which means that negat ive astronomical dates are one year

out). DFDL w ill also support the ICU 'u' extended year symbol w hich allow s year 0 (means
1BC) and corresponds to astronomical years.

2.53. Section 13.13. Property binaryCalendarEpoch is used w hen the binaryCalendarRep is
either binarySeconds or binaryMilliseconds, and is of type xs:dateTime. It is allow able to omit
the time zone component f rom the binaryCalendarEpoch property value, and if this occurs

UTC is used as the time zone.

2.54. Section 13.11. ICU has some lax behav iour w hen parsing numbers using the supplied

textNumberPattern, using property textNumberCheckPolicy. Erratum 2.21 corrects the
def init ion of behaviour w hen ‘lax ’ is spec if ied but does not state w hat the base behav iour is
when ‘strict’ is spec if ied. This should be stated as follow s:

“If ‘strict’ and dfdl:textNumberRep is ‘standard’ then the data must follow the pattern w ith the
exceptions that digits 0-9, decimal separator and exponent separator are alw ays recognised

and parsed.”

2.55. Section 9.2. Grammar terminal FinalUnusedRegion is intended to handle unmodeled

bytes in the data that arise due to ‘spec if ied length’ settings of lengthKind on a complex
xs:element and choiceLengthKind on a xs:choice. It is not doing so correctly w hen a
terminator is present on a xs:sequence or xs:choice. To f ix this, the terminal is removed f rom

the grammar and replaced by tw o new terminals ElementUnused and ChoiceUnused.

The updated grammar is in Chapter 4 of this document.

2.56. Section 13.13. State that w hen property binaryCalendarRep is set to 'binaryMilliseconds'
or 'binarySeconds', it is a schema def init ion error if the type is xs:time or xs:date. This is

because w hen unparsing it is not possible to obtain a milliseconds or seconds value f rom just
an xs:time or xs:date and the epoch.

2.57. Section 13.13. State that w hen property binaryCalendarRep is set to 'binarySeconds' or
‘binaryMilliseconds ’, the value in the data is treated as signed. This lets DFDL support
POSIX/Unix t imes, w hich are allow ed to be negat ive.

2.58. Section 13.16. State that property nilValueDelimiterPolicy is ignored w hen property
nilKind is set to ‘logicalValue’, and the behaviour of the DFDL processor is to expect

delimiters w hen parsing and to output delimiters w hen unpars ing, if delimiters are specif ied for
the element. This is to simplify implementat ions.

2.59. Section 7.1.3.3. State that short form property syntax is not allow ed on the xs:schema
object as an equivalent to the element form property syntax of the default dfdl:format (or any
other global DFDL) annotat ion.

2.60. Section 13.3. Remove redundancy f rom the names of some of the bidirectional text
properties, specif ically textBidiTextOrder ing becomes textBidiOrder ing, and

textBidiTextShaped becomes textBidiShaped.

2.61. Section 9.2. The child content of xs:sequence and xs:choice are almost the same, so

the grammar can be refactored to remove duplicat ion.

The updated grammar is in Chapter 4 of this document.

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 10 of 54

2.62. Section 11. Clarify that when the encoding property is specif ied as ‘UTF-8’ then that is a
strict def inition of UTF-8 and does not include var iants such as CESU-8. This is in keeping
w ith ICU’s interpretat ion of UTF-8.

2.63. Sections 12.2, 14.2. Properties that use the empty string as a special value to sw itch off
use of the property, and that allow the value to be a DFDL expression, should not be able to

set empty string by evaluat ing the expression. It must be poss ible to evaluate statically
whether the property is used or not. This affects properties init iator, terminator, separator. It is
a schema def init ion error if an expression returns the empty string.

2.64. Section 6.3.1. Update to say that empty string is not allow ed as a string literal value,
unless explicit ly stated otherw ise in the description of a property, in w hich case any semant ic

must be a special behav iour of the property and not the literal empty string (for w hich DFDL
provides ent ity %ES;).

2.65. Section 13.11. Property calendarTimezone is changed to accept either a UTC offset or
an Olson format time zone. Property calendarObserveDST is changed so that it is only used
when calendarTimeZone is Olson format. If it is a UTC of fset then calendarObserveDST is

ignored.

2.66. Section 13.11. When unparsing and property calendarPattern contains a formatting

symbol for time zone (zzz, Z, VVVV etc) and the infoset value does not contain a t ime zone, it
is a processing error. This matches the behav iour on parsing w hen the data does not contain
a time zone but the pattern does.

2.67. Section 4.1.2. The second paragraph of the description of [dataValue] should be
replaced w ith:

“For information items of datatype xs:string, the value is an ordered collection of unsigned 16-
bit integer codepoints each hav ing any value f rom 0x0000 to 0xFFFF. Where def ined, these

are interpreted as the ISO646 character codes. Codepoints disallow ed by ISO 10646, such as
0xD800 to 0xDFFF are explicit ly allow ed by the DFDL infoset. The codepoints of the string
are stored in 'implicit ' (also know n as logical), lef t-to-right bidirectional ordering and

orientation. DFDL's infoset represents Unicode characters w ith character codes beyond
0xFFFF by w ay of surrogate pairs (2 adjacent codepoints) in a manner consistent w ith the
UTF-16 encoding of ISO 10646.”

2.68. Section 13.11.1. Calendar formatting symbols ‘I’ and ‘T’ are intended as a short-hand
way of accepting a subset of ISO 8601 var iants. How ever the description of the behaviour is

not correct and is unnecessarily complex. The ‘T’ symbol is dropped altogether, and the ‘I’
symbol behaviour is def ined as the follow ing:

“The 'I' symbol must not be used w ith any other symbol w ith the exception of 'escape for text'.

It represents calendar formats that match those def ined in the restricted prof ile of the ISO

8601 standard proposed by the W3C at http://www.w 3.org/TR/NOTE-datet ime. The formats
are referred to as 'granularit ies'.

 xs:dateTime. When pars ing, the data must match one of the granularit ies. When
unparsing, the fullest granular ity is used.

 xs:date. When parsing, the data must match one of the date-only granularit ies. When

unparsing, the fullest date-only granularity is used. 'IU' is permitted for xs:date but
the 'U' is ignored as there is no t ime zone in the date-only granularit ies.

 xs:time. When parsing, the data must match only the time components of one of the

granularit ies that contains time components. When unparsing, the time components
of the fullest granular ity are used. The literal 'T' character is not expected in the data
when parsing and is not output w hen unparsing.

 The number of f ractional second digits supported is implementat ion dependent but
must be at least one.

http://www.w3.org/TR/NOTE-datetime

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 11 of 54

 For a granular ity that omits components, w hen parsing the values for the omitted
components are supplied f rom the Unix epoch 1970-01-01T00:00:00.000.”

2.69. Section 23.3. The last paragraph is inconsistent w ith the rest of the section. It should
say:

“The result of evaluating the expression must be a single atomic value of the type expected
by the context, and it is a schema def inition error otherw ise. Some XPath expressions
naturally return a sequence of values, and in this case it is also schema def inition error if an

expression returns a sequence containing more than one item.”

The sentence “ If the expression returns an empty sequence it w ill be treated as returning nil”

is removed.

2.70. Section 12.2, 14.2. Clar ify the parser matching algorithm used for properties init iator,

terminator and separator.

When parsing, the list of values is processed in a greedy manner, meaning it takes all the

init iators, that is, each of the string literals in the w hite space separated list, and matches
them each against the data. In each case the longest possible match is found. The initiator
w ith the longest match is the one that is selected as hav ing been ‘found’, w ith length-ties

being resolved so that the matching initiator is selected that is f irst in the order w ritten in the
schema. Once a matching init iator is found, no other matches w ill be subsequent ly attempted
(ie, there is no backtracking).

2.71. Section 13.16. Clar ify that nilValue is sensit ive to ignoreCase w hen nilKind is
‘literalValue’ or ‘logicalValue’, to be cons istent w ith properties such as textBooleanTrueRep,

but not w hen nilKind is ‘literalCharacter’, to be consistent w ith properties such as
textBooleanPadCharacter.

2.72. Section 12.3.6. Additional constraints and clarif ications apply to the use of lengthKind
‘endOfParent ’ beyond those already documented:

The parent element lengthKind must not be 'implicit' or 'delimited'.

When looking for end of parent, the parser is not sensitive to any in-scope terminat ing

delimiters.

If the element is in a sequence then:

o the sequence must be the content of a complex type
o the separatorPos ition of the sequence must not be 'postFix'
o the sequenceKind of the sequence must be 'ordered'

o no terminator on the sequence
o no trailingSkip on the sequence
o no f loat ing elements in the sequence

If the element is in a choice w here choiceLengthKind is 'implic it' then

o the choice must be the content of a complex type

o no terminator on the choice
o no trailingSkip on the choice

A simple element must have either type xs:string or representat ion ‘text ’ or type xs:hexBinary
or (representation ‘binary’ and binaryNumber/CalendarRep ‘packed’, ‘bcd, ‘ibm4690Packed’).

As noted in erratum 2.5, a complex element can have 'endOfParent'. If so then its last child
element can be any lengthKind inc luding 'endOf Parent'.

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 12 of 54

An element w ith ‘endOf Parent’ must be the last thing in its ‘box ’. A ‘box’ is def ined as a
portion of the data stream that has an established length pr ior to the parsing of its children.
Specif ically a box is either:

o A complex element w ith lengthKind 'explic it', 'pref ixed' or 'pattern' AND no (sequence
right f raming or sequence postf ix separator or choice right f raming)

o A choice w ith choiceLengthKind 'explic it'

When unparsing, if the parent is a complex element w ith lengthKind ‘explic it ’ or a choice w ith
choiceLengthKind ‘explic it‘ then the element w ith lengthKind ‘endOf Parent ’ is padded or f illed

in the usual manner to the required length.

2.73. Section 12.3.6. An element w ith lengthKind ‘endOf Parent ’ is allow ed to be the root

element of a parse or unparse.

2.74. Sections 13.2.1, 22.2.1. Dur ing unparsing, the application of escape scheme process ing

should take place before the application of the emptyValueDelimiterPolicy property.

2.75. Section 4.1.1. Replace the ex isting descript ion of the Document Information Item’s

[schema] member w ith ‘This member is reserved for future use’.

2.76. Section 12.3.4. When property pref ix Inc ludesPref ixLength is ‘yes’ there are some

restrictions that need to be added to enable reliable lengths to be calculated:
o If the pref ix type is lengthKind 'implicit ' or 'explicit ' then the lengthUnits properties of

both the pref ix type and the element must be the same.

2.77. Sections 12.3.4, 12.3.2. The sections for lengthKind 'pref ixed' and 'delimited' need the
equivalent of Table 16 to express their rules for binary data.

2.78. Section 12.3.4. Add a note to cover the scenario w here lengthUnits is 'bits' and
lengthKind is 'pref ixed'. When pars ing, any number of bits can be precisely extracted from the

data stream, but w hen unparsing the number of bits written w ill alw ays be a mult iple of 8 as
the Infoset does not contain bit-level information.

2.79. Section 13.6.1.1. Clar ify text number pattern rules for use of V and P symbols in
conjunct ion w ith # symbol.

o A pattern w ith a V symbol must not have # symbols to the right of the V symbol.

o A pattern w ith P symbols at the lef t end must not have # symbols .
o A pattern w ith P symbols at the right end can have # symbols.

2.80. Section 13.6.1.1. Clar ify text number pattern rules for use of V and P symbols in
conjunct ion w ith @ and E and * symbols.

o A pattern w ith a V symbol must not have @ or * symbols.

o A pattern w ith P symbols must not have @ or E or * symbols.

This means that a V symbol and an E symbol may occur in the same text number pattern.

The BNF in Figure 5 is revised to allow this.

2.81. Section 15.2. The spec if ication or iginally says “On unparsing the choice branch supplied

in the infoset is output”. This does not handle the case w here one or more branches of a
choice is a sequence or a choice (or a group ref to such). Here, the element in the Infoset is
one of the children of the branch sequence but it might not be the f irst in the sequence, or the

element in the Infoset is one of the children of the branch choice. To handle this scenario, the
element in the Infoset is used to search the choice branches in the schema, in schema
def init ion order, but w ithout looking ins ide any complex elements. If the element occurs in a

branch then that branch is chosen. If the chosen branch causes a processing error, no other
branches are chosen (that is, there is no backtracking).

To avoid any unintended behav iour, a branch sequence may be w rapped in an element.

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 13 of 54

2.82. Section 12.3.5. The behav iour for unparsing w hen lengthKind is ‘pattern’ is the same as
for ‘delimited’, ie, for a simple element use textPadKind to determine w hether to pad, for a
complex element the length is that of the ComplexContent region.

Table 16 can accordingly be deleted.

2.83. Section 23.3. Clarif icat ions on w hat is returned by an expression.
o Every property that accepts an expression must state exactly w hat the expression is

expected to return

o To ensure the returned value is of the correct type, use XPath constructors or the
correct literal values

o What is returned lex ically by an expression follows XPath 2.0 rules, w hich this is not

the same as xs:default and xs:f ixed lex ical content.
o No extra auto-casting is performed over and above that provided by XPath 2.0. XPath

2.0 has rules for when it promotes types and w hen it allows types to be substituted.

These are in Appendix B.1 of the XPath 2.0 spec [XPATH2].
o If the property is not expecting an express ion to return a DFDL string literal, the

returned value is never treated as a DFDL string literal.

o If expecting express ion to return a DFDL string literal, the returned value is alw ays
treated as a DFDL string literal.

o Within an expression, a string is never interpreted as a DFDL string literal

2.84. Section 23.5.3. The dfdl:property() function is removed.

2.85. Section 23.5.3. Three new functions are provided to assist in the creation of expressions
that return and manipulate DFDL string literals.

dfdl:encodeDFDLEnt ities ($arg)

Returns a string containing a DFDL string literal
constructed f rom the $arg string argument. If $arg
contains any '%' and/or space characters, then

the return value replaces each '%' w ith '%%' and
each space w ith '%SP;', otherw ise $arg is
returned unchanged.

Use this function w hen the value of a DFDL

property is obtained f rom the data stream us ing
an expression, and the type of the property is
DFDL String Literal or List of DFDL String

Literals, and the values extracted f rom the data
stream could contain '%' or space characters. If
the data already contains DFDL ent ities, this

function should not be used.

dfdl:decodeDFDLEnt ities ($arg)

Returns a string constructed f rom the $arg string
argument. If $arg contains syntax matching DFDL

Character Entit ies syntax, then the corresponding
characters are used in the result. Any characters
in $arg not matching the DFDL Character Ent ities

syntax remain unchanged in the result.

It is a schema def init ion error if $arg contains

syntax matching DFDL Byte Value Ent it ies
syntax.

Use this function w hen you need to create a
value w hich contains characters for which DFDL
Character Entit ies are needed. An example is to

create data containing the NUL (character code
0) codepoint. This character code is not allow ed

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 14 of 54

in XML documents, inc luding DFDL Schemas;
hence, it must be specif ied us ing a DFDL
Character Entity. Within a DFDL Express ion, use

this function to obtain a string containing this
character.

dfdl:containsDFDLEnt ities ($arg)

Returns a Boolean indicat ing w hether the $arg

string argument contains one or more DFDL
ent ities.

2.86. Section 24. State that DFDL regular expressions do not interpret DFDL ent ities.

2.87. Section 12.3.7. State that w hen unparsing a spec if ied length element of type

xs:hexBinary, and the s imple content region is larger than the length of the element in the
Infoset, then the remaining bytes are f illed using the f illByte property. (The f illByte is not used
to trim an element of type xs:hexBinary w hen parsing.)

2.88. Section 13.5. Add support for HP NonStop Tandem zoned dec imals. In this architecture,
the negat ive sign is incorporated in the last byte of the number in the usual manner, but the

overpunching occurs on the highest bit (ie, value 8) of the byte. Consequent ly, a new enum
value 'asciiTandemModif ied’ is added to property textZonedSignSty le.

Because the overpunching is on the highest bit, it means the resultant bytes are not code
points in standard ASCII, so the modeller must specify an encoding like ISO-8859-1 in order
for such zoned dec imals to parse w ithout an encoding error.

2.89. Section 12.1. In the descript ion of the alignment property, remove the rule that states
‘The alignment of a child component must be less than or equal to the alignment of the parent

element, sequence or choice’. It is overly restrictive.

2.90. Sections 12.3, 12.3.7.2. Addit ionally allow lengthUnits 'bits' to apply to binary signed

integer types, to support the modeling of signed integer bit f ields in the C language. The
physical bits are interpreted as a tw o's complement integer. How ever it is a schema def init ion
error for a signed integer type if the length is 1 bit.

2.91. Section 12.3.4. State that the global simple type referenced by pref ixLengthType only
obtains values for miss ing properties from its ow n schema’s default dfdl:format annotat ion. If

the using element resides in a separate schema, the s imple type does not pick up values from
the element's schema’s default dfdl:format annotat ion.

2.92. Section 13.6. When property textNumberRep is ‘zoned’, the property description should

state that ‘zoned’ is only allow ed for EBCDIC encodings or ASCII compat ible encodings
(schema def inition error otherw ise).

2.93. Sections 13.6, 13.7. State that w hen unparsing a number and excess precision is
supplied in the Infoset and rounding is not in ef fect, it is a processing error. Applies to text
numbers w hen rounding is not enabled (matches ICU behaviour), and to binary numbers

(alw ays no rounding).

2.94. Sections 6.3.1.3, 12.2. Correct the w ording for NL mnemonic in Table 5 to make it clear

that w hen parsing it means either %LF; or %CR; or %CR;%LF% or %NEL; or %LS; and not

combinat ions of those. Similarly, state that outputNew Line can only be either %LF; or %CR;

or %CR;%LF% or %NEL; or %LS; and not combinat ions of those.

2.95. Section 12.1. State that if representation is text or type is string, then alignment is

determined by character set encoding. Most encodings are 8-bit (inc luding those w ith 16-bit
codepoint size like UTF-16).

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 15 of 54

Some implementations may include encodings w hich are not 8-bit aligned. The encoding US-
ASCII-7bit-packed is 1-bit aligned. A character code occupies only 7 bits in this encoding, so
character codes can begin on any bit boundary.

See also erratum 2.107 w hich adds the US-ASCII-7bit-packed encoding.

Section 12.1.1 is amended.

The table of explicit alignments, table 14, is modif ied. The column for Text is changed. The

value 8, w hich appears in all entries in this column is replaced by “encoding dependent”

A new section is added: Mandatory Alignment for Textual Data.

We use the term textual data to describe data w ith dfdl:representat ion="text", as w ell as data
being matched to delimiters (parsing) or output as delimiters (unparsing), and data being

matched to regular expressions (parsing only - as in a dfdl:assert w ith testKind='pattern').

Textual data has mandatory alignment that is character-set-encoding dependent. That is,

these mandates come f rom the character set specif ied by the dfdl:encoding property.

When processing textual data, it is a schema def init ion error if the dfdl:alignment and

dfdl:alignmentUnits properties are used to spec ify alignment that is not a multiple of the
encoding-required mandatory alignment.

If the data is not aligned to the proper boundary for the encoding w hen textual data is
processed, then bits are skipped (parsing) or f illed f rom dfdl:f illByte (unparsing) to achieve the
mandatory alignment.

All character set encodings except those listed specif ically below or specif ied by a particular
DFDL implementat ion have mandatory alignment of 8-bit/1-byte.

 US-ASCII-7bit-packed, the alignment is 1-bit (textual data in this encoding may
appear on any bit boundary, i.e., no byte alignment is required).

2.96. Section 23.5.3. Changes to the DFDL-spec if ic functions for use w ith arrays.

The follow ing function is renamed:

 dfdl:pos ition() -> dfdl:occursIndex()
The function may be used on non-array elements.

The follow ing functions are removed:

 dfdl:count()

 dfdl:countWithDefault()
Their use is replaced by standard XPath 2.0 function fn:count().

2.97. Section 12.3.2. Additionally allow lengthKind ‘delimited’ for elements of simple type

xs:hexBinary.

2.98. Section 13.7. State that the maximum allow ed value for two’s complement binary

integers is implementat ion independent but must be at least 8 bytes.

2.99. Section 3, 13.7, 13.13 and others. Add support for the IBM 4690 point of sale variant of

a packed decimal. This has the follow ing characterist ics:

o Nibbles represent digits 0 - 9 in the usual BCD manner

o A positive value is simply indicated by digits
o A negative number is indicated by digits w ith the lef tmost nibble being xD

o If a pos itive or negat ive value packs to an odd number of nibbles, an extra xF nibble
is added on the lef t

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 16 of 54

Existing properties binaryNumberRep and binaryCalendarRep each take a new enum
‘ibm4690Packed’. For numbers, properties byteOrder and binaryDec imalVirtualPoint actively
apply. For calendars, properties byteOrder calendarPatternKind and calendarPattern act ively

apply (same restrictions as for ‘packed’ and ‘bcd’). Property ‘binaryPackedSignCodes ’ does
not apply. Property ‘binaryNumberCheckPolicy ’ applies but has no effect.

Where the DFDL spec if ication prov ides for general behav iours for 'packed' and 'bcd', those
behaviours apply also to 'ibm4690Packed'. Spec if ically:

o The same lengthKind enums and rules apply.

o There is no rounding w hen unparsing, so a value that can't be accommodated is a
processing error.

o If logical type is unsigned and a negative value is received, it is a processing error.
o If invalid bytes are parsed, it is a processing error.

For ease of adding this erratum, a new Glossary def init ion is added to def ine a gener ic
‘packed decimal’ and this term should be used as appropriate throughout the specif icat ion.

2.100. Section 12.3.1. State that w hen unparsing an element w ith lengthKind ‘explic it ’ and
where length is an express ion, then the data in the Infoset is treated as variable length and

not f ixed length. The behav iour is the same as lengthKind ‘pref ixed’.

2.101. Section 23.4. The BNFL for DFDL expressions allow s a variable to appear as a path

segment. This is not supported by DFDL, w hich only allows variables to return a simple value,
and XPath does not permit variables to return simple values in path segments.

2.102. Section 23. State that it is a schema def init ion error if an array element appears as a
segment in a path locat ion and is not qualif ied by a predicate.

2.103. Section 12.1. Clar ify that w hen the alignment properties are applied to an array
element, the properties are applied to each occurrence of the element (as implied by the
grammar).

2.104. Section 13.11.1. State that w hen parsing a calendar element w ith binaryCalendarRep
‘packed’, ‘bcd’ or ‘ibm4690Packed’ then the nibbles from the data are converted to text digits

w ithout any trimming of leading or trailing zeros, and the result is then matched against the
calendarPattern according to the usual ICU rules.

2.105. Section 9.1.1. State that the presence of a separator is not suff icient to cause the
parser to assert that a component is know n to exist.

2.106. Section 13.6. State that textStandardDecimalSeparator,
textStandardGroupingSeparator, textStandardExponentRep, textStandardInf inityRep,
textStandardNanRep and textStandardZeroRep must all be entirely distinct f rom one another,

and it is a schema def init ion otherw ise. This is in the interests of clarity, and is an extra
constraint compared to ICU. If any property value is an expression, the checking of this
constraint cannot take place until process ing.

2.107. Section 11. The list of enums for the encoding property is extended to include ‘US-
ASCII-7-bit-packed’ in order to support data formats w here ASCII characters are encoded in 7

bits w ith no padding bit. Note that the new enum is neither a CCSID or an IANA charset.

The encoding ‘US-ASCII-7-bit-packed’ is 1-bit aligned.

The new enum is not in the set of encodings that a DFDL processor must accept in order to
be minimally conformant.

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 17 of 54

2.108. Section 3. Update the Glossary concerning annotat ions, as follow s, and use the new or
changed terms as appropr iate throughout the spec if ication:

o Add: Annotation point - A location w ithin a DFDL schema w here DFDL annotat ion

elements are allow ed to appear.
o Add: Statement annotat ions - The annotat ion elements dfdl:assert, dfdl:discriminator,

dfdl:setVariable, and dfdl:newVariableInstance. Also called DFDL Statements.

o Add: Def ining annotations - The annotat ion elements dfdl:def ineFormat,
dfdl:def ineVariable, and dfdl:def ineEscapeScheme

o Change: Format annotat ions - The annotation elements dfdl:format, dfdl:element,

dfdl:simpleType, dfdl:group, dfdl:sequence, and dfdl:choice.
o Change: Phys ical Layer - A DFDL Schema adds DFDL annotat ions onto an XSDL

language schema. The annotat ions describe the phys ical representat ion or physical

layer of the data.
o Add: Resolved set of annotations - When DFDL annotat ions appear on a group

reference and the sequence or choice of the referenced global group, or appear

among an element reference, an element dec laration, and its type def init ion, then
they are combined together and the result ing set of annotations is referred to as the
resolved set of annotations for the schema component.

2.109. Section 6.2. Clarify that at any single annotation point of the schema, there can be only
one format annotat ion (as def ined in 2.108).

2.110. Section 7.3.1, 7.4.1. When testKind is ‘pattern’ for an assert or discriminator:

o The pattern is applied to the data posit ion corresponding to the beginning of the

representation. Consequent ly the framing (inc luding any initiator) is visible to the
pattern.

o It is a schema def init ion error if there is no value for encoding in scope.

o It is a schema def init ion error if alignment is other than 1.
o It is a schema def init ion error if leadingSkip is other than 0.

2.111. Sections 5.2, 23.5.3. Correct the XML Schema facets and attributes that are used by
the dfdl:checkConstraints() function. Spec if ically, the function does not use the default,
minOccurs and maxOccurs attributes.

2.112. Section 3. Update the Glossary concerning arrays, as follow s, and use the new or
changed terms as appropr iate throughout the spec if ication:

o Remove: Scalar Element
o Remove: Fixed-Occurrence Item
o Remove: Variable Occurrence Item

o Remove: Opt ional Item
o Remove: Number Of Occurrences
o Change: Required Element. An element declaration or reference where minOccurs is

greater than zero.
o Change: Opt ional Element. An element dec larat ion or reference w here minOccurs is

equal to zero.

o Add: Fixed Array Element. An array element w here minOccurs is equal to
maxOccurs.

o Add: Variable Array Element. An array element w here minOccurs is not equal to

maxOccurs.
o Add: Occurrence. An instance of an element in the data, or an item in the DFDL

Infoset.

o Add: Count. The number of occurrences of an element. .
o Add: Index. The posit ion of an occurrence in a count, starting at 1.
o Add: Required Occurrence. An occurrence w ith an index less than or equal to

minOccurs.
o Add: Opt ional Occurrence. An occurrence w ith an index greater than minOccurs.

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 18 of 54

2.113. Section 23. Clar ify that because of functions like fn:count(), the DFDL restriction on
XPath sequences w ith length > 1 in reality applies to w hat a DFDL expression returns, and
not w hat happens internally w ithin an expression during evaluation.

DFDL implementat ions may use off -the-shelf XPath 2.0 processors, but w ill need to pre-
process DFDL express ions to ensure that the behav iour matches the DFDL spec if ication:

1. Ensure that w hat is returned as the result is not a sequence w ith length > 1 by
appropriate use of fn:exactly-one()

2. Check for the disallow ed use of those XPath 2.0 functions that are not in the DFDL

subset
This requires that fn:exactly-one() is added to the list of supported XPath functions.

2.114. Section 23. DFDL implementations MUST comply w ith the error code behav iour in
Appendix G of the XPath 2.0 spec [XPATH2] and map these to the correct DFDL failure type.
All but one of XPath's errors map to a schema def init ion error. The except ion is XPTY0004,

which is used both for static and dynamic cases of type mismatch. A static type mismatch
maps to a schema def inition error, whereas a dynamic type mismatch maps to a processing
error. A DFDL implementation should dist inguish the tw o kinds of XPTY0004 error if it is able

to do so, but if unable it should map all XPTY0004 errors to a schema def init ion error.

2.115. Section 13.15. Situat ions can arise w here taking an Infoset, unparsing it, and reparsing

it w ill result in a second Infoset that is not the same as the or iginal. Spec if ically, this may
occur when empty strings or values that map to nil values appear in the Infoset. This
informat ion needs adding.

This is covered in a separate DFDL experience document [DFDLX2].

2.116. Sections 7.7, 7.8, 7.9. To set empty string as the default value of a def ineVariable or
newVariableInstance annotat ion requires that the defaultValue attribute is used or an
expression {“”} must be used as the element value. Similar ly for setting empty string as the

value of a setVariable annotation; use the value attribute or an expression as element value.

2.117. Section 13.2.1. Clar ify that a padding character is not escaped by an escape

character. When parsing, padding characters are trimmed w ithout reference to an escape
scheme. When unparsing, padding characters are added w ithout reference to an escape
scheme.

2.118. Sections 11, 12.3.7.1.1. The encoding UCS-2 is not in the list of IANA encodings nor is
it a CCSID. Its use in the DFDL specif icat ions should be removed.

2.119. Sections 3, 12.3.5. Update the def init ions of ‘Delimiter scanning’, and ‘Scan’
o Delimiter scanning - When parsing, the process of scanning for a specif ic item in the input

data w hich marks the end of an item, or the beginning of a subsequent item is referred to
as delimiter scanning. Delimiter scanning also takes into account escape schemes so as
to allow the delimiters to appear w ithin data if properly escaped.

o Scan – Examine the input data looking for delimiters such as separators and terminators,
or matches to regular expressions.

The term scannable alone is not in the glossary, as its meaning is implied by the def init ion of
scan.

See also erratum 3.9.

2.120. Sections 2.2 and 2.3. Clarify which errors are schema def init ion errors and w hich are

processing errors.

The follow ing are processing errors:

 Arithmet ic Errors

o Divis ion by zero

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 19 of 54

o Integer Arithmet ic Underf low

o Integer Arithmet ic Overf low

 Note: Floating point math can produce NaN (Not a Number) values.

This is not an error, nor are properly typed operat ions on f loat ing

point NaN values.

 Expression Errors

o Dynamic Type Error – unable to convert to target type

 Example: non-digits found in string argument to xs:int(…)

constructor.

 Note: if a DFDL Implementat ion cannot distinguish Dynamic Type

Errors from Static Type Errors, then a Dynamic Type Error should

cause a Schema Def init ion Error

o Index out of bounds error – index not <= number of occurrences, or is < 1.

 Note: same error for dfdl:testBit if bitPos is not 1..8, or for character

posit ions in a string-value

o Index ing of non-array non-optional element

 Example: x[1] w hen x is declared and has both minOccurs=”1” and

maxOccurs=”1” explicit ly, or by not stating either or both of them.

o Illegal argument value (correct type, illegal value)

 Parse Errors

o Delimiter not found

o Data not convertible to type

o Assertion failed

o Discriminator failed

o Required occurrence not found

o No choice alternative successfully parsed.

o Character set decoding failure and dfdl:encodingErrorPolicy='error'

 Unparsing Errors

o Truncation scenar ios w here truncation is being disallow ed

o Rounding error – rounding needed but not allow ed. (Unparsing)

o No choice alternative successfully unparsed.

o Character set encoding failure and dfdl:encodingErrorPolicy='error'

 Implementation Limit Errors - Implementations can have f ixed or adjustable limits that

some formats and some data may exceed at processing t ime. This spec if ication does

not further specify w hat these errors are, but some possible examples are:

o Data longer than allow ed for representation of a given data type

 Example: exceed maximum length of representation of xs:decimal in

dfdl:representat ion=”text”.

o Expression references too far back into infoset (parsing)

o Expression references too far forw ard into infoset (unparsing)

o Number of array elements exceeds limit.

 Regular expression exceeds time limit

The follow ing are schema def inition errors, regardless of whether they are detected in

advance of processing or once processing begins:

 Errors in XML Schema Construction and Structure

o See XML Schema Spec if ication Section 5.1

 Use of XSD constructs outside of DFDL subset

 Implementation Limitat ions

 Use of DFDL schema constructs not supported by this implementat ion.

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 20 of 54

 Example: xs:choice is an opt ional part of the DFDL specif icat ion (see

section 21). If not supported, it must be rejected as a Schema

Def init ion Error.

 Example: use of packed-decimal w hen it is not supported by the

implementat ion.

 Example: use of dfdl:assert w hen it is not supported by the

implementat ion (See Spec section 21 on DFDL Subsets)

 Note: Unrecognized DFDL properties or property values can produce

a Schema Def init ion Warning and an implementat ion can attempt to

process data despite the w arning.

 Exceeding limits of the implementat ion for schema s ize/complex ity

 Example: schema too large – simply a limit on how large the schema

can be, how many f iles, how many top- level constructs, etc.

 Schema Not Valid

o See XML Schema Spec if ication Section 5.2

 UPA violation (Unique Part icle Attribut ion)

 Reference to DFDL global def inition not found

o Format def init ion (dfdl:def ineFormat)

o Escape schema def inition (dfdl:def ineEscapeScheme)

o Variable Def inition (dfdl:def ineVariable)

 DFDL Annotations not w ell-formed or not valid

 DFDL Annotations Incompat ible

o E.g., dfdl:assert and dfdl:discriminator at same combined annotat ion point, or

more than one format annotat ion at an annotat ion point.

 DFDL Properties and their values

o Property not applicable to DFDL annotat ion

o Property value not suitable for property

o Property conf lict

 Betw een Element Reference and Element Dec larat ion

 Betw een Element Dec larat ion and Simple Type Def init ion

 Betw een Simple Type Def inition and Base Simple Type Def inition

 Betw een Group Reference and Sequence/Choice of Group Def init ion

o Required property not found

 Expressions

o Expression syntax error

o Named child element doesn’t ex ist – E.g., /a/b, and there is no child b in

existence.

 Note: no child possible in the schema is a different error, but also a

Schema Def inition Error, as /a/b w ould not have a type in that case.

 Note: This is an SDE, as schema authors are advised to use

fn:exists(…) to test for existence of elements w hen it is possible that

they not exist.

o Variable read but not def ined

o Variable assigned af ter read

o Variable assigned more than once

o Static Type error – type is incorrect for usage

 Note: if an implementat ion is unable to distinguish Static Type Errors

from Dynamic Type Errors, then both should cause Schema

Def init ion Errors.

o Path step def init ion not found – e.g., /a/n:b but no def init ion for n:b as local or

global element.

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 21 of 54

o Not enough arguments for function

o Expression value is not s ingle node

 Most DFDL expression contexts require an expression to identify a

single node, not an array (aka sequence of nodes). There are a few

exceptions such as the fn:count(…) function, w here the path

expression must be to an array or optional element.

o Expression value is not array element or optional element.

 Some DFDL expression contexts require an array or an optional

element.

 Example: The fn:count(...) function argument must be to an array or

opt ional element. It is an SDE if the argument expression is

otherw ise.

 Regular Express ions

o Syntax error

2.121. Section 13.11.1. To match revised behaviour from ICU 51, the follow ing changes are
made to the DFDL calendar pattern symbols:

 Drop the DFDL-specif ic ‘U’ symbol

 Add support for new ‘x’ and ‘X’ symbols (x, xx, xxx, X, XX, XXX only)

 Add support for all variat ions of the new ‘O’ symbol

 Adopt revised semant ic for all variations of the ‘V’ symbol

 Adopt revised semant ic for all variations of the ‘z’ symbol.

 Adopt revised semant ic for all variations of the ‘Z’ symbol (but ZZZZZ not supported).

Reference is the ICU SimpleDateTime class at

 http://icu-project.org/apiref /icu4j/com/ibm/ icu/text/SimpleDateFormat.html. Erratum 2.3
updated.

2.122. Section 5.1. Allow explic it setting of minOccurs = ‘1’ and/or maxOccurs = ‘1’ on model
groups, as this is the equivalent to omitting the properties.

2.123. Throughout. Do not use the ‘xs’ pref ix for XSD attributes as it is not strictly correct.
Instead use the phrase ‘XSD xxx property’.

2.124. Section 23.5.3. State that it is a schema def init ion error if the $node argument of
dfdl:checkConstraints() function is a complex element.

2.125. Section 12.3.5. "The DFDL processor scans the data stream to determine a string
value that is the longest match to a regular expression." The pattern itself dictates greediness
so the w ord 'longest' is not needed and is removed.

2.126. Section 3. Correct the current inconsistenc ies w hen referring to dif ferent kinds of DFDL
property. Use the revised terms as appropr iate throughout the spec if ication:

 Change. Format property – a DFDL property carried on a DFDL format annotat ion.

 Change. Representat ion property – a format property that is used to describe a phys ical
characteristic of a component. Such a property w ill apply to one or more grammar regions
of the component.

 Add: Non-representat ion property – a format property that is not a representation
property, specif ically dfdl:ref , dfdl:hiddenGroupRef, dfdl:inputValueCalc,
dfdl:outputValueCalc, dfdl:choiceBranchKey, dfdl:choiceDispatchKey.

http://icu-project.org/apiref/icu4j/com/ibm/icu/text/SimpleDateFormat.html

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 22 of 54

Note that ‘property’ should be used instead of ‘attribute’ for all properties that are carried on
any DFDL annotation, even w hen an XML attribute is the only w ay that a property may be
specif ied. This is consistent w ith XML Schema w here ‘attribute’ is technically just a render ing

of a property.

Note that dfdl:escapeSchemeRef is considered to be a representat ion property.

2.127. Section 13.11. The calendar pattern symbols Z, ZZ and ZZZ are equivalent. ICU
prefers that Z is used singly, so the calendar pattern used for an xs:time object w hen

calendarPatternKind is ‘implic it ’ is changed to ‘HH:mm:ssZ’.

2.128. Section 17. State that w hen an element w hich carries the inputValueCalc property

appears in a sequence that has a separator, no separator is associated w ith the element.
When parsing, no separator is expected in the input data. When unparsing, no separator is
written to the output data.

2.129. Section 15. A choice that dec lares no branches in the DFDL schema is a schema
def init ion error. This interpretat ion is cons istent w ith the rule that says each dec lared branch

must have minOccurs > 0.

2.130. Section 13.2. In the descript ion of textOutputMinLength, delete the sentence ‘The units

are specif ied by the dfdl: lengthUnits property’ and replace w ith the sentence ‘For
dfdl:lengthKind 'delimited', 'pattern' and 'endOf Parent' the length units are alw ays characters,
for other dfdl:lengthKinds the length units are specif ied by the dfdl: lengthUnits property.’

2.131. Section 12.3.3. Af ter Table 15 add that it is a schema def init ion error if type is xs:string
and lengthKind is 'implic it' and lengthUnits is 'bytes' and encoding is not an SBCS encoding.

This prevents a scenario w here validat ion against maxLength facet is in characters but
parsing and unparsing us ing maxLength facet is in bytes.

2.132. Section 12.3.7. In the paragraph that discusses specif ied length elements that are
considered to have variable length w hen unparsing, add that it is a schema def inition error for
such elements if type is xs:string and textPadKind is not 'none' and lengthUnits is 'bytes' and

encoding is not an SBCS encoding and minLength facet is not zero. This prevents a scenario
where validat ion against minLength facet is in characters but padding to minLength facet is in
bytes.

2.133. Section 13.11.1. For the calendar pattern symbol ‘I’ add that the omission of time zone
from the input data w hen the type is xs:dateTime or xs:time is not a processing error. If that

occurs then the time zone is obtained f rom the calendarTimeZone property.

2.134. Section 3. For the spec if ication to correctly discuss parsing and unparsing of character

data, the follow ing new terms are added to the Glossary, and used in appropriate places in
the rest of the spec.

 CCSID - see Coded Character Set Identifier

 Character - A ISO10646 character hav ing a unique character code as its ident if ier. This
concept is independent of font, typeface, size, and style, so 'F ', 'F', 'F ', are all the same

character 'F'

 Character Code - The canonical integer used to ident ify a character in the ISO10646

standards. This number ident if ies the character, but can be independent of any specif ic
character set encoding of the character. Example: The '{' character know n in Unicode as
LEFT CURLY BRACKET. Has character code U+007B. How ever, depending on the

character set encoding, the value 0x7B may or may not appear in the representat ion of
that character.

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 23 of 54

 Character Set - An abstract set of characters that are assigned (or mapped to) a
representation by a particular character set encoding. For most character set encodings
their character set is a subset of the Unicode character set.

 Character Set Encoding - Often abbrev iated to just 'encoding'. A specif ic representation
of a character set as bytes or bits of data. A character set encoding is usually ident if ied by
a standard character set encoding name or a recognized alias name, or by a coded

character set identifier or CCSID. These ident if iers are standardized. The names and
aliases are standardized by the IANA (w here unfortunately, they are called character set
names). CCSIDs are an industry standard. Examples of character set encoding names

are UTF-8, USASCII, GB2312, ebcdic-cp-it, ISO-8859-5, UTF-16BE, Shif t_JIS. The
DFDL standard allows for implementat ion-specif ic character set encodings to be
supported, and standardizes one name that is DFDL-spec if ic w hich is USASCII-7bit-

packed.

 Character Width - The number of code units or alternatively the number of bytes used to

represent a character in a spec if ic character set encoding is called the character w idth.
Encodings are either f ixed w idth (all characters encoded using the same w idth), or
variable-w idth (different characters are encoded using dif ferent w idths). For example the

UTF-32 character set encoding has 4-byte character w idth, w hereas USASCII has a 1-
byte character w idth. UTF-8 is variable w idth, and any spec if ic character has w idth 1, 2,
3, or 4 bytes.

 Code Unit - When a character set encoding uses differing variable width representations
for characters, the units making up these variable w idth representations are called code
units. For example the UTF-8 encoding uses betw een 1 and 4 code units to represent

characters, and for UTF-8, the indiv idual code units are single bytes. DFDL's
interpretation of the UTF-16 encoding is either f ixed or variable w idth. When format
property dfdl:utf16Width='variable' then UTF-16 is variable w idth and this encoding uses

either one or tw o code units per character, but in this case each individual code unit is a
16-bit value. When a character set is f ixed w idth, then there is no distinct ion betw een a
code unit and a code point.

 Coded Character Set Ident if ier (CCSID) - An alternate ident if ier of a character set
encoding. Originally created by IBM, CCSIDs are a broadly used industry standard.

 Encoding - See Character Set Encoding

 Fixed-Width Character Encoding - A character set encoding w here all characters are
encoded us ing a single code unit for their representation. Note that a code unit is not
necessarily a single byte.

 Surrogate Pair - A Unicode character whose character code value is greater than 0xFFFF
can be encoded into variable-w idth UTF-16BE or UTF-16LE (w hich are variable-w idth
encodings w hen the DFDL property utf16Width='variable'). In this case the representat ion

uses tw o adjacent code units each of w hich is called a surrogate, and the pair of which is
called a surrogate pair.

 Unicode - A character set def ined by the Unicode Consortium, and standardized at the
International Standards Organization (ISO) as ISO10646.

 Variable-Width Character Encoding - A character set encoding w here characters are
encoded us ing one or more code units for their representation depending on w hich
specif ic character is being encoded. An example is UTF-8 w hich uses f rom 1 to 4 bytes to

encode a character.

2.135. Section 23.5. State the types of arguments and return values w here not specif ied.

 23.5.2.1. The return value of each Boolean function is xs:boolean.

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 24 of 54

 23.5.2.4. The return value of each Date, Time function is xs:integer except
fn:seconds-from-dateTime and fn:seconds-from-time w hich return xs:decimal.

 23.5.6. The return value of fn:local-name is changed to xs:string.

 23.5.3. The $lengthUnits argument of dfdl:contentLength and dfdl:valueLength is

xs:string.

 23.5.3. The $data argument of dfdl:testBits is xs:unsignedByte.

 23.5.3. The $bitPos argument of dfdl:testBits is xs:nonNegat iveInteger.

2.136. Section 23.5.3. Three new DFDL spec if ic functions are provided that return the
timezone f rom a calendar type. These complement the XPath functions that return other
calendar components from calendar types.

dfdl:timeZoneFromDateTime ($arg)

dfdl:timeZoneFromDate ($arg)

dfdl:timeZoneFromTime ($arg)

Returns the timezone component of $arg if
any. If $arg has a timezone component, then

the result is a string in the format of an ISO
Time zone designator. Interpreted as an offset
from UTC, its value may range f rom +14:00 to -

14:00 hours, both inc lus ive. The UTC t ime
zone is represented as "+00:00". If the $arg
has no timezone component, then "" (empty

string) is returned.

2.137. Section 13.11.1. Correct the paragraph for f ractional seconds to say that excess

fractional seconds are truncated, and not rounded up. (This is to match ICU behav iour.)

2.138. Section 12.3.7. When representation is binary and the length spec if ied for an element

implies that the capac ity of the simple type may be exceeded, the behav iour of the DFDL
processor is not consistent and is dependent on w hether lengthUnits is ‘bits ’ or ‘bytes ’. This is
addressed. It is still a schema def inition error if the length of a bit f ield is too large for the

corresponding integer type w hen statically verif iable, but it should be a processing error if it
occurs at runtime, and not a runtime schema def inition error as stated. The same rules should
also be applied w hen lengthUnits is 'bytes'.

2.139. Section 12.3.7.2. Clarify that numbers w ith a binary packed representation are allow ed
to have lengthUnits ‘bits ’ but the length must be a multiple of 4 and it is a schema def init ion

error otherw ise.

2.140. Section 12.1. Clar ify that numbers w ith a binary packed representation must be aligned

on a nibble (ie, 4-bit) boundary and it is a schema def inition error otherw ise.

2.141. Section 13.11. Change the type of property calendarLanguage so that it is String or

DFDL Expression. If an expression is prov ided, it must return a string that complies w ith the
pattern given by errata 2.44. This enhancement allow s DFDL schemas to be authored that
model locale-dependent calendars.

2.142. Section 11. Clar ify that property ignoreCase plays no part when comparing an element
value w ith an XSDL enum facet, matching an element value to an XSDL pattern facet, or

comparing an element value w ith the XSDL f ixed property. It is therefore not used by
validat ion w hen enabled, nor by the dfdl:checkConstraints function.

2.143. Section 12.3.5.1. For lengthKind ‘pattern’ clar ify that w hen a DFDL regular expression
is matched against data:

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 25 of 54

 The data is decoded f rom the specif ied encoding into Unicode before the actual
matching takes place.

 If there is no match (ie, a zero-length match) it is not a processing error but instead it
means the length is zero.

2.144. Section 7.3.1 and 7.4.1. Allow the message property of an assert or a discriminator to
be either a string or a DFDL Expression that returns a string.

Any element referred to by the message express ion must have already been processed or
must be a descendent of the component carrying the assert or discriminator (same rule as for

the test expression).

Example:

<dfdl:assert message="{ fn:concat('unknown whatever ', ../data1) }">

{ if (...pred1...) then ...expr1...

 else if (...pred2...) then ...expr2...

 else fn:false()

 }</dfdl:assert>

The message spec if ied by the message property is issued only if the assert or discriminator is
unsuccessful, that is, the test expression evaluates to false or the test pattern returns a zero-
length match. If so, and the message property is an expression, the message expression is

evaluated at that time.

If a processing error or schema def init ion error occurs while evaluating the message

expression, a recoverable error should be issued to record this error, then processing of the
assert or discriminator continues as if there w as no problem and in a manner consistent w ith
the failureType property, but using an implementation-def ined substitute message.

2.145. Section 6.3. The spec if ication does not formally state the XSDL type of all the DFDL
property types. That is corrected as follow s:

 DFDL string literal: restriction of xs:token that disallow s the space character.

 DFDL expression : xs:string

 DFDL regular expression : xs:string

 Enumerat ion: xs:token

In addit ion:

 Leading/trailing spaces are trimmed for DFDL express ions

 Leading/trailing spaces are not trimmed for DFDL regular expressions

2.146. Section 23.5.3. XPath 2.0 is not very good w ith literal hex binary data, in that the only
types you can create are xs:hexBinary and xs:string. There is somet imes a need to create a
number type from hex binary, and a hex binary type f rom a number. Accordingly the follow ing

new DFDL spec if ic functions are added.

dfdl:byte ($arg)

dfdl:uns ignedByte ($arg)

dfdl:short ($arg)

dfdl:uns ignedShort ($arg)

dfdl:int ($arg)

dfdl:uns ignedInt ($arg)

dfdl:long ($arg)

dfdl:uns ignedLong ($arg)

These constructor functions behave ident ically

to the XPath 2.0 constructor functions of the
same names, w ith one exception. The
argument can be a quoted string beginning

w ith the letter 'x', in w hich case the remainder
of the string is hexadecimal digits that
represent a big-endian tw os complement

representation of a binary number.

If the string begins w ith 'x', it is a schema

def init ion error if a character appears other 0-9,
a-f, A-F.

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 26 of 54

Each constructor function has a limit on the
number of hex digits, w ith no more digits than
2, 4, 8, or 16 for the byte, short, int and long

versions respectively. It is a schema def init ion
error if more digits are encountered than are
suitable for the type being created

Examples:

 dfdl:uns ignedInt("xa1b2c3d4") is the uns igned int value 2712847316.

 dfdl:int("xFFFFFFFF") is the signed int value -1.

 dfdl:uns ignedByte("xFF") is the unsigned byte value 255.

 dfdl:byte("xff") is the signed byte value -1.

 dfdl:byte("x7F") is the signed byte value 127.

 dfdl:byte("x80") is the signed byte value -128.

 dfdl:uns ignedByte("x80") is the uns igned byte value 128.

 dfdl:byte("x0A3") is a schema def inition error (too any digits for type).

 dfdl:byte("xG3") is a schema def inition error (invalid digit).

dfdl:hexBinary ($arg)

This constructor function behaves ident ically to
the XPath 2.0 constructor function of the same
name, w ith one exception. The argument can

also be a long, uns ignedLong, or any subtype
thereof , and in that case a xs:hexBinary value
containing a number of hex digits is produced.

The order ing and number of the digits
correspond to a binary big-endian tw os-
complement implementat ion of the type of the

argument. Digits 0-9, A-F are used.

The number of digits produced depends on the

type of $arg, being 2, 4, 8 or 16. If $arg is a
literal number then the type is the smallest
signed type (long, int, short, byte) that can

contain the value.

If a literal number is not able to be represented

by a long, it is a schema def inition error.

Examples:

 dfdl:hexBinary(xs:short(208)) is the hexBinary value "00D0".

 dfdl:hexBinary(208) is the hexBinary value "D0".

 dfdl:hexBinary(-2084) is the hexBinary value "F7FF".

2.147. Section 23.1. Replace the paragraphs that talk about allow able element references in
DFDL expression paths w hen parsing and unparsing w ith the follow ing paragraph.

In general, a DFDL expression can reference any element that precedes the pos ition in the
schema w here the expression is dec lared, w ith the follow ing exceptions:

 An assert or discriminator on a component may reference an element that is a

descendent of the component.

 A dfdl:outputValueCalc property may reference an element that follows the posit ion in
the schema w here the property is specif ied.

 It is a schema def init ion error if a component in a choice branch references an
element in another branch of the same choice or a descendent of such an element

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 27 of 54

 It is a schema def init ion error if an element in an unordered sequence group
references an element in the same sequence group or a descendent of such an
element.

 It is a schema def init ion error if an element in an ordered sequence group references

a f loating element in the same sequence group or a descendent of such an element.

2.148. Section 12.2. Clar ify DFDL Character Class entit ies allow ed in delimiters.

The init iator, terminator, and separator properties can have the character class ent ities NL,
WSP, WSP+, WSP*, but not WSP* on its ow n. They cannot have ES.

2.149. Section 21. The raw byte entities feature is added to the list of optional features in the
standard.

2.150. Section 13.11.1. Property calendarPattern: Add support for calendar pattern ‘EEEEEE’
(6 x ‘E’) and ‘eeeeee’ (6 x ‘e’) provided by ICU, w hich provide a 2 letter abbreviation, eg, ‘Mo’.

The 'EEEEE' (5 x ‘E') form is broken in some versions of the ICU library. Implementations
should either f ix this or release-note the limitat ion. The DFDL spec if ication inc ludes the

‘EEEEE’ functionality as specif ied by ICU, irrespective of any bugs/f law s in ICU library
versions.

In general, f law s in the ICU libraries, or incons istenc ies betw een the ICU4C and ICU4J
variants of this library are not issues that affect the DFDL spec if ication, but rather are
limitat ions of implementations and should be release-noted or otherw ise called out by

implementat ions so that users can understand their impact.

2.151. Section 13.11. Property calendarCheckPolicy: Clarify strict and lax behaviour as

follow s:

1) Lenient parsing behav iour w hen in 'strict' mode:

a) case insens it ive matching for text f ields
b) MMM, MMMM, MMMMM all accept either short or long form of Month
c) E, EE, EEE, EEEE, EEEEE, EEEEEE all accept either abbreviated, full, narrow and short

forms of Day of Week
d) accept truncated lef tmost numeric f ield (eg, pattern "HHmmss" allow s "123456" (12:34:56)
and "23456" (2:34:56) but not "3456")

2) Addit ional lenient parsing behav iour w hen in 'lax' mode:
a) values outside valid ranges are normalized (eg, "March 32 1996" is treated as "April 1

1996")
b) ignoring a trailing dot af ter a non-numeric f ield
c) leading and trailing w hitespace in the data but not in the pattern is accepted ****

d) w hitespace in the pattern can be miss ing in the data
e) partial matching on literal strings (eg, data "20130621d" allow ed for pattern
"yyyyMMdd'date' " ****

**** Only in ICU4C as of ICU 51. ICU4J w ill be changed to match ICU4C. Implementat ions
are advised to document this limitat ion w ith a release note if it affects their functionality.

2.152. Section 14.4. Clar if ications around sequences containing f loat ing elements.

A non-f loating array element must have its occurrences appearing cont iguously, so the

f loating element can't appear in-betw een. In other w ords, f loating 'yes' only makes a
statement about the f loat ing element, not about any other elements in the sequence.

Change w ording to:

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 28 of 54

"An ordered sequence of n element children all w ith dfdl:f loating='yes' is equivalent to an
unordered sequence w ith the same n element children w ith dfdl:f loat ing='no'."

Add restrictions:

It is a schema def init ion error if an element w ith dfdl:f loat ing 'yes' is an optional element or an

array element and its dfdl:occursCountKind property is not ‘parsed’.

It is a schema def init ion error if two or more elements w ith dfdl:f loating 'yes ' in the same group

have the same name and the same namespace.

2.153. Section 3, 12.3.7.2. Clar ify length of elements w ith binary representat ion. Separate the

material about comput ing the values of elements of binary representation.

 Move to glossary entries, moving them out of the sections on length.
o Bit Posit ion

o Bit String

 Add new glossary entries for these terms, which w e use repeatedly.
o Data Stream

o Binary - clarify ambiguity around binary meaning not text, and binary meaning
tw os-complement.

o Dec imal - clarify ambiguity around dec imal meaning base-10, and decimal

meaning binary packed representat ions.
o Text
o Tw os-Complement

 Change tit les of section 12.3.7.1 "… w ith dfdl:representation 'text', to "…w ith textual
representation"

 New section tit le for 12.3.7.2, like 12.3.7.1, but "… w ith binary representation".

 Move materials on computing values of binary integers to section 13.7.1.

2.154. Section 13.11. Property calendarLanguage. Add statement about required language

support.

All DFDL Implementations must support calendarLanguage value "en". Implementations may

support addit ional values, how ever, the values are alw ays interpreted as a Unicode Language
Ident if ier as def ined by the Unicode Locale Data Markup Language [ULDML] and the Unicode
Common Locale Data Repository [UCLDR]. These references are added to the references

section of the spec.

2.155. Sections 3, 7.3.1, 7.3.2, 12.3.5. Scan, scannable, scannable-as-text

These terms all added to the glossary. Def init ions removed f rom the prose. Scannable now
means able to scan, w hich is natural. More spec if ic term scannable-as-text used w hen we
want the recursive requirement of uniform encoding.

Errata 2.9 updated to use term scannable-as-text.

2.156. Section 13.6.1. Remove the follow ing statement:

“If the pattern uses digits/f ractions then these must match any XML schema facets. If not it is

a schema def init ion error.”

2.157. Section 9.2. Def init ion of grammar construct RightPadOrFill is not correct.

There is a possibility that both padding and f illing can occur on the right of a text element w ith
specif ied length in bytes, a non-SBCS encoding and textPadKind ‘padCharacter’. This occurs

when the specif ied length does not exactly match the encoded length inc luding padding. This
gap is f illed w ith the f illByte.

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 29 of 54

The updated grammar is in Chapter 4 of this document.

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 30 of 54

3. Major Errata

The follow ing major errata have been ident if ied.

3.1. Section 14.5. Changes to placement of property hiddenGroupRef.

Change to behave like the ref property. That is, it cannot be placed in scope by a format

annotation, and is only set at its point of use. Empty string is not an allow ed value. This
ref lects that there is no hiddenGroupRef value that applies universally.

The spec is not clear as to whether this property is allow ed on the sequences that are the
direct children of global groups, or on group references. Clar ify that it is allow ed on any

xs:sequence but not on any xs:group, including group reference, nor can it appear on any
xs:choice.

If hiddenGroupRef appears on a sequence, the appearance of any other DFDL properties on
that sequence is a schema def init ion error.

3.2. Section 17. Changes to placement of properties inputValueCalc and outputValueCalc.

Change to behave like the ref property. That is, they cannot be placed in scope by a format

annotation, and are only set at their point of use. Empty string is not an allow ed value. This
ref lects that there is no inputValueCalc or outputValueCalc property value that applies
universally

The spec is confused as to whether these properties are applicable to simple types. Remove

any references to these properties in relat ion to simple types, as they are applicable to
elements only. Any application to simple types is a future extension.

The spec is not clear as to whether these properties are allow ed on global elements or
element references. Clar ify that they are allow ed on local element and element references
but not on global elements.

Add that inputValueCalc is not allow ed to appear on a local element or element reference that
is the root of a choice branch.

If inputValueCalc appears on an element, the appearance of any other DFDL properties on
that element is a schema def init ion error.

3.3. Section 12.3. Clarify that when property is lengthKind 'explic it', 'implicit' (simple only),

'pref ixed' or 'pattern', it means that delimiter scanning is turned of f and in-scope delimiters are
not looked for w ithin or betw een elements.

Consequent ly remove the last paragraph of section 5.2.2 starting " It is a processing error
when a f ixed-length string is found to have a number of characters not equal to the f ixed
number".

3.4. Sections 2 and 7.3. Add a new failure type ‘recoverable error’ for use by the assert

annotation w hen parsing, to permit the checking of physical constraints w ithout terminat ing a
parse. For example, using an assert to check a physical length constraint w hen property
lengthKind is 'delimited'. Details:

o After a recoverable error the parser w ill continue.
o Importantly, it does not cause backtracking to take place w hen speculat ing.

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 31 of 54

o It can be raised v ia a new enum attribute on dfdl:assert called 'failureType'.
o An error occurring dur ing evaluation of a dfdl:assert remains a processing error.
o All ex isting stated processing errors remain as such.

o Discriminators remain unchanged.
o The issuing of recoverable errors is independent of whether validat ion is enabled.

Property Name Descript ion

failureType Enum (opt ional)

Valid values are 'processingError', 'recoverableError'.
Default value is 'processingError'.

Specif ies the type of failure that occurs w hen the dfdl:assert is unsuccessful.

When 'processingError', a processing error is raised.

When 'recoverableError', a recoverable error is raised.

Annotation: dfdl:assert

Considered extending validat ion error to cover this, but the spec is quite c lear that a validation

error is a logical check performed on the infoset and the behaviour of the DFDL processor is
unspec if ied.

3.5. Section 13.8. The spec is not clear w hich variants of IEEE binary f loats are supported.

Clarify that support is for IEEE 754-1985, the same as XSDL 1.0. The implicat ions of this are:
o xs:f loat must have a physical length of 4 bytes for both 'ieee' and 'ibm390Hex'

(schema def inition error if explicit length is other than 4).

o xs:double must have a physical length of 8 bytes for both 'ieee' and 'ibm390Hex'
(schema def inition error if explicit length is other than 8).

o Add statement that there may be precis ion/rounding issues w hen converting IBM

f loat/double to/f rom infoset f loat/double w hich is IEEE
o Half -precision IEEE and quad-precis ion IEEE/IBM are not supported

Noted that XSDL 1.1 moved to IEEE 754-2008 only because of new decimal support, and not
for enhanced f loat support. That 's w hy in XSDL 1.1 there are still just the xs:f loat and
xs:double built-in types. Any future support for half -precision and quad-precis ion in XSDL

would very likely be implemented by adding new built-in types that derive f rom
xs:anySimpleType. It is likely therefore that future DFDL support for half -precision and quad-
precis ion w ill build on XSDL.

3.6. Section 4. It w as observed that the content of the DFDL infoset after parsing is not

suff icient to build a W3C Post Schema Validation infoset (PSV I). Specif ically, tw o things are
missing:

o whether an element is valid

o for a simple element w ith a union type, w hich member the value matched.

In order to achieve this the DFDL infoset is modif ied as follow s:

o Add a new Boolean [valid] member to element information item. A complex element
informat ion is not valid if any of its [children] are not valid. Empty if validation is not
enabled.

o Add a new string [unionMemberSchema] member to simple element information
item. This is an SCD reference to the member of the union that matched the value of
the element. Empty if validat ion is not enabled. Empty if the element ’s type is not a

union.

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 32 of 54

On unparsing, any non-empty values for these properties are ignored. How ever, the
augmented infoset w hich is built f rom the unparse operation should contain values for these
properties if validat ion is enabled during unpars ing.

3.7. Section 4, 9, 11, 12.3.7.1.3. Forcing a DFDL author to explic it ly model a Unicode byte
order mark (BOM) is a signif icant usability issue. Most authors w orking w ith Unicode data w ill

expect a DFDL processor to handle BOMs in the same w ay as other sof tw are applications.
Accordingly the DFDL spec if ication is enhanced to add automatic detection and generat ion of
Unicode BOMs.

A new string [unicodeByteOrderMark] member is added to the DFDL infoset document
informat ion item. When the encoding of the root element of the document is exactly UTF-8,
UTF-16, or UTF-32 (or CCSID equivalent), the member value indicates w hether the document

starts w ith a BOM. If there is a BOM then for UTF-8 encoding the value is 'UTF-8'; for UTF-16
encoding the value is 'UTF-16LE' or 'UTF-16BE'; for UTF-32 the value is 'UTF-32LE' or 'UTF-
32BE'. If there is no BOM then the member value is empty. When the encoding of the root

element of the document is any other encoding, the member value is empty.

The grammar production for the overall document changes to accommodate a BOM as

show n in Chapter 4 of this document.

Parsing behaviour: When the dfdl:encoding property of the root element is spec if ied, and is

exactly one of UTF-8, UTF-16, or UTF-32 (or CCSID equivalents), then a DFDL parser w ill
look for the appropr iate BOM as the very f irst bytes in the data stream.

 UTF-8. If a BOM is found then this is used to set the document informat ion item
[unicodeByteOrderMark] member. If no BOM is found the parser takes no action. There is

no need to model the BOM explicit ly.

 UTF-16. If a BOM is found then this is used to set the document information item

[unicodeByteOrderMark] member, and all data w ith dfdl:encoding UTF-16 throughout the
rest of the stream are assumed to have the implied byte order. If no BOM is found then all
data w ith dfdl:encoding UTF-16 throughout the rest of the stream are assumed to have

big-endian byte order. There is no need to model the BOM explic itly.

 UTF-32. If a BOM is found then this is used to set the document information item

[unicodeByteOrderMark] member, and all data w ith dfdl:encoding UTF-32 throughout the
rest of the stream are assumed to have the implied byte order . If no BOM is found then

all data w ith dfdl:encoding UTF-32 throughout the rest of the stream are assumed to have
big-endian byte order. There is no need to model the BOM explic itly.

When the dfdl:encoding property of the root element is spec if ied, and is exactly one of UTF-
16LE, UTF-16BE, UTF-32LE or UTF-32BE (or CCSID equivalents), then a DFDL parser w ill
not look for the appropriate BOM. The byte order to use is implic it in the encoding. If a BOM

does appear at the start of the data stream, then it simply w ill be treated as a Unicode Zero-
Width Non-Breaking Space (ZWNBS) character, because this shares the same codepoint as
a BOM.

The dfdl:byteOrder property is never used to establish the byte order for Unicode encodings.

The parser never looks for a BOM at any other point in the data stream, so if a BOM appears
elsew here it w ill be treated as a Unicode ZWNBS character as described above.

Unparsing behaviour: When the dfdl:encoding property of the root element is specif ied, and is
exactly one of UTF-8, UTF-16 or UTF-32 (or CCSID equivalents), then a DFDL unparser w ill
look in the infoset document informat ion item for a BOM.

 UTF-8. If the document informat ion item [unicodeByteOrderMark] member is 'UTF-8', the
UTF-8 BOM is output as the very f irst bytes in the data stream. If the property is empty

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 33 of 54

then no BOM is output. If the property has any other value, it is a processing error. There
is no need to model the BOM explic itly.

 UTF-16. If the document informat ion item [unicodeByteOrderMark] member is 'UTF-
16LE' or 'UTF-16BE', the corresponding UTF-16 BOM is output as the very f irst bytes in
the data stream, and all data w ith dfdl:encoding UTF-16 throughout the rest of the

document w ill be output w ith the implied byte order. If the property is empty then no BOM
is output, and all data w ith dfdl:encoding UTF-16 throughout the rest of the document are
assumed to have big-endian byte order. If the property has any other value, it is a

processing error. There is no need to model the BOM explic it ly.

 UTF-32. If the document informat ion item [unicodeByteOrderMark] member is 'UTF-

32LE' or 'UTF-32BE', the corresponding UTF-32 BOM is output as the very f irst bytes in
the data stream, and all data w ith dfdl:encoding UTF-32 throughout the rest of the

document w ill be output w ith the implied byte order . If the property is empty then no BOM
is output, and all data w ith dfdl:encoding UTF-32 throughout the rest of the document are
assumed to have big-endian byte order. If the property has any other value, it is a

processing error. There is no need to model the BOM explic it ly.

When the dfdl:encoding property of the root element is spec if ied, and is exactly one of UTF-

16LE, UTF-16BE, UTF-32LE or UTF-32BE (or CCSID equivalents), then a DFDL unparser
w ill not look at the document information item [unicodeByteOrderMark] member and w ill not
output a BOM. The byte order to use is implic it in the encoding. If a BOM does need to be

output at the start of the data stream, then it must be explic itly modelled as such.

The dfdl:byteOrder property is never used to establish the byte order for Unicode encodings.

The unparser never outputs a BOM at any other point in the data stream. If a BOM needs to
appear, then it must be explicit ly modelled as such.

3.8. Section 2.2. Clar if ication is needed to schema def init ion error reporting criteria. The
intent of the spec is that a DFDL processor only needs to report schema def init ion errors that

direct ly affect its processing of the data. This is because the nature of DFDL’s scoping rules
mean that of ten it is not poss ible to validate an object def init ion for correctness in isolat ion.

Clarify that a DFDL processor:
o That only implements a DFDL parser does not have to validate properties that are

solely used w hen unparsing, though it is recommended that it does so for portability

reasons.
o That does not implement some optional features does not have to validate properties

or annotat ions required by those opt ional features, but MUST issue a w arning that an

unrecognized property or annotation has been encountered.
o Need not validate global objects as they may legit imately be incomplete, w ith the

follow ing except ions w hich must be validated:

1. Global simple types that are referenced by pref ixLengthType property
2. Global elements that are the document root.

Clarify w hat action a DFDL processor should take w hen it encounters an object that explic it ly
carries properties that are not relevant to the object as def ined.
o Property not applicable to the object ’s DFDL annotation.

Schema def inition error. Example is lengthKind on xs:sequence.
o Property not applicable because of simple type.

Warning (optional). Example is calendarPatternKind on xs:string.

o Property not applicable because of another DFDL property setting.
Warning (optional). Example is binaryNumberRep w hen representation is text.

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 34 of 54

3.9. Section 12.3.5, 7.3.1, 7.3.2. The spec originally allow s lengthKind ‘pattern’ to be used
when the representation of the current element, or of a child element, is binary, but imposes
restrictions on the encoding that can be in force.

Clarify that the encoding property must be def ined for the element (else schema def init ion
error), and that a decoding process ing error is possible if the match of the regex encounters

data that does not decode in that encoding, dependent on the sett ing of encodingErrorPolicy.
Remove section 12.3.5.1.

Same clarif ications needed for testKind ”pattern” property for asserts and discriminators.

For consistency, the restriction that a complex element of specif ied length and lengthUnits

‘characters’ must have children that are all text and that have the same encoding as the
complex element, is dropped.

3.10. Sections 5.1, 13.15. Allow complex elements to be nillable. There are advantages in
permitt ing complex elements to be nillable as w ell as simple elements. For example, it

provides better interoperability w ith XML infosets. How ever, to avoid the concept of a complex
element hav ing a value, w hich is not possible in DFDL, the only permissible nil value is the
empty string, represented by the DFDL %ES; ent ity.

If a complex element has xs:nillable set to ‘true’, it is a schema def init ion error if nilKind is not
‘literalValue’ or nilValue is not the single value ‘%ES; ’.

Allow ing complex elements to be nillable also solves another problem, that of preserving the
posit ion of optional complex elements in an array that contains explicit gaps. An infoset item

w ith the special value nil is created for each such gap.

Property nilValueDelimiterPolicy is applicable.

The grammar changes to ref lect this, as show n in Chapter 4 of this document.

3.11. Section 16. If the occurrences of an element in the data are not f ixed (that is, the
element is a variable array or is opt ional) and the count of the number of elements is not

provided in the data nor is there a stop value, then the DFDL language only provides one
mechanism for deducing the number of elements w hen parsing, namely occursCountKind
‘parsed’. This causes the parser to speculate indef initely unt il no more elements can be

established. How ever there are circumstances w here the minimum and maximum number of
elements is know n, and these facts could be used to guide the parse.

A new occursCountKind enumeration called ‘implic it’ is added, w hich takes into account
minOccurs and maxOccurs settings.

The descriptions of the behav iour for the all occursCountKind enums is greatly enhanced, to
cover both parsing and unparsing, to provide a rew rite semantic for an array as a sequence,
to introduce a forward progress requirement and to c larify the action taken for non-normal

representations.

This is covered in a separate DFDL experience document [DFDLX2].

3.12. Section 2.4. Validation checks are constraints expressed in XSDL, and they apply to the

logical content of the infoset. Originally the spec says ‘an unparse validat ion error occurs
when the physical representation being output w ould generate a validation error w hen parsing
the data representation us ing the same DFDL schema. ’ This is a convenient def init ion, but

problematic, because the or iginal infoset used by the unparser could have been invalid, and

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 35 of 54

the act of DFDL unparsing created a data stream w hich w hen parsed created a valid infoset.
This can occur because of rounding, for example.

The spec if ication w ill be changed to say that validation on parsing takes place on the infoset
that is created by the parse, and that validat ion on unparsing takes place on the augmented
infoset that is created by the unparser as a side-ef fect of creating the output data stream.

The new approach is in keeping w ith the w ay that XML Schema 1.0 def ines validation against
its PSVI.

3.13. Sections 4.1.2, 11. DFDL does not adequately describe how to handle decoding and

encoding errors.

A new sub-section is added to section 11. (this is probably 11.2, i f 11.1 is about Unicode byte
order marks)

11.2 Character Encoding and Decoding Errors
When parsing, these are the errors that can occur when decoding characters into

Unicode/ ISO 10646.

1. The data is broken - invalid bit/byte sequences are found w hich do not match the

def init ion of a character for the encoding.
2. Not enough data is found to make up the entire encoding of a character. That is, a
fragment of a valid encoding is found.

When unparsing, these are the errors that can occur when encoding characters f rom
Unicode/ ISO 10646 into the spec if ied encoding.

1. No mapping provided by the encoding spec if ication.
2. Not enough room to output the ent ire encoding of the character (e.g., need 3 bytes for a
character encoding that uses 3-bytes for that character, but only 1 byte remains in the

available length.
The subsect ions below describe how these errors are handled.

11.2.1 property dfdl:encodingErrorPolicy

A new property dfdl:encodingErrorPolicy is added.

Property Name Descript ion

encodingErrorPolicy Enum

Valid values are 'error', 'replace'.

Specif ies the action to take w hen a character decoding error occurs when
parsing or a character encoding error occurs when unpars ing.

Applies w henever dfdl:encoding is used.

When 'error', a processing error is raised.

When 'replace', a subst itut ion character is used if one is available.

See section 11.2 for full descript ion.

Annotation: dfdl:element, dfdl:simpleType, dfdl:sequence, dfdl:choice,
dfdl:group

11.2.1.1 dfdl:encodingErrorPolicy='error'

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 36 of 54

If 'error', then any error w hen decoding characters while parsing causes a parse error. For
unparsing, any error when encoding characters causes an unparse error.

When parsing, it does not matter if this happens w hen scanning for delimiters, matching a
regular expression, matching a literal nil value, or constructing the value of a textual element.

There is one except ion. When lengthUnits='bytes', the 'not enough data' decode error is
ignored, and the data making up the fragment character is skipped over. Symmetrically, w hen
unparsing the 'not enough room' encoding error is ignored and the lef t-over bytes are f illed

w ith the dfdl:f illByte.

11.2.1.2 dfdl:encodingErrorPolicy='replace' for Pars ing

If 'replace' then any error results in the insertion of the Unicode Replacement Character
(U+FFFD) as the replacement for that error.

It does not matter if this error and replacement happens w hen scanning for delimiters,
matching a regular expression, matching a literal nil value, or constructing the value of a
textual element.

There is one except ion. When lengthUnits='bytes', the 'not enough data' decode error is
ignored, no replacement character is created. The data making up the f ragment character is

skipped over. (It w ill be f illed w ith the dfdl:f illByte w hen unparsing.)

Note that the "." w ildcard in regular expressions w ill match the Unicode Replacement

Character, so ".*" and ".+" regular expressions can potent ially cause very large matches (up
to the ent ire data stream) to occur when data contains errors and
dfdl:encodingErrorPolicy='replace'. Bounded length negated regular expressions can help in

this case. E.g., " [^\uFFFD]{0,50}" says to match any character excluding Unicode
Replacement Characters, but only up to length 50.

It is also w orth noting that the Unicode Replacement Character can appear in data as an
ordinary character, and this cannot be distinguished from the insertion of the Unicode
Replacement Character due to a decode error.

If lengthUnits='characters', then a Unicode Replacement Character counts as contributing a
single character to the length.

If the data contains more than one adjacent decode error, then the specif ic number of
Unicode Replacement Characters that are inserted as the replacement of these errors is

implementat ion dependent. That is, some implementat ions may view , for example, three
consecutive erroneous bytes as three separate decode errors, others may view them as a
single or tw o decode errors. All implementations MUST, how ever, insert some number of

Unicode Replacement Characters, and then continue to decode characters follow ing the
erroneous data.

The trimming of padding characters alw ays happens af ter Unicode Replacement Characters
have been inserted into the data.

11.2.1.3 dfdl:encodingErrorPolicy='replace' for Unparsing

For unparsing, each encoding has a replacement/subst itution character specif ied by the ICU.

This character is substituted for the unmapped character or the character that has too large
an encoding to f it in the available space.

There is one except ion. When lengthUnits='bytes', the 'not enough room' encoding error is
ignored. The lef t-over bytes are f illed w ith the dfdl:f illByte (they are skipped w hen parsing.)

The def initions of these substitution characters can be convenient ly found for many encodings
in the ICU Converter Explorer (http://demo. icu-project.org/icu-bin/convexp).

http://demo.icu-project.org/icu-bin/convexp

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 37 of 54

An encoding error is an unparse error if the encoding does not prov ide a
substitut ion/replacement character def inition. (This w ould be rare, but could occur if a DFDL
implementat ion allows many encodings beyond the minimum set.)

11.2.1.4 Parsing: Unicode Decoding Non-Errors

The follow ing specif ic situations involv ing encodings UTF-16, UTF-16LE, and UTF-16BE
when utf16Width="f ixed", and they do not cause a decoding or encoding error.
• unpaired surrogate code-point

• out-of-order surrogate code-point pair
• surrogate code point pair is encountered

In all these cases the code-point(s) becomes a character code in the DFDL Information Item
for the string.

11.2.2 Preserving Data Containing Decoding Errors

There can be situat ions w here data w ants to be preserved exactly even if it contains errors.

It is suggested that if a DFDL schema author w ants to preserve information containing data
where the data may have decoding errors, that they model such data as xs:hexBinary, or as
xs:string but us ing an encoding such as iso-8859-1 w hich preserves all bytes.

3.14. Section 14.2. To better describe the property and its behaviour, property

separatorPolicy is renamed to separatorSuppressionPolicy, and its enums renamed as
follow s:

‘required’ -> 'never'
‘suppressed’ -> 'anyEmpty'
‘suppressedAtEndLax ’ -> 'trailingEmpty '

‘suppressedAtEndStrict -> 'trailingEmptyStrict'.

Additionally the property description for separatorSuppressionPolicy is rewritten, introductory

paragraphs are added to section 14.2, and sect ion 14.2.1 is replaced w ith new tables.

This is covered in a separate DFDL experience document [DFDLX2].

3.15. Section 15. A new mechanism is introduced for resolving choices, the motivat ion being

to make the cost of resolution c lose to constant time for choices w ith large numbers of
branches w here the branch to take is know n in advance of parsing the choice.

A new element property is added called choiceBranchKey of type 'DFDL String Literal'. This
provides an alternat ive w ay to discriminate a choice containing this element. Allow ed on local
element and element reference only.

A new dfdl:choice property is added called choiceDispatchKey of type 'DFDL Expression'.
The expression must evaluate to an xs:string. The resultant string must match (case

insens itive) the choiceBranchKey property value of one of the element branches of the
choice, and if so discriminates in favour of that branch. The parser then goes straight to that
branch, ignor ing schema order.

Rules:

Because the branch is 'know n to exist' no backtracking takes place if a processing error
subsequent ly occurs.

Both properties are non-representation properties (see erratum 2.126), it is not poss ible to set
a value in scope by a dfdl:format annotation, and a value can only set at its point of use. This

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 38 of 54

is because there is nothing sens ible that could be set in scope. Empty string is not an allow ed
value.

Both properties are only used w hen parsing.

When choiceDispatchKey is present, all choice branches must be local elements or element

references. It is a schema def init ion error otherw ise.

It is a processing error if the resolved value of choiceDispatchKey does not match one of the

choiceBranchKey values.

It is a schema def init ion error if indiv idual choiceBranchKey values are not unique across all

elements that are branches of a choice that carries choiceDispatchKey

It is a schema def init ion error if both init iatedContent and choiceDispatchKey are provided on

the same choice.

It is not a schema def init ion error if either init iatedContent or choiceDispatchKey is provided

on a choice and a discriminator exists on a choice branch. In this case the discriminator w ill
apply to a point of uncertainty that encloses the choice.

DFDL ent ity character classes and DFDL raw byte entities are not allow ed in
choiceBranchKey.

3.16. Section 14.2. Property documentFinalSeparatorCanBeMissing is removed as it is
redundant. A postf ix separator where the f inal separator can be missing can be modelled as

an inf ix separator w ith documentFinalTerminatorCanBeMiss ing on the parent element.

3.17. Section 21. The list of optional DFDL features is extended to make it easier for
implementers to create minimal and extended conforming DFDL processors.

Feature Detection

Text representation for types
other than String

dfdl:representat ion="text" for Number, Calendar or Boolean
types

Delimiters dfdl:separator <> "" or dfdl:init iator <> "" or dfdl:terminator <>
"" or dfdl:lengthKind="delimited"

BCD calendars dfdl:binaryCalendarRep=”bcd”

BCD numbers dfdl:binaryNumberRep="bcd"

Mult iple schemas xs:include or xs:import in xsd

Named Formats dfdl:def ineFormat or dfdl:ref

Choices xs:choice in xsd

Arrays where size not know n
in advance

dfdl:occursCountKind 'implic it', 'parsed', 'stopValue'

Expressions Use of a DFDL express ion in any property or attribute value

End of parent dfdl:lengthKind = "endOfParent"

IBM 4690 packed calendars dfdl:binaryCalendarRep=”ibm4690Packed”

IBM 4690 packed numbers dfdl:binaryNumberRep=" ibm4690Packed"

DFDL Byte Value Ent ities Use of %#r syntax in a DFDL String Literal

Ex isting opt ional feature ‘Variables ’ is clarif ied to be dependent on opt ional feature
‘Expressions ’.

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 39 of 54

3.18. Section 9.2, 23.5.3. The DFDL grammar product ions are revised to make clear the
dist inction betw een the different allow able representat ions that an element can have and to

enforce the correct use of the terms ‘content ’, ‘value’ and ‘representation’.

This has a signif icant effect on the grammar is show n in Chapter 4 of this document.

All sections of the specif ication are updated to ensure that ‘content’, ‘value’ and
‘representation’ are used correctly and cons istent ly.

As a consequence tw o of the DFDL-specif ic functions are renamed:
dfdl:representat ionLength() -> dfdl:contentLength()

dfdl:unpaddedLength() -> dfdl:valueLength()

3.19. Sections 7.7. Additions and clarif ications for the def ineVariable annotat ion.

A defaultValue expression must be evaluated before processing the data stream. It is a

schema def init ion error otherw ise.

A defaultValue expression can refer to other variables but not to the infoset (so no path

locat ions).The referenced variable must either have a defaultValue or be external. It is a
schema def init ion error otherw ise.

If a defaultValue expression references another variable then that prevents the referenced
variable’s value f rom ever changing, that is, it is considered to be a read of the variable’s
value.

If a defaultValue expression references another variable and this causes a c ircular reference,
it is a schema def init ion error.

If the type of variable is a user-def ined s imple type restriction, it is a schema def init ion error.

3.20. Sections 7.8. Additions and clarif ications for the newVariableInstance annotat ion.

Only allow ed as an annotat ion on sequence, choice or group reference. It is a schema
def init ion error otherw ise.

The resolved set of annotat ions for a component may contain mult iple newVariableInstance
statements. They must all be for unique variables, it is a schema def init ion error otherw ise.
How ever, the order of execution among them is not specif ied. Schema authors can insert

sequences to control the t iming of evaluat ion of statements more precisely.

3.21. Sections 7.9. Additions and clarif ications for the setVariable annotat ion.

Not allow ed as an annotation on a complex element or element reference to such.

The resolved set of annotat ions for a component may contain mult iple setVariable
statements. They must all be for unique variables, it is a schema def init ion error otherw ise.

How ever, the order of execution among them is not specif ied. Schema authors can insert
sequences to control the t iming of evaluat ion of statements more precisely.

Clarify that setVariable may be used w ith a variable def ined w ith external ‘true’.

3.22. New appendix. Add an explanat ion of the rationale behind the current variables des ign,
covering w hy DFDL has adopted a write-once read-many behaviour for variables.

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 40 of 54

3.23. Sections 7.3.1. Addit ions and c larif icat ions for the assert annotation.

Asserts can be placed as annotations on sequence, choice, group references, local and
global element dec larat ions, element references, and simple type def init ions.

Replace "More than one dfdl:assert may be used at an annotation point. The dfdl:asserts w ill
be evaluated in the order def ined in the schema." w ith "If the resolved set of annotations for a

schema component contain mult iple dfdl:assert statements, then those w ith testKind='pattern'
are executed before those w ith testKind='expression' (the default). How ever, w ithin each
group the order of execution among them is not specif ied. Schema authors can insert

sequences to control the t iming of evaluat ion of statements more precisely.”

Once any assert used at an annotation point is unsuccessful, no other asserts are executed

at that annotation point.

3.24. Sections 7.3.1. Addit ions and c larif icat ions for the discriminator annotation.

Discriminators can be placed as annotations on sequence, choice, group references, local

and global element dec larat ions, element references, and simple type def init ions.

Replace "Any one annotation point can contain only a s ingle dfd:discriminator or one or more

dfdl:asserts, but not both. It is a schema def init ion error otherw ise." w ith "The resolved set of
annotations for a schema component can contain only a single dfd:discriminator or one or
more dfdl:asserts, but not both. It is a schema def init ion error otherw ise."

3.25. Section 9. Evaluat ion Order for Statement Annotations

Of the resolved set of annotat ions for a schema component, some are statement annotations
and the order of their evaluat ion relat ive to the actual processing of the schema component

itself (parsing or unparsing per its format annotat ion) is as given in the ordered lists below .

For elements and element refs:

1. dfdl:discriminator or dfdl:assert(s) w ith testKind='pattern' (parsing only)
2. dfdl:element follow ing property scoping rules
3. dfdl:setVariable(s)

4. dfdl:discriminator or dfdl:assert(s) w ith testKind='expression' (parsing only)

For sequences, choices and group refs:

1. dfdl:discriminator or dfdl:assert(s) w ith testKind='pattern' (parsing only)
2. dfdl:newVariableInstance(s)
3. dfdl:setVariable(s)

4. dfdl:sequence or dfdl:choice or dfdl:group follow ing property scoping rules
5. dfdl:discriminator or dfdl:assert(s) w ith testKind='expression' (parsing only)

Asserts and Discriminators w ith testKind 'expression'

Implementations are f ree to optimize by recogniz ing and executing discriminators or asserts

w ith testKind 'express ion' ear lier so long as the result ing behav ior is cons istent w ith w hat
results from the description above.

Discriminators w ith testKind 'expression'

When parsing, an attempt to evaluate a discriminator must be made even if preceding

statements or the parse of the schema component ended in a process ing error.

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 41 of 54

This is because a discriminator's expression could evaluate to true thereby resolving a point
of uncertainty even if the complete parsing of the construct ultimately caused a processing
error.

Such discriminator evaluation has access to the DFDL Infoset of the attempted parse as it
existed immediately before detecting the parse failure. Attempts to reference parts of the

DFDL Infoset that do not exist are processing errors.

Elements and setVariable

The resolved set of dfdl:setVariable statements for an element are executed after the parsing
of the element. This is in contrast to the resolved set of dfdl:setVariable statements for a

group w hich are executed before the parsing of the group.

For elements, this implies that these variables are set af ter the evaluation of expressions

corresponding to any computed DFDL properties for that element, and so the var iables may
not be referenced from expressions that compute these DFDL properties.

That is, if an expression is used to provide the value of a property (such as dfdl:terminator, or
dfdl:byteOrder), the evaluat ion of that property expression occurs before any dfdl:setVariable
annotation f rom the resolved set of annotat ions for that element are executed; hence, the

expression providing the value of the property may not reference the variable. Schema
authors can insert sequences to provide more precise control over w hen variables are set.

3.26. Sections 9, 13.15 and others. Empty, Missing and Defaults.

As originally spec if ied, default values are used as follow s. During unparsing, an Infoset w ith
missing required element occurrences is augmented w ith values so that the resultant data
stream that is generated is correct according to the schema and may be successfully re-

parsed. During parsing, a sparse data stream w ith missing required element occurrences has
values added to the Infoset so that the resultant Infoset is correct according to the schema.

The parsing behaviour has the ef fect of making an invalid data stream valid. This is not
actually a good idea. Why is DFDL trying to handle miss ing required occurrences in a data
stream? If an occurrence may be missing f rom the data stream, it should be modelled as

opt ional. Further this is not how XML Schema uses default values for elements.

For elements, XML Schema uses defaults to f ill in values for occurrences that are present but

have empty content. We shall use this princ iple for DFDL, as the main use case for using
defaults on parsing is supplying a value for an empty required occurrence of a simple element
(the CSV adjacent separator example). In order for this to w ork, we must be able to

dist inguish clear ly betw een an empty occurrence and a missing occurrence w hen parsing.

Accordingly, formal def init ions for nil representation, empty representation, normal

representation, and absent representation are added to the specif icat ion, along w ith the rules
that the parser must use to establish these representat ions. This is ref lected into the
grammar. The concept of missing f rom the data stream is redef ined. When and how default

values are applied w hen parsing and unparsing are provided.

This is covered in a separate DFDL experience document [DFDLX2].

3.27. Section 13.6. Text number rounding.

The DFDL specif icat ion behav iour for the properties that control text number rounding w as
derived f rom the documented behav iour for ICU4J. How ever the documentat ion is not correct.

The text number rounding properties are revised as follow s to ref lect the actual ICU

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 42 of 54

behaviour. In particular note that the w ay to sw itch off rounding is to use textNumberRounding
‘explic it ’ and new textNumberRoundingMode ‘roundUnnecessary’.

textNumberRounding
Enum

Specif ies how rounding is controlled dur ing unparsing.

Valid values ‘pattern', 'explic it'

When dfdl:textNumberRep is 'standard' this property only

applies w hen dfdl:textStandardBase is 10.

If 'pattern' then rounding takes place according to the
pattern. A rounding increment may be spec if ied in the

dfdl:textNumberPattern us ing digits '1' though '9',
otherw ise rounding is to the w idth of the pattern. The
rounding mode is alw ays 'roundHalf Even'.

If 'explic it' then the rounding increment is spec if ied by the
dfdl:textNumberRoundingIncrement property, and any
digits '1' through '9' in the dfdl:textNumberPattern are

treated as digit '0'. The rounding mode is spec if ied by the
dfdl:textRoundingMode property.

To disable rounding, use 'explicit ' in conjunction w ith

'roundUnnecessary' for the
dfdl:textNumberRoundingMode. If rounding is disabled
then any excess precision is treated as a processing error.

Annotation: dfdl:element, dfdl:simpleType

textNumberRoundingMode
Enum

Specif ies how rounding occurs during unparsing, w hen
dfdl:textNumberRounding is 'explic it'.

When dfdl:textNumberRep is 'standard' this property only
applies w hen dfdl:textStandardBase is 10.

To sw itch off rounding, use 'roundUnnecessary'.

Valid values ‘roundCeiling’, ‘roundFloor’, ‘roundDow n’,
‘roundUp’, ‘roundHalfEven’, ‘roundHalfDow n’,
‘roundHalfUp', 'roundUnnecessary'

Annotation: dfdl:element, dfdl:simpleType

textNumberRoundingIncrement
Double

Specif ies the rounding increment to use during unpars ing,
when dfdl:textNumberRounding is 'explic it'.

When dfdl:textNumberRep is 'standard' this property only
applies w hen dfdl:textStandardBase is 10.

A negative value is a schema def init ion error.

Annotation: dfdl:element, dfdl:simpleType

3.28. Section 14.3. Unordered sequence groups.

Replace the w ording in the ex isting section w ith the follow ing, w hich clar if ies the restrictions

on unordered groups and corrects the conceptual rewrite to a repeat ing choice:

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 43 of 54

 14.3 Unordered Sequence Groups
The occurrences of members of a sequence group w ith dfdl:sequenceKind=’unordered’
(hereaf ter referred to as an ‘unordered group’) may appear in the data in any order.

Occurrences of the same member do not have to be contiguous. In the infoset, sequence
groups are alw ays in schema order, so a DFDL processor must sort the members of an
unordered group into schema order w hen parsing. When unparsing, the infoset must already

be in schema order, and the members of the sequence w ill be output in schema order.

 14.3.1 Restrictions for Unordered Groups

It is a schema def init ion error if any member of the unordered group is not an element
declaration or an element reference.
It is a schema def init ion error if a member of an unordered group is an optional element or an

array element and its dfdl:occursCountKind property is not ‘parsed’
It is a schema def init ion error if two or more members of the unordered group have the same
name and the same namespace (see post-processing transformation below)

 14.3.2 Parsing an Unordered Group
When parsing, the semant ics of an unordered group are expressed by w ay of :

1. a source-to-source transformation of the sequence group def init ion, and

2. a post-processing transformation of the infoset .

An implementat ion may use any technique consistent w ith this semantic.

 14.3.2.1 Source-to-source Transformation
The source-to-source transformation turns the dec laration of an unordered group into an

ordered sequence group that contains a repeating choice. To ensure that the resulting
schema is a valid DFDL schema, the choice group is wrapped in an array element.
The unordered group is transformed as follow s:

- the dfdl:sequenceKind property of the unordered group is changed to “ordered”

- the content of the unordered group is replaced by a complex element (the ‘choice
element’) w ith the follow ing properties:

o XSDL minOccurs=”0”

o XSDL maxOccurs=”unbounded”

o dfd:lengthKind=”implic it”

o dfd:occursCountKind=”parsed”

- the content of the choice element’s complex type is a choice group w ith the follow ing
properties:

o dfdl:choiceLengthKind=”implic it”

- The members of the unordered group become the members of the choice group, w ith
their declaration order preserved.

- The XSDL minOccurs and maxOccurs properties on each member of the choice
group are both set to 1.

Using the follow ing example as an illustration:

<xs:sequence dfdl:sequenceKind="unordered" dfdl:separator=",">
 <xs:element name=”a” type="xs:string"

 dfdl:init iator="A:" />
 <xs:element name=”b” type="xs:int" minOccurs="0"
 dfdl:init iator="B:" />

 <xs:element name=”c” type="xs:string" minOccurs=”0” maxOccurs="10"
 dfdl:init iator="C:" />
</xs:sequence>

The above unordered sequence group is conceptually rew ritten into the follow ing ordered
sequence group:

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 44 of 54

<xs:sequence dfdl:sequenceKind="ordered" dfdl:separator=",">
 <xs:element name="choiceElement" minOccurs="0" maxOccurs="unbounded"

 occursCountKind="parsed">
 <xs:complexType>
 <xs:choice dfdl:choiceLengthKind=" implicit">

 <xs:element name="a" type="xs:string"
 dfdl:init iator="A:" />
 <xs:element name="b" type="xs:int"

 dfdl:init iator="B:" />
 <xs:element name="c" type="xs:string"
 dfdl:init iator="C:" />

 </xs:choice>
 </xs:complexType>
 </xs:element>

</xs:sequence>

Processing then constructs a temporary info set for this ordered sequence group by parsing
the data.

If a member element is found to have the empty representat ion then the parsing of that
element must use the original value of XSDL minOccurs. In this example, element "b" has
minOccurs="0" and if it is found w ith the empty representation then it must not be defaulted.

 14.3.2.2 Post-processing Transformat ion
Post-processing consists of the follow ing steps:

1. Sort the temporary infoset to produce the real infoset

2. Check scalar elements and validate

Sort the Temporary Infoset
The temporary infoset is transformed into the infoset conforming to the or iginal unordered
group. All members of the temporary infoset having the same name and namespace as the

f irst child of the unordered group are placed f irst, in the order in w hich they w ere parsed. This
algor ithm repeats for the second child of the unordered group and so on until all members of
the temporary infoset have been sorted into the schema dec laration order of the original

unordered group.

For the example above, the temporary infoset is transformed into the infoset corresponding

to:

<xs:sequence>

 <xs:element name="a" type="xs:string" />
 <xs:element name="b" type="xs:int" minOccurs="0" />
 <xs:element name="c" type="xs:string" minOccurs="0" maxOccurs="10" />

</xs:sequence>

Check Scalar Elements and Validate

For each element in the unordered group hav ing XSDL minOccurs=”1” and maxOccurs=”1”,
the number of occurrences is checked. Each such element must occur exactly once in the
infoset, else it is a processing error.

If validat ion is enabled, the DFDL processor validates the number of occurrences of each
member of the unordered group against XSDL minOccurs and maxOccurs.

These checks are the same as those performed for an ordered sequence group. How ever, in
an unordered group the checking of XSDL minOccurs and maxOccurs must be performed

after the entire group has been parsed.

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 45 of 54

 14.3.3 Unparsing an Unordered Group
When unparsing, the behav ior is exactly as if dfdl:sequenceKind='ordered'. The infoset must

be presented to the unparser in schema dec larat ion order, and the members of the unordered
sequence group are output in schema dec laration order.

3.29. Sections 24 and 30. The DFDL specif icat ion is not prescriptive enough w hen specifying
what is allow ed for regular expressions used in the length property and testPattern property.

Section 24 is replaced by the follow ing.

“A DFDL regular expression may be spec if ied for the dfdl: lengthPattern format property and
the dfdl:testPattern attribute of the dfdl:assert and dfdl:discriminator annotat ions. DFDL
regular expressions do not interpret DFDL ent ities.

A DFDL regular expression is def ined by a set of valid pattern characters. For portability,
a DFDL regular expression pattern is restricted to the inclusive subset of the ICU regular

expression [ICURE] and the Java(R) 7 regular expression [JAVARE] w ith the Unicode f lags
UNICODE_CASE and UNICODE_CHARACTER_CLASS turned on. DFDL regular
expressions thereby conform to Unicode Technical Standard #18, Unicode Regular

Expressions, level 1 [UNICODERE].

The follow ing regular expression constructs are not common to both ICU and Java(R) 7 and it

is a schema def inition error if any are used in a DFDL regular expression:

Construct Meaning Notes

\N{UNICODE CHARACTER NAME} Match the named character ICU only

\X Match a Grapheme Cluster ICU only

\Uhhhhhhhh Match the character w ith the hex value
hhhhhhhh

ICU only

(?# ...) Free-format comment ICU only

(?w-w) UREGEX_UWORD - Controls the

behaviour of \b in a pattern

ICU only

(?d-d) UNIX_LINES - Enables Unix lines mode Java 7 only

(?u-u) UNICODE_CASE - Enables Unicode-
aw are case folding

Java 7 only
(1)

(?U-U) UNICODE_CHARACTER_CLASS -
Enables the Unicode version of

predef ined character classes and
POSIX character classes

Java 7 only
(2)

Notes :

(1) Implementations us ing Java 7 must set f lag UNICODE_CASE by default to match ICU.
(2) Implementations us ing Java 7 must set f lag UNICODE_CHARACTER_CLASS by default
to match ICU.

Additionally, the behaviour of the word character construct (\w) is not consistent in ICU and
Java 7. In Java 7 \w is [\p{Alpha}\p{gc=Mn}\p{gc=Me}\p{gc=Mc}\p{Digit}\p{gc=Pc}],

which is a larger set than ICU w here \w is [\p{Ll}\p{Lu}\p{Lt}\p{Lo}\p{Nd}].
The use of \w is not recommended in DFDL regular expressions in conjunct ion w ith Unicode
encodings, and an implementation must issue a w arning if such usage is detected.

Character propert ies are detailed by the Unicode Regular Expressions [UNICODERE]. “

Section 30 is updated to correct the references used in section 24:

 Add: [ICURE] - http://userguide. icu-project.org/strings/regexp

 Add: [UNICODERE] - http://www.unicode.org/reports/tr18/

 Remove: [PERLRE] - http://perldoc.per l.org/per lre.html#Extended-Patterns

http://userguide.icu-project.org/strings/regexp
http://www.unicode.org/reports/tr18/
http://perldoc.perl.org/perlre.html#Extended-Patterns

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 46 of 54

 Change: [JAVARE] - http://docs.oracle.com/javase/7/docs/api/java/ut il/regex/Pattern.html

3.30. Section 16. Changes to placement of occurs properties.

Remove the restriction that DFDL occurs properties are not applicable to global elements.
This rule causes problems w hen apply ing property scoping rules. DFDL occurs properties

may now be specif ied on global elements.

Also see update to errata 3.8.

3.31. Section 14.5. Clarif icat ions to hidden groups.

When unparsing a hidden group, the behav iour should be the same as w hen elements are
missing f rom the infoset; that is, the default values algorithm applies. The only difference is

that if a required element does not have a default value or a dfdl:outputValueCalc then it is a
schema def init ion error instead of a processing error.

When unparsing a hidden group, it is a processing error if an element information item is
provided in the infoset for an element contained w ithin the bounds of a hidden group.

http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 47 of 54

4. Revised Grammar

This chapter provides a consolidated grammar that incorporates the several errata in this

document that affect it.

Productions

Document = UnicodeByteOrderM ark DocumentElement

DocumentElement = SimpleElement | ComplexElement

SimpleElement = SimpleLiteralNilElementRep | SimpleEmptyElementRep |
 SimpleNormalRep
SimpleEnc losedElement = SimpleElement | AbsentElementRep

ComplexElement = ComplexLiteralNilElementRep | ComplexNormalRep |
 ComplexEmptyElementRep
ComplexEnc losedElement = ComplexElement | AbsentElementRep

EnclosedElement = SimpleEnc losedElement | ComplexEnc losedElement

AbsentElementRep = Absent

SimpleEmptyElementRep = EmptyElementLef tFraming EmptyElementRightFraming
ComplexEmptyElementRep = EmptyElementLef tFraming EmptyElementRightFraming

EmptyElementLef tFraming = LeadingAlignment EmptyElementInitiator Pref ixLength
EmptyElementRightFraming = EmptyElementTerminator TrailingAlignment

SimpleLiteralNilElementRep = NilElementLef tFraming [NilLiteralCharacters |
 NilElementLiteralContent] NilElementRightFraming
ComplexLiteralNilElementRep = NilElementLef tFraming NilLiteralValue

 NilElementRightFraming

NilElementLef tFraming = LeadingAlignment NilElementInitiator Pref ixLength
NilElementRightFraming = NilElementTerminator TrailingAlignment

NilElementLiteralContent = LeftPadding NilLiteralValue RightPadOrFill

SimpleNormalRep = Lef tFraming Pref ixLength SimpleContent RightFraming
ComplexNormalRep = Lef tFraming Pref ixLength ComplexContent ElementUnused
 RightFraming

Lef tFraming = LeadingAlignment Ini tiator
RightFraming = Terminator TrailingAlignment

Pref ixLength = SimpleContent | Pref ixPref ixLength SimpleContent
Pref ixPref ixLength = SimpleContent

SimpleContent = LeftPadding [NilLogicalValue | SimpleValue] RightPadOrFill
ComplexContent = Sequence | Choice

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 48 of 54

Sequence = Lef tFraming SequenceContent RightFraming

SequenceContent = [PrefixSeparator EnclosedContent [Separator Enc losedContent]*

 PostfixSeparator]

Choice = Lef tFraming ChoiceContent RightFraming

ChoiceContent = [Enc losedContent] ChoiceUnused

EnclosedContent = [EnclosedElement | Array | Sequence | Choice]

Array = [EnclosedElement [Separator EnclosedElement]* [Separator StopValue]]
StopValue = SimpleElement

LeadingAlignment = LeadingSkip AlignmentFill
TrailingAlignment = TrailingSkip
RightPadOrFill = RightPadding | RightFill | RightPadding RightFill

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 49 of 54

5. Security Considerations

Security considerations are dealt w ith in the corresponding sections of the DFDL 1.0
specif icat ion [DFDL].

No addit ional security issues have been raised.

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 50 of 54

6. Contributors

Stephen M. Hanson,

IBM Sof tware Group,
Hursley,
Winchester,UK

smh@uk.ibm.com

Michael J. Beckerle,

Tresys Technology,
Columbia, MD, USA

mbeckerle@tresys.com

We great ly acknow ledge the contributions made to this document by the follow ing people.

Tim Kimber, IBM Sof tw are Group, Hursley, UK
Stephanie Fetzer, IBM Sof tware Group, Charlotte, USA
Richard Schof ield, IBM Sof tware Group, Hursley, UK

Suman Kalia, IBM Sof tware Group, Markham, Toronto, Canada
Jonathan Cranford, Mitre Corporation, USA

mailto:smh@uk.ibm.com
mailto:mbeckerle@tresys.com

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 51 of 54

7. Intellectual Property Statement

The OGF takes no pos it ion regarding the validity or scope of any intellectual property or other

rights that might be c laimed to pertain to the implementat ion or use of the technology
described in this document or the extent to w hich any license under such rights might or might
not be available; neither does it represent that it has made any effort to ident ify any such

rights. Copies of claims of rights made available for publicat ion and any assurances of
licenses to be made available, or the result of an attempt made to obtain a general license or
permiss ion for the use of such proprietary rights by implementers or users of this specif icat ion

can be obtained f rom the OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights, patents or patent

applicat ions, or other proprietary rights w hich may cover technology that may be required to
practice this recommendation. Please address the information to the OGF Executive
Director.

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 52 of 54

8. Disclaimer

This document and the informat ion contained herein is prov ided on an “As Is” basis and the
OGF disclaims all w arranties, express or implied, inc luding but not limited to any w arranty that

the use of the informat ion herein w ill not inf ringe any rights or any implied w arranties of
merchantability or f itness for a particular purpose.

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 53 of 54

9. Full Copyright Notice

Copyr ight (C) Open Grid Forum (2013). Some Rights Reserved.

This document and trans lat ions of it may be copied and furnished to others, and der ivat ive
works that comment on or otherw ise explain it or assist in its implementation may be

prepared, copied, published and distributed, in w hole or in part, w ithout restriction of any kind,
provided that the above copyright notice and this paragraph are included as references to the
derived portions on all such copies and der ivative w orks. The published OGF document f rom

which such w orks are derived, how ever, may not be modif ied in any w ay, such as by
removing the copyright not ice or references to the OGF or other organizations, except as
needed for the purpose of developing new or updated OGF documents in conformance w ith

the procedures def ined in the OGF Document Process, or as required to translate it into
languages other than English. OGF, w ith the approval of its board, may remove this restriction
for inclusion of OGF document content for the purpose of producing standards in cooperat ion

w ith other internat ional standards bodies.

The limited permiss ions granted above are perpetual and w ill not be revoked by the OGF or

its successors or assignees.

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 54 of 54

10. References

[DFDL] OGF DFDL 1.0 specif icat ion

http://www.ogf.org/documents/GFD.174.pdf /

[DFDLR] OGF DFDL 1.0 spec if icat ion - revised

<To be added>

[GFD] OGF Document Process and Requirements

http://www.ogf.org/documents/GFD.152.pdf /

[ULDML] UTS #35: Unicode Locale Data Markup Language (LDML)
http://www.unicode.org/reports/tr35/

[UCLDR] Unicode Common Locale Data Repos itory

https://sites.google.com/site/cldr/

[DFDLX2] DFDL Exper ience Document 2

<To be added>

[XSDL2] XML Schema Part 2: Datatypes Second Edit ion

http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/

[ICURE] ICU Regular Expressions

http://userguide. icu-project.org/strings/regexp

[UNICODERE] Unicode Regular Expressions

http://www.unicode.org/reports/tr18/

[JAVARE] Java 7 Regular Express ions

http://docs.oracle.com/ javase/7/docs/api/ java/util/regex/Pattern.html

[XPATH2] XPath 2.0

http://www.w3.org/TR/xpath20/

Comment [SMH2]: Complete reference when

GFD number allocated.

Comment [SMH3]: Complete reference when

GFD number allocated.

http://www.ogf.org/documents/GFD.174.pdf/
http://www.ogf.org/documents/GFD.152.pdf/
http://www.ogf.org/documents/GFD.152.pdf/
http://www.unicode.org/reports/tr35/
https://sites.google.com/site/cldr/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://userguide.icu-project.org/strings/regexp
http://www.unicode.org/reports/tr18/
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

