
GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 1 of 25

Data Format Description Language (DFDL) v1.0

 Experience Document 2

Status of This Document

Grid Working Document (GWD)

Copyr ight Not ice

Copyr ight © Open Grid Forum (2013). Some Rights Reserved. Distribut ion is unlimited.

Abstract

This document provides exper ience information to the OGF community on the original Data

Format Descript ion Language (DFDL) 1.0 specif icat ion (GFD-P-R.174).

It describes shortcomings experienced in the area of ‘missing’ elements, default value handling,

repeat ing elements and sequence separator suppression.

All errata have been incorporated into a revised Data Format Descript ion Language (DFDL) 1.0

specif icat ion (GFD-P-R.nnn).

Comment [SMH1]: Complete when GFD

number allocated.

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 2 of 25

Contents

1. Introduction...3
2. Erratum 3.26. Empty, Missing and Defaults ...4
3. Erratum 3.11. Arrays ...10
4. Erratum 3.14. Separator Suppression Policy ...14
5. Erratum 2.115. Round Tr ip Ambiguities ..19
6. Security Cons iderations ...20
7. Contr ibutors ..21
8. Intellectual Property Statement...22
9. Disclaimer...23
10. Full Copyright Not ice ...24
11. References ...25

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 3 of 25

1. Introduction

DFDL Working Group Action 140 w as raised in September 2011 to address shortcomings

experienced in the DFDL 1.0 spec if ication in the area of ‘miss ing’ elements and default value
handling, particular ly on pars ing. The resultant investigation w as w ide ranging and uncovered

further issues about data representat ion, repeat ing elements and sequence separator
suppression.

This document records the conclus ions of DFDL Working Group Action 140, and should be
treated as a companion document to DFDL 1.0 Exper ience Document 1 [DFDLX1]. Specif ically it

provides the detailed content for these errata:

 Erratum 3.26

 Erratum 3.11

 Erratum 3.14

 Erratum 2.115

This document uses terminology def ined in [DFDLX1] erratum 2.112, and refers to the revised
grammar in [DFDLX1] Chapter 4.

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 4 of 25

2. Erratum 3.26. Empty, Missing and Defaults

As specif ied in the or iginal DFDL 1.0 spec if ication [DFDL], default values are used as follows.

 During unparsing, an Infoset w ith missing required element occurrences is augmented w ith

values so that the resultant data stream that is generated is correct according to the schema
and may be successfully re-parsed.

 During parsing, a sparse data stream w ith missing required element occurrences has values

added to the Infoset so that the resultant Infoset is correct according to the schema.

The parsing behaviour has the ef fect of making an invalid data stream valid. This is not actually a

good idea. Why is DFDL trying to handle miss ing required occurrences in a data stream? If an
occurrence may be miss ing f rom the data stream, it should be modelled as opt ional. Further this
is not how XML Schema 1.0 [XSDL1] uses default values for elements.

For elements, XML Schema 1.0 uses defaults to f ill in values for occurrences that are present but
have empty content. We shall use this princ iple for DFDL, as the main use case for using

defaults on parsing is supplying a value for an empty required occurrence of a simple element
(the CSV adjacent separator example). In order for this to w ork, we must be able to dist inguish
clear ly betw een an empty occurrence and a missing occurrence w hen parsing.

Some def init ions are needed to cover the range of representations that are possible in the data
stream for an element. These def init ions assume the revised grammar from Chapter 4 of DFDL

1.0 Experience Document 1 [DFDLX1].

Nil representation
An element occurrence has a nil representat ion if the element is nillable and the occurrence
either:

a) conforms to the grammar for SimpleNilLiteralElementRep or

ComplexNilLiteralElementRep. NilElementInitiator and NilElementTerminator regions
must be conformant w ith nilValueDelimiterPolicy. (If non-conformant it is not a process ing
error and the representat ion is not nil).

b) conforms to the grammar for SimpleNormalRep and its value is
NilLogicalElementValue.

LeadingAlignment, TrailingAlignment, Pref ixLength regions may be present.

Empty representation
An element occurrence has an empty representation if the occurrence does not have a nil

representation and it conforms to the grammar for SimpleEmptyElementRep or
ComplexEmptyElementRep. EmptyElementInitiator and EmptyElementTerminator regions
must be conformant w ith emptyValueDelimiterPolicy. (If non-conformant it is not a process ing

error and the representat ion is not empty). The occurrence’s content in the data stream is of
length zero. LeadingAlignment, TrailingAlignment, Pref ixLength regions may be present.

Normal representation
An element occurrence has a normal representat ion if the occurrence does not have the nil
representation or the empty representation and it conforms to the grammar for SimpleNormalRep

or ComplexNormalRep.

Absent representa tion
An element occurrence has an absent representat ion if the occurrence does not have a nil or
empty or normal representat ion, and it conforms to the grammar for AbsentElementRep. The

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 5 of 25

occurrence’s representat ion in the data stream is of length zero. Consequently, the Initiator,
Terminator, LeadingAlignment, TrailingAlignment, Pref ixLength regions must not be present.

Example of an absent representation. Dur ing unparsing, if an opt ional element does not have an
item in the infoset then nothing is output. How ever if a separator of an enclos ing structure is
subsequent ly output as the immediate next thing, then a subsequent parse of the element may

return a representation of length zero (this is dependent on lengthKind). If this happens, and this
length zero representat ion does not conform to either the nil representat ion or the empty
representation or the normal representat ion, then it is the absent representat ion, and it behaves

as if the element occurrence is ‘missing’.

Missing
When parsing, an element occurrence is missing if it does not have any of the above
representations, or it has the absent representat ion. When unpars ing, an element occurrence is
missing if there is no item in the infoset.

When parsing, an occurrence is ‘know n to exist’ if it has normal, nil or empty representat ion, or an
occurrence is ‘know n not to exist’ if it has absent representat ion or is missing.

Examples

The follow ing examples illustrate missing and empty.

<xs:sequence dfdl:separator="," dfdl:terminator="@"

 dfdl:separatorSuppressionPolicy="trailingEmpty">

 <xs:element name="A" type="xs:string"

 dfdl:lengthKind="delimited"/>

 <xs:element name="B" type="xs:string" minOccurs="0"

 dfdl:lengthKind="delimited"/>

 <xs:element name="C" type="xs:string" minOccurs="0"

 dfdl:lengthKind="delimited"/>

</xs:sequence>

In data stream aaa,@ element B has the empty representation, and element C does not have a
representation so is miss ing.

<xs:sequence dfdl:separator=","

 dfdl:separatorSuppressionPolicy="anyEmpty">

 <xs:element name="A" type="xs:string"

 dfdl:lengthKind="delimited" dfdl:initiator="A:"

 dfdl:emptyValueDelimiterPolicy=initiator”/>

 <xs:element name="B" type="xs:string" minOccurs="0"

 dfdl:lengthKind="delimited" dfdl:initiator="B:"

 dfdl:emptyValueDelimiterPolicy=”initiator”/>

 <xs:element name="C" type="xs:string" minOccurs="0"

 dfdl:lengthKind="delimited" dfdl:initiator="C:"

 dfdl:emptyValueDelimiterPolicy=initiator”/>

</xs:sequence>

In data stream A:aaaa,C:cccc element B does not have a representation so is missing.

In data stream A:aaaa,B:,C:cccc element B has the empty representation.

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 6 of 25

In the data stream A:aaaa,,C:cccc element B has the absent representation so is missing.

Note that round tripping is not guaranteed. An empty string in the Infoset w ill be output as the
empty representation, but if the element is nillable and empty string (%ES;) is a nil value and
nilValueDelimiterPolicy is the same as emptyValueDelimiterPolicy, then w hen parsed the Infoset
w ill contain nil.

Establishing representation when parsing

If a processing error or schema def init ion error occurs either w hen parsing a simple element, or

when parsing a complex element and a processing error is not suppressed by an enc losed point
of uncertainty, then the element occurrence is ‘know n not to exist’. This is equivalent to the
element being missing.

If no such error occurs, then an element occurrence either has a representat ion (one of nil,
empty, normal or absent) or is missing.

If it has a representation, then it must be established if it is nil, empty, normal or absent. Key to
this is to see if the content is of length zero. This is lengthKind dependent.

o explic it => length is zero (either f ixed or f rom expression evaluation)
o pref ixed => pref ix length is zero
o implic it (simple) => length is zero from type facets

o implic it (complex) => consumed length is zero upon return from descending into children.
o delimited => length is zero af ter scanning for delimiter(s)
o pattern => pattern returns zero length match
o endOfParent => already pos itioned at parent’s end so length is zero

For a simple element, length plus initiator and terminator enables the representat ion to be
established.

For a complex element, length plus initiator and terminator enables the nil representat ion to be
established

1
, but all other representat ions can only be determined by descending into the

complex type for the element. If the descent returns successfully (that is, no unsuppressed
processing error occurs) then the other representat ions may be established.

The DFDL parser shall not descend into a complex element w hen it has established that the
element occurrence does not have a representation or is missing or has the absent
representation. Otherw ise this could give rise to misleading error messages w here the parser

reported that required child elements w ere missing required occurrences. (This is consistent w ith
XML Schema validation, w here if a required element is miss ing, it gets reported as such, and
there is nothing reported about its children).

For the purposes of establishing representat ion, a local sequence or choice ef fectively has
lengthKind ‘implic it’, except that delimiting regime of parent is retained.

Empty representation when parsing

1
 It i s a schema definition error if a complex element is nillable ‘true’ and lengthKind ‘implicit’.

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 7 of 25

If empty representat ion is established w hen parsing, the possibility of apply ing a default value
arises. Essent ially, if a required occurrence of an element has empty representation, then a
default value w ill be applied if present, though there are a couple of variations on this rule.

Remember that in order to have established empty representat ion, the occurrence must be
compliant w ith the emptyValueDelimiterPolicy for the element, and for a complex element the
parser must have descended into the type and returned w ith no unsuppressed process ing error.

There are three main cases to consider. In w hat follow s the term ‘string’ encompasses both
xs:string and xs:hexBinary as these are the tw o data types for w hich a zero length (empty) string

is valid for the type. This behav iour is independent of occursCountKind.

Simple element (non-string)

Required occurrence: If a XSD ‘default ’ or ‘f ixed’ property is specif ied then an item is added to the
Infoset using the value of the property, otherw ise nothing is added to the Infoset. (This may cause

a subsequent processing error – see ‘Required occurrences ’ below).

Optional occurrence: Nothing is added to the Infoset.

Simple element (string)

Required occurrence: If a XSD ‘default ’ or ‘f ixed‘ property is specif ied then an item is added to the
infoset using the value of the property, otherw ise an item is added to the Infoset using empty

string as the value.

Optional occurrence: If emptyValueDelimiterPolicy is not ‘none’

2
 then an item is added to the

Infoset using empty string as the value, otherw ise nothing is added to the Infoset.

(To prevent unw anted empty strings f rom being added to the Infoset, use minLength > ‘0’ and a

dfdl:assert that uses the dfdl:checkConstraints() function, to raise a processing error.)

Complex element

Required occurrence: An item is added to the Infoset.

Optional occurrence: If emptyValueDelimiterPolicy is not ‘none’ then an item is added to the

Infoset, otherw ise nothing is added to the Infoset.

For both required and opt ional occurrences, the Infoset item may also have a child item.

A) If the f irst child element of the complex type is a required simple element, then an empty
string or default value w ill also be added to the Infoset.

B) If the f irst child element of the complex type is a required complex element, then an item

is added to the Infoset (which may itself have a child v ia A)

Example:

Consider a sequence S0 w ith a separator that contains among other content an opt ional non-

nillable non- init iated element E1 of complex type. The content of the type is a sequence S1 w ith a
dif ferent separator and the f irst child is a required non-initiated element E2 of type xs:string. The
lengthKind of both E1 and E2 is ‘delimited’. The representation of E1 has zero length, that is, the

data contains adjacent S0 separators. On processing E1, the parser w ill establish a point of
uncertainty and descend into E1’s complex type and process E2. It scans for in-scope delimiters

2 If other than ‘none’, either an init iator, terminator or both must have been found in the data stream.

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 8 of 25

and immediately encounters S0 separator. E2 has the empty representation, so E1 is added to
the Infoset along w ith a value of empty string for E2. All other content of S1 is missing, so the
parser returns from the descent. E1 is therefore ‘know n to exist’. Because the posit ion in the data

has not changed, E1 therefore has the empty representation. Because E1 is empty and opt ional it
is not added to the Infoset, and the Infoset items for E1 and E2 are discarded.

Missing when unparsing

If an element is missing from the Infoset w hen unparsing, the possibility of apply ing a default
value arises. Essent ially if a required occurrence of an element is missing, then a default value

w ill be applied if present.

There are tw o main cases to consider. This behav iour is independent of occursCountKind.

Simple element

Required occurrence: If a XSD ‘default ’ or ‘f ixed’ property is specif ied then an item is added to the
augmented Infoset using the property value, otherw ise nothing is added. (This may cause a
subsequent processing error – see ‘Required occurrences ’ below).

Optional occurrence: Nothing is added to the augmented Infoset.

Complex element

Required occurrence: An item is added to the augmented Infoset.

Optional occurrence: Nothing is added to the augmented Infoset.

For a required occurrence, the unparser descends into the complex type:

o For a sequence, each child element is examined in schema order and the rules for simple
and complex elements applied (recursively). The lack of a default value may give rise to a
processing error, as described below .

o For a choice, each branch is examined in schema order and the above rules applied
recursively to the branch. The lack of a default value may give rise to a processing error, as
described below , and if so the error is suppressed and the next branch is tried, otherw ise that

branch is selected. It is a processing error if no choice branch is ult imately selected.

Required occurrences

The spec if ication currently has the concept of 'Required in a required context'. This w as added

so that the DFDL parser did not cause speculat ion to succeed by the applicat ion of defaults
making a bad data stream good. But as w e are now saying that the parser does not apply
defaults for missing element occurrences, then this concept does not need to be stated explicit ly,

and the sub-section should be removed.

On parsing, if a required occurrence does not produce an item in the Infoset (af ter any default is

applied) then it is a processing error or a validat ion error (if enabled), dependent on
occursCountKind (see section 3).

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 9 of 25

On unparsing, if a required occurrence does not produce an item in the augmented Infoset (after
any default is applied) then it is a process ing error or a validation error (if enabled), dependent on
occursCountKind (see section 3).

Optional occurrences

On parsing, nothing is added to the Infoset for an optional occurrence if it is miss ing or has the
absent representation. If it has empty representat ion, then there are circumstances w hen an item

is added to the Infoset, as described earlier. This is independent of occursCountKind.

On unparsing, nothing is added to the augmented Infoset nor output to the data stream for an

opt ional occurrence if it is miss ing (inc luding any framing). This is independent of
occursCountKind.

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 10 of 25

3. Erratum 3.11. Arrays

The or iginal DFDL 1.0 specif icat ion [DFDL] does not fully def ine the behaviour for the different

occursCountKind property enums. It is especially light on unparsing behaviour. We rectify that
here.

Parsing

The full behav iour for parsing arrays and non-arrays is:

If minOccurs = maxOccurs = 1

 Expect exactly 1 occurrence

 Processing error if no occurrence found or defaulted

 Stop looking after this occurrence found or defaulted

occursCountKind is never examined and need not be defined

Else //

Select occursCountKind
 Case: fixed

 Schema definition error if minOccurs <> maxOccurs

 Expect maxOccurs occurrences

 Processing error if < minOccurs occurrence found or defaulted

 Stop looking when maxOccurs occurrences found

 Case: implicit

 Expect up to maxOccurs occurrences

 Processing error if < minOccurs occurrences found or defaulted

Stop looking if >= minOccurs occurrences found and known not to

exist occurs for an occurrence

 Stop looking if and when maxOccurs occurrences found (if not

 unbounded)

 Case: parsed

 Expect any number of occurrences

Parse as many occurrences as possible until known not to exist

occurs for an occurrence

 Validation error if < minOccurs occurrences found or defaulted

 Validation error if > maxOccurs occurrences found or defaulted

 Case: expression

 Evaluate occursCount to give number of occurrences

 Expect occursCount occurrences

 Processing error if occursCount occurrences not found

 Stop looking when occursCount occurrences found

 Validation error if < minOccurs occurrences found or defaulted

 Validation error if > maxOccurs occurrences found or defaulted

 Case: stopValue

 Expect any number of occurrences

 Parse occurrences until logical stop value is found

 Processing error if stop value not found even when zero

 occurrences

 Stop value is never added to Infoset

 Validation error if < minOccurs occurrences found or defaulted

 Validation error if > maxOccurs occurrences found or defaulted

Endif

A ‘found occurrence’ is one that results in an item being added to the Infoset. Additionally,

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 11 of 25

the DFDL parser may apply a default value w hen it encounters an occurrence w ith an empty
representation, as described in sect ion 2.

When parsing an array, points of uncertainty (PoU) only occur for certain occursCountKinds, as
follow s:

 f ixed. No PoU (maxOccurs occurrences expected).

 implic it. PoU ex ists after minOccurs occurrences found and until maxOccurs found.

 parsed. PoU ex ists for all occurrences

 expression. No PoU (occursCount occurrences expected)

 stopValue. No PoU (stopValue must alw ays be present, even w hen minOccurs=0).

Unparsing

The full behav iour for unparsing arrays and non-arrays is:

If minOccurs = maxOccurs = 1

 Expect exactly one occurrence

Processing error if no occurrence found or defaulted

Processing error if more than 1 occurrence found

occursCountKind is never examined and need not be defined

Else

Select occursCountKind

 Case: fixed

 Schema definition error if minOccurs <> maxOccurs

 Expect maxOccurs occurrences

 Processing error if < minOccurs occurrences found or defaulted

 Processing error if > maxOccurs occurrences found

 Case: implicit

 Expect up to maxOccurs occurrences

 Processing error if < minOccurs occurrences found or defaulted

 Processing error if > maxOccurs occurrences found

 Case: parsed, expression

 Expect any number of occurrences

 Validation error if < minOccurs occurrences found or defaulted

 Validation error if > maxOccurs occurrences found

 Case: stopValue

 Expect any number of occurrences

 Logical stop value unparsed and output after last occurrence

 Validation error if < minOccurs occurrences found or defaulted

 Validation error if > maxOccurs occurrences found

Endif

A ‘found occurrence’ is one that is in the Infoset. Additionally, the DFDL unparser may apply a
default w hen an occurrence is missing f rom the Infoset, as described in section 2.

Array and sequence equivalence

The processing of an array is similar to the processing of an equivalent sequence of elements.
The follow ing tw o schemas have the same result assuming any set of ident ical DFDL element

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 12 of 25

properties applied to them
3
 (excluding necessary name dif ferences due to UPA rules, and any

other dif ferences described by the Notes that follow).

<xs:sequence>

 <xs:element name="a" type="string" minOccurs ="2" maxOccurs="4" />

</xs:sequence>

<xs:sequence>

 <xs:element name="a1" type="string" />

 <xs:element name="a2" type="string" />

 <xs:element name="a3" type="string" minOccurs="0" />

 <xs:element name="a4" type="string" minOccurs="0" />

</xs:sequence>

Notes:
o The number of elements in the equivalent sequence is maxOccurs, unless occursCountKind

is 'express ion' in w hich case the number is occursCount.
o When occursCountKind is 'stopValue' the sequence ends w ith an addit ional, hidden, simple

element w ith the same properties, to handle the stop value itself .

o When occursCountKind is 'stopValue', ‘parsed’ or ‘express ion’ it is a validat ion error if ‘a1’
and/or ‘a2’ are missing f rom the sequence (rather than a process ing error if the f irst tw o ‘a’
occurrences are miss ing from the array).

Forward progress requirement

It is a processing error w hen maxOccurs is ‘unbounded’ and the pos it ion in the data does not
move dur ing the parsing of an occurrence of the element including any assoc iated separator (that

is, the partic le for the occurrence). This is to prevent an inf inite loop.

Parsing occurrences with non-normal representation

Each t ime round the array loop, length extraction properties for the element are re-evaluated. It is
therefore possible to have occurrences w ith different representations (nil, empty, normal, absent)
in the same array (although w ith some lengthKinds certain combinat ions of representations are

not possible).

Occurrences w ith nil representation are added to the Infoset w ith value ‘nil’.

Occurrences w ith empty representation are either added or not added to the Infoset according to
the rules in section 2 above.

Occurrences w ith absent representation are not added to the Infoset. For a required occurrence it
may be a processing error, dependent on occursCountKind.

Cons ider parsing an array where optional occurrences w ith empty representat ion are present in

the data, but there are also later optional occurrences present w ith normal representat ion. Such
an array is sometimes called a ‘sparse array’.

1. If the indices of the occurrences are signif icant and need to be preserved, then the array may
be modelled using an element w ith nillable ‘true’, nilKind ‘literalValue’ and nilValue ‘%ES;’. All

3
 With the exception of propert ies that are not permitted on arrays, such as inputValueCalc and outputValueCalc

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 13 of 25

occurrences w ith empty representation w ill then produce nil values in the Infoset, so the
absolute pos itions of all occurrences are preserved.

2. If the indices of the occurrences are not signif icant, then the array should be modelled using
an element w ith nillable ‘false’. Optional occurrences w ith empty representat ion w ill not create

items in the Infoset, so the absolute pos it ion of any optional occurrences w ith normal
representation is not preserved. Opt ional occurrences w ith empty representat ion are
therefore skipped.

This behaviour is independent of occursCountKind unless explicit ly stated otherw ise.

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 14 of 25

4. Erratum 3.14. Separator Suppression Policy

The description in the original DFDL 1.0 spec if ication [DFDL] of DFDL processor behav iour w hen

a sequence has a separator does not provide enough detail. The content is added to section 14.2
and the table in section 14.2.1 is replaced.

Additional propert ies apply to sequence groups that use text delimiters to separate one
occurrence of a member of the group from the next. Such a delimiter is called a separator. DFDL
provides several properties that control the parsing and writing of separators, and satisfy the

requirement to model sequences w here:

1. A separator has alternative potential representat ions in the data.

2. A separator is placed before, af ter or betw een occurrences in the data.
3. Separators are used to indicate the pos ition of occurrences in the data

These requirements are addressed by the propert ies dfdl:separator, dfdl:separatorPos it ion and
dfdl:separatorSuppressionPolicy.

These properties combine to def ine the grammar for a sequence group w ith sequenceKind
'ordered'. Not all combinat ions of the properties w ill give rise to a cons istent grammar, so some
combinat ions are disallow ed and w ill give rise to a Schema Def inition Error.

In some sequences, the presence of separators alone is enough to establish the ident if ication of
occurrences w ithin the sequence. Such a sequence is called a positional sequence.

1. Positional sequence
Each occurrence in the sequence can be identif ied by its pos it ion in the data. Typically the

components of such a sequence do not have an init iator. In some such sequences, the
separators for optional zero-length occurrences may or must be omitted w hen at the end of the
group. A positional sequence can be modelled by setting separatorSuppressionPolicy to

'required', 'trailingEmptyStrict' or 'trailingEmpty'

2. Non-positional sequence

Occurrences in the sequence cannot be identif ied by their pos ition in the data alone. Typically the
components of such a sequence have an init iator. Such sequences allow the separator to be
omitted for any optional zero-length occurrence. Speculat ive parsing and backtracking must be

used to identify each occurrence. A non-posit ional sequence can be modelled by setting
separatorSuppressionPolicy to 'anyEmpty'.

separatorSuppressionPolicy Enum

Valid values ’never’, ‘anyEmpty ’, ‘trailingEmpty ’,

‘trailingEmptyStrict’

Only applicable if separator is not "" (empty string) and

sequenceKind is ‘ordered’.

Controls the circumstances w hen separators are

expected in the data w hen parsing, or generated w hen
unparsing, if an element occurrence or group has a
representation of length zero.

See section Error! Re ference source not found. Error!

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 15 of 25

Reference source not found..

When sequenceKind is ‘unordered’ then ‘anyEmpty ’ is
implied.

Annotation: dfdl:sequence, dfdl:group (sequence)

When parsing a sequence group that spec if ies a separator, the number of occurrences and
separators that are expected in the data stream for a child element depends on several factors:

- Whether the element is required

- The occursCountKind of the element
- The separatorSuppressionPolicy of the sequence
- Whether occurrences are optional or required

- Whether occurrences are trailing
- The representat ion of the occurrences

Potentially trailing element – An array or optional element describes an occurrence that is said to
be potentially trailing if the element is capable of having a zero length representat ion and is
follow ed in its enclosing group def inition by only addit ional potent ially trailing elements or

potent ially trailing groups.

Potentially trailing group – A group is said to be potentially trailing if the group has no f raming and

contains only potent ially trailing element dec larat ions/references, or recursively similar sequence
or choice groups, and is follow ed in its enc los ing group def init ion by only addit ional potent ially
trailing elements or potentially trailing groups.

Trailing or Actually Trailing – An element occurrence or group occurrence in the data is said to be
actually trailing if it is potent ially trailing and has zero-length representat ion and is not follow ed in

the data by any other non-zero length element occurrence or group occurrence.

Separator

suppression policy

Explanation

Never All occurrences MUST be found in the data, along w ith their
associated separator.

trailingEmptyStrict Trailing occurrences MUST be omitted from the data, along w ith
their associated separator.

trailingEmpty Trailing occurrences MAY be omitted f rom the data, along w ith

their associated separator.

anyEmpty Occurrences that have zero length representat ion MAY be omitted
from the data, along w ith their associated separator. It must be
possible for speculat ive parsing to ident ify w hich elements are

present.

It is a schema def init ion error if a sequence has separatorSuppressionPolicy ‘never’ and a child
element has occursCountKind ‘implic it’ and maxOccurs ‘unbounded’.

It is a schema def init ion error if a sequence has separatorSuppressionPolicy ‘trailingEmptyStrict’
or ‘trailingEmpty ’, and a child element has occursCountKind ‘implic it ’ and maxOccurs ‘unbounded’

and either the child element cannot have potent ially trailing occurrences or the child element can
have potent ially trailing occurrences but the element is not dec lared last in the sequence.

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 16 of 25

Parsing

When an element is required and is not an array then one occurrence is alw ays expected along
w ith its separator. The separatorSuppress ionPolicy is not applicable and the implied behav iour is

‘never’.

Otherw ise the behaviour is dependent on occursCountKind.

When occursCountKind is ‘f ixed’ minOccurs occurrences are alw ays expected along w ith their
separators. The separatorSuppressionPolicy is not applicable and the implied behav iour is

‘never’.

When occursCountKind is ‘expression’ occursCount occurrences are alw ays expected along w ith

their separators. The separatorSuppressionPolicy is not applicable and the implied behaviour is
‘never’.

When occursCountKind is ‘parsed’ any number of occurrences and their separators are expected.
The separatorSuppressionPolicy is not applicable and the implied behaviour is ‘anyEmpty ’.

When occursCountKind is ‘stopValue’, any number of occurrences and their separators are
expected follow ed by the stop value and its separator. The separatorSuppressionPolicy is not
applicable and the implied behaviour is ‘anyEmpty ’.

When occursCountKind is ‘implicit ’, betw een minOccurs and maxOccurs (inclus ive) occurrences
and their separators are expected. The separatorSuppressionPolicy is applicable and determines

when separators are expected for optional zero length occurrences.

The behav iour for ‘implicit ’ is more fully expressed in matr ix form. The cells in the matrix give the

number of occurrences of element values that are expected in the data stream w hen parsing, for
the different values of separatorSuppressionPolicy. The number of occurrences also depends
whether maxOccurs is unbounded or not, and the posit ion of the element in the sequence. The

number of separators can be inferred from this, taking into account separatorPos it ion.

Note: In the matrices below, it is important that the information is interpreted correctly. The

separatorSuppressionPolicy property is carried on the sequence. The occursCountKind property
is carried on an element in that sequence.

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 17 of 25

dfdl:
separatorSuppressionPolicy

dfdl:occursCountKind 'implicit'

Potentially Trailing Not Potentially Trailing

maxOccurs unbounded maxOccurs bounded

maxOccurs
unbounded

maxOccurs
bounded

Element
not

declared

last

Element
declared last

Element
declared last
or occurrence
followed by

end-of-group

Element
not

declared
last and

occurrence
not

followed by
end-of-
group

never Schema definit ion error

Schema

def init ion
error

RepDef(min)

~ Rep(max -
min)

trailingEmptyStrict

RepDef(min) [
~ Rep(M < INF)

~
RepNonZero(1)

]

RepDef(min) [
~ Rep(M < max

- min) ~
RepNonZero(1)

]

RepDef(min)
~ Rep(max -

min)

trailingEmpty

RepDef(min) ~
Rep(M < INF)

RepDef(min) ~
Rep(M <= max

- min)
anyEmpty

RepDef(min)
~ Rep(M <

INF)

RepDef(min)
~ Rep(M <=

max - min)

Terminology used in the matrix:

RepDef(min) means minOccurs occurrences of nil, empty or normal representat ion
4
. These are

required occurrences so default rules apply for empty representat ions. If permitted, minOccurs
may be 0, in w hich case there are no occurrences.

Rep(M) means M occurrences of nil, empty, normal or absent representat ion. These are optional
occurrences so default rules do not apply for empty representat ions.

RepNonZero(1) means an occurrence of a nil, empty or normal representat ion w here such a

representation does not have zero-length
5
. This is an opt ional occurrence so default rules do not

apply.

Unparsing

When an element is required and is not an array then one occurrence is alw ays output along w ith

its separator. The separatorSuppressionPolicy is not applicable and the implied behaviour is
‘never’.

Otherw ise the behaviour is dependent on occursCountKind.

When occursCountKind is ‘f ixed’ or ‘expression’ the occurrences in the augmented Infoset are

alw ays output along w ith their separators. The separatorSuppress ionPolicy is not applicable and
the implied behav iour is ‘never’.

When occursCountKind is ‘parsed’ non zero-length occurrences in the augmented Infoset are
output along w ith their separators. The separatorSuppressionPolicy is not applicable and the
implied behaviour is ‘anyEmpty ’.

4
 Absent representation implies processing error for ‘implicit’ when less than or equal to minOccurs.

5
 Absent representation always implies zero-length.

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 18 of 25

When occursCountKind is ‘stopValue’ non zero-length occurrences in the augmented Infoset are
output along w ith their separators follow ed by the stop value and its separator. The
separatorSuppressionPolicy is not applicable and the implied behav iour is ‘anyEmpty’.

When occursCountKind is ‘implicit ’ the occurrences in the augmented Infoset are output along

w ith their separators. The separatorSuppressionPolicy is applicable and helps determine w hether
opt ional zero length occurrences and their separators are output.

The behav iour for ‘implicit ’ is more fully expressed in matr ix form. The cells in the matrix give the
number of occurrences of element values that are output to the data stream w hen unparsing, for

the different values of separatorSuppressionPolicy. The number of occurrences also depends
whether maxOccurs is unbounded or not, and the posit ion of the element in the sequence. The
number of separators output can be inferred from this, taking into account separatorPos ition.

dfdl:
separatorSuppressionPolicy

dfdl:occursCountKind 'implicit'

Potentially Trailing Not Potentially Trailing

maxOccurs
unbounded

maxOccurs bounded

maxOccurs
unbounded

maxOccurs
bounded

Element

not
declared

last

Element
declared

last

Element
declared

last or
occurrence
followed by

end-of-

group

Element not
declared

last and
occurrence
not followed
by end-of-

group

Never
Schema definit ion

error

Unparse N occurrences ~
unparse (maxOccurs -- N)

trailing zero-length
occurrences

Schema

def init ion
error

Unparse N
occurrences
~ unparse

(maxOccurs -
- N) trailing
zero-length
occurrences

trailingEmptyStrict

Unparse N occurrences
(suppressing trailing zero-

length occurrences)

trailingEmpty

anyEmpty Unparse N occurrences (suppressing any optional zero-length occurrences)

Terminology used in the matrix:

N is the number of elements in the augmented Infoset, w hich inc ludes any defaults.

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 19 of 25

5. Erratum 2.115. Round Trip Ambiguities

This chapter highlights some situations w here taking an Infoset, unparsing it, and reparsing it w ill
result in a second Infoset that is not the same as the original. (How ever taking the second
Infoset, unparsing it, and repars ing it, w ill result in a third Infoset which is the same as the

second.)

When unparsing, if a string Infoset item happens to contain a string that matches either one of the

nilValues or the default value, it does not matter, the string’s characters are output, or if the value
is the empty string, zero length content is output. (Along w ith an init iator or terminator if def ined.)
This creates an ambiguity w here one can unparse an Infoset item w hich is not the spec ial value

nil , but when reparsed w ill produce nil in the Infoset.

These ambiguit ies are natural. If the nilValue ”nil”, then encountering the characters “nil” in the

data stream w ill parse to produce the spec ial value nil in the Infoset. If you unparsed a string
infoset item w ith contents of the characters “nil”, this w ill be output as the letters “nil”, w hich on

parse w ill not produce a string w ith the characters “nil”, but rather the special value nil in the
Infoset.

To avoid this issue, one can use validat ion, along w ith a pattern that prevents the string f rom
matching any of the nil values.

Similar ly, for some formats that use separators, when unpars ing and there is no Infoset item, the

unparser may still output a zero-length representat ion (meaning optional and not present). In this
situat ion, one can unparse an Infoset w here there is no Infoset item, but reparsing that data w ill
create an Infoset item w ith special value nil or an empty string.

Example: A nillable opt ional array element w ith occursCountKind ‘implic it’ and %ES; is the f irst
nilValue, w ithin a separated sequence w ith separatorSuppress ionPolicy ”never”, but not

potent ially trailing. If there are less than maxOccurs items in the Infoset, separators w ill be output
up to maxOccurs w ith zero length betw een the separators. On parsing, those zero lengths w ill be
interpreted as nil, so the array element w ill alw ays have maxOccurs Infoset items, some of which
w ill be nil .

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 20 of 25

6. Security Considerations

Security considerations are dealt w ith in the corresponding sections of the DFDL 1.0 spec if ication

[DFDL].

No addit ional security issues have been raised.

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 21 of 25

7. Contributors
Stephen M. Hanson,
IBM Sof tware Group,

Hursley,
Winchester,UK
smh@uk. ibm.com

Michael J. Beckerle,
Tresys Technologies,

Columbia, MD, USA
mbeckerle@tresys.com

Tim Kimber,
IBM Sof tware Group,
Hursley,

Winchester,UK

Stephanie Fetzer,

IBM Sof tware Group,
Char lotte, USA

mailto:smh@uk.ibm.com
mailto:mbeckerle@tresys.com

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 22 of 25

8. Intellectual Property Statement
The OGF takes no pos it ion regarding the validity or scope of any intellectual property or other
rights that might be c laimed to pertain to the implementat ion or use of the technology described in

this document or the extent to w hich any license under such rights might or might not be
available; neither does it represent that it has made any effort to identify any such rights. Copies
of claims of rights made available for publicat ion and any assurances of licenses to be made

available, or the result of an attempt made to obtain a general license or permiss ion for the use of
such proprietary rights by implementers or users of this specif ication can be obtained f rom the
OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights, patents or patent
applicat ions, or other proprietary rights w hich may cover technology that may be required to

practice this recommendation. Please address the information to the OGF Executive Director.

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 23 of 25

9. Disclaimer
This document and the informat ion contained herein is prov ided on an “As Is” basis and the OGF
disc laims all w arranties, express or implied, including but not limited to any w arranty that the use

of the information herein w ill not inf ringe any rights or any implied w arranties of merchantability or
f itness for a particular purpose.

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 24 of 25

10. Full Copyright Notice

Copyr ight (C) Open Grid Forum (2013). Some Rights Reserved.

This document and trans lat ions of it may be copied and furnished to others, and der ivat ive w orks
that comment on or otherw ise explain it or assist in its implementat ion may be prepared, copied,

published and distributed, in w hole or in part, w ithout restriction of any kind, prov ided that the
above copyright notice and this paragraph are included as references to the derived port ions on
all such copies and derivat ive w orks. The published OGF document f rom w hich such w orks are

derived, how ever, may not be modif ied in any w ay, such as by removing the copyright not ice or
references to the OGF or other organizat ions, except as needed for the purpose of developing
new or updated OGF documents in conformance w ith the procedures def ined in the OGF

Document Process, or as required to trans late it into languages other than English. OGF, w ith the
approval of its board, may remove this restriction for inclus ion of OGF document content for the
purpose of producing standards in cooperation w ith other internat ional standards bodies.

The limited permiss ions granted above are perpetual and w ill not be revoked by the OGF or its
successors or assignees.

GWD-E Stephen M Hanson (IBM)

OGF DFDL WG 13 September 2013
dfdl-w g@ogf.org

dfdl-wg@ogf.org Page 25 of 25

11. References

[DFDL] OGF DFDL 1.0 specif icat ion

http://www.ogf.org/documents/GFD.174.pdf /

[DFDLR] OGF DFDL 1.0 spec if icat ion - revised

<To be added>

[DFDLX1] DFDL Exper ience Document 1

<To be added>

[XSDL1] XML Schema Part 1: structures

http://www.w3.org/TR/xmlschema-1/

Comment [SMH2]: Complete reference when

GFD number allocated.

Comment [SMH3]: Complete reference when

GFD number allocated.

http://www.ogf.org/documents/GFD.174.pdf/
http://www.w3.org/TR/xmlschema-1/

