
GFD-P-R.207 Michael J Beckerle, Tresys Technology

OGF DFDL WG Stephen M Hanson, IBM

dfdl-wg@ogf.org September 2013

Data Format Description Language (DFDL) v1.0

Specification

Status of This Document

Grid Final Draft (GFD)

Obsoletes

This document obsolets GFD-P-R.174 dated January 2011 [OBSOLETE_DFDL].

Copyright Notice

Copyright © Global Grid Forum (2004-2006). Some Rights Reserved. Distribution is unlimited.

Copyright © Open Grid Forum, (2006-2013). Some Rights Reserved. Distribution is unlimited

Abstract

This document provides a definition of a standard Data Format Description Language (DFDL).
This language allows description of text, dense binary, and legacy data formats in a vendor-
neutral declarative manner. DFDL is an extension to the XML Schema Description Language
(XSDL).

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 2 of 235

Contents

Data Format Description Language (DFDL) v1.0 .. 1

1. Introduction ... 9

1.1 Why is DFDL Needed? ... 10

1.2 What is DFDL? .. 10

 Simple Example ... 10 1.2.1

1.3 What DFDL is not .. 13

1.4 Scope of version 1.0 ... 13

1.5 Related standards ... 15

2. Notational and Definitional Conventions .. 16

2.1 Failure Types .. 16

2.2 Schema Definition Error .. 16

2.3 Processing Errors .. 17

 Ambiguity of Data Formats .. 17 2.3.1

2.4 Validation Errors .. 17

2.5 Recoverable Error ... 18

2.6 Specific Errors Classified .. 18

2.7 Optional Checks and Warnings... 20

3. Glossary ... 22

4. The DFDL Information Set (Infoset) ... 28

4.1 Information Items .. 28

 Document Information Item ... 28 4.1.1

 Element Information Items ... 29 4.1.2

4.2 "No Value'' ... 30

4.3 DFDL Information Item Order.. 30

4.4 DFDL Infoset Object model ... 30

4.5 DFDL Augmented Infoset .. 31

5. DFDL Schema Component Model ... 33

5.1 DFDL Subset of XML Schema .. 35

5.2 XSD Facets, min/maxOccurs, default, and fixed .. 36

 MinOccurs and MaxOccurs ... 37 5.2.1

 MinLength, MaxLength .. 37 5.2.2

 MaxInclusive, MaxExclusive, MinExclusive, MinInclusive, TotalDigits, FractionDigits5.2.3
 38

 Pattern ... 38 5.2.4

 Enumeration ... 38 5.2.5

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 3 of 235

 Default .. 38 5.2.6

 Fixed .. 38 5.2.7

6. DFDL Syntax Basics .. 39

6.1 Namespaces ... 39

6.2 The DFDL Annotation Elements ... 39

6.3 DFDL Properties ... 40

 DFDL String Literals ... 41 6.3.1

 DFDL Expressions ... 46 6.3.2

 DFDL Regular Expressions ... 46 6.3.3

 Enumerations in DFDL... 46 6.3.4

7. Syntax of DFDL Annotation Elements .. 47

7.1 Component Format Annotations ... 47

 The dfdl:ref Property .. 48 7.1.1

 Property Binding Syntax .. 48 7.1.2

 Empty String as a Representation Property Value .. 50 7.1.3

7.2 dfdl:defineFormat - Reusable Data Format Definitions ... 50

 Inheritance for dfdl:defineFormat ... 50 7.2.1

 Using/Referencing a Named Format Definition ... 51 7.2.2

7.3 The dfdl:assert Statement Annotation Element .. 51

 Properties for dfdl:assert .. 51 7.3.1

 Controlling the Timing of Statement Evaluation .. 53 7.3.2

7.4 The dfdl:discriminator Statement Annotation Element .. 54

 Properties for dfdl:discriminator ... 54 7.4.1

7.5 The dfdl:defineEscapeScheme Defining Annotation Element .. 57

 Using/Referencing a Named escapeScheme Definition.. 58 7.5.1

7.6 The dfdl:escapeScheme Annotation Element ... 58

7.7 The dfdl:defineVariable Annotation Element ... 58

 Examples ... 59 7.7.1

 Predefined Variables.. 59 7.7.2

7.8 The dfdl:newVariableInstance Statement Annotation Element....................................... 60

 Examples ... 61 7.8.1

7.9 The dfdl:setVariable Statement Annotation Element .. 61

 Examples ... 61 7.9.1

8. Property Scoping Rules .. 63

8.1 Providing Defaults for DFDL properties .. 63

8.2 Combining DFDL Representation Properties from a dfdl:defineFormat 64

8.3 Combining DFDL Properties from References ... 65

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 4 of 235

9. DFDL Processing Introduction ... 68

9.1 Parser Overview .. 68

9.2 DFDL Data Syntax Grammar .. 69

 Nil Representation ... 71 9.2.1

 Empty Representation ... 71 9.2.2

 Normal Representation .. 71 9.2.3

 Absent Representation .. 71 9.2.4

 Zero-length Representation ... 72 9.2.5

 Missing ... 72 9.2.6

 Examples of Missing and Empty Representation .. 73 9.2.7

 Round Trip Ambiguities.. 73 9.2.8

9.3 Parsing Algorithm .. 74

 Known-to-exist and Known-not-to-exist ... 74 9.3.1

 Establishing Representation .. 75 9.3.2

 Points of Uncertainty .. 77 9.3.3

9.4 Element Defaults ... 78

 Definition 'default value' ... 78 9.4.1

 Element Defaults When Parsing .. 78 9.4.2

 Element Defaults When Unparsing .. 79 9.4.3

9.5 Evaluation Order for Statement Annotations .. 80

 Asserts and Discriminators with testKind 'expression' ... 80 9.5.1

 Discriminators with testKind 'expression' ... 81 9.5.2

 Elements and setVariable .. 81 9.5.3

10. Core Representation Properties and their Format Semantics.. 82

11. Properties Common to both Content and Framing ... 83

11.1 Unicode Byte Order Marks (BOM) .. 85

11.2 Character Encoding and Decoding Errors... 87

 Property dfdl:encodingErrorPolicy ... 87 11.2.1

 Unicode UTF-16 Decoding/Encoding Non-Errors ... 88 11.2.2

 Preserving Data Containing Decoding Errors .. 89 11.2.3

12. Framing ... 90

12.1 Aligned Data .. 90

 Implicit Alignment ... 91 12.1.1

 Mandatory Alignment for Textual Data .. 92 12.1.2

 Mandatory Alignment for Packed Decimal Data .. 94 12.1.3

12.2 Properties for Specifying Delimiters .. 94

12.3 Properties for Specifying Lengths ... 97

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 5 of 235

 dfdl:lengthKind 'explicit' .. 98 12.3.1

 dfdl:lengthKind 'delimited' .. 98 12.3.2

 dfdl:lengthKind 'implicit' .. 99 12.3.3

 dfdl:lengthKind 'prefixed' .. 101 12.3.4

 dfdl:lengthKind 'pattern'... 104 12.3.5

 dfdl:lengthKind 'endOfParent' .. 104 12.3.6

 Elements of Specified Length .. 106 12.3.7

13. Simple Types .. 110

13.1 Properties Common to All Simple Types... 110

13.2 Properties Common to All Simple Types with Text representation 111

 The dfdl:escapeScheme Properties ... 112 13.2.1

13.3 Properties for Bidirectional support for All Simple Types with Text representation .. 116

13.4 Properties Specific to Strings with Text representation ... 117

13.5 Properties Specific to Number with Text or Binary representation 119

13.6 Properties Specific to Number with Text representation ... 119

 The dfdl:textNumberPattern Property .. 126 13.6.1

 Converting logical numbers to/from text representation .. 133 13.6.2

13.7 Properties Specific to Numbers with Binary Representation 135

 Converting Logical Numbers to/from Binary Representation 136 13.7.1

13.8 Properties Specific to Float/Double with Binary Representation 141

13.9 Properties Specific to Boolean with Text Representation ... 141

13.10 Properties Specific to Boolean with Binary Representation 143

13.11 Properties specific to Calendar with Text or Binary Representation 144

 The dfdl:calendarPattern property .. 146 13.11.1

 The dfdl:calendarCheckPolicy Property ... 149 13.11.2

13.12 Properties Specific to Calendar with Text Representation .. 149

13.13 Properties Specific to Calendar with Binary Representation..................................... 150

13.14 Properties Specific to Opaque Types (xs:hexBinary) .. 151

13.15 Nil Value Processing ... 151

13.16 Properties for Nillable Elements .. 152

13.17 Properties for Element Defaults Control .. 155

14. Sequence Groups ... 156

14.1 Empty Sequences ... 156

14.2 Sequence Groups with Separators ... 157

 Separators and Suppression ... 159 14.2.1

 Parsing Sequence Groups with Separators .. 160 14.2.2

 Unparsing Sequence Groups with Separators .. 163 14.2.3

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 6 of 235

14.3 Unordered Sequence Groups ... 165

 Restrictions for Unordered Groups .. 165 14.3.1

 Parsing an Unordered Group ... 165 14.3.2

 Unparsing an Unordered Group .. 167 14.3.3

14.4 Floating Elements .. 167

14.5 Hidden Groups .. 168

15. Choice Groups .. 170

15.1 Resolving Choices ... 171

 Resolving Choices via Speculation .. 171 15.1.1

 Resolving Choices via Direct Dispatch .. 172 15.1.2

 Unparsing Choices ... 172 15.1.3

16. Properties for Array Elements and Optional Elements ... 173

16.1 The dfdl:occursCountKind property ... 174

 dfdl:occursCountKind 'fixed' ... 174 16.1.1

 dfdl:occursCountKind 'implicit' ... 174 16.1.2

 dfdl:occursCountKind 'parsed' ... 174 16.1.3

 dfdl:occursCountKind 'expression' ... 174 16.1.4

 dfdl:occursCountKind 'stopValue' .. 175 16.1.5

16.2 Default Values for Arrays... 175

16.3 Arrays with DFDL Expressions .. 175

16.4 Points of Uncertainty ... 175

16.5 Arrays and Sequences .. 175

16.6 Forward Progress Requirement .. 176

16.7 Parsing Occurrences with Non-Normal Representation ... 176

16.8 Sparse Arrays .. 176

17. Calculated Value Properties. .. 177

17.1 Example: 2d Nested Array .. 178

17.2 Example: Three-Byte Date .. 179

18. External Control of the DFDL Processor .. 182

19. Built-in Specifications .. 183

20. Conformance .. 184

21. Optional DFDL Features ... 185

22. Property Precedence .. 187

22.1 Parsing .. 187

 dfdl:element (simple) and dfdl:simpleType .. 187 22.1.1

 dfdl:element (complex)... 192 22.1.2

 dfdl:sequence and dfdl:group (when reference is to a sequence) 193 22.1.3

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 7 of 235

 dfdl:choice and dfdl:group (when reference is to a choice) 194 22.1.4

22.2 Unparsing .. 194

 dfdl:element (simple) and dfdl:simpleType .. 195 22.2.1

 dfdl:element (complex)... 201 22.2.2

 dfdl:sequence and dfdl:group (when reference is a sequence) 202 22.2.3

 dfdl:choice and dfdl:group (when reference is a choice) 203 22.2.4

23. Expression language .. 204

23.1 Expression Language Data Model .. 204

23.2 Variables .. 205

 Rewinding of Variable Memory State .. 206 23.2.1

 Variable Memory State Transitions .. 206 23.2.2

23.3 General Syntax .. 207

23.4 DFDL Expression Syntax .. 208

23.5 Constructors, Functions and Operators .. 209

 Constructor Functions for XML Schema Built-in Types ... 209 23.5.1

 Standard XPath Functions ... 210 23.5.2

 DFDL Functions ... 213 23.5.3

 DFDL Constructor Functions ... 216 23.5.4

24. DFDL Regular Expressions .. 219

25. Security Considerations .. 220

26. Authors and Contributors .. 221

27. Intellectual Property Statement... 222

28. Disclaimer ... 223

29. Full Copyright Notice .. 224

30. References.. 225

31. Appendix A:Escape Scheme Use Cases ... 227

31.1 Escape Character same as dfdl:escapeEscapeCharacter .. 227

31.2 Escape Character different from dfdl:escapeEscapeCharacter 227

31.3 Escape block with different start and end characters .. 228

31.4 Escape block with same start and end characters .. 229

32. Appendix B: Encoding of delimiters different from encoding of data (eg, initiator and
terminator different to data) ... 231

33. Appendix C: Rationale for Single-Assignment Variables ... 232

34. Appendix D: Processing of DFDL String literals ... 233

34.1 Interpreting a DFDL String Literal .. 233

34.2 Recognizing a DFDL String Literal .. 233

34.3 Recognizing DFDL String Literal Part ... 233

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 8 of 235

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 9 of 235

1. Introduction

Data interchange is critically important for most computing. Grid computing and all forms of
distributed computing require distributed software and hardware resources to work together.
Inevitably, these resources read and write data in a variety of formats. General tools for data
interchange are essential to solving such problems. Scalable and High Performance Computing
(HPC) applications require high-performance data handling, so data interchange standards must
enable efficient representation of data. Data Format Description Language (DFDL) enables
powerful data interchange and very high-performance data handling.

We envisage three dominant kinds of data in the future, as follows:

1. Textual data defined by a format specific schema such as XML or JSON.

2. Binary data in standard formats.

3. Data with DFDL descriptors.

Textual XML data is the most successful data interchange standard to date. All such data are by
definition new, by which we mean created in the XML era. Because of the large overhead that
XML tagging imposes, there is often a need to compress and decompress XML data. However,
there is a high-cost for compression and decompression that is unacceptable to some
applications. Standardized binary data are also relatively new, and is suitable for larger data
because of the reduced costs of encoding and more compact size. Examples of standard binary
formats are data described by modern versions of ASN.1, or the use of XDR. These techniques
lack the self-describing nature of XML-data. Scientific formats, such as NetCDF and HDF are
used by some communities to provide self-describing binary data. There are also standardized
binary-encoded XML data formats such as EXI..

It is an important observation that both XML format and standardized binary formats are
prescriptive in that they specify or prescribe a representation of the data. To use them your
applications must be written to conform to their encodings and mechanisms of expression.

DFDL suggests an entirely different scheme. The approach is descriptive in that one chooses an
appropriate data representation for an application based on its needs and one then describes the
format using DFDL so that multiple programs can directly interchange the described data. DFDL
descriptions can be provided by the creator of the format, or developed as needed by third parties
intending to use the format. That is, DFDL is not a format for data; it is a way of describing any
data format. DFDL is intended for data commonly found in scientific and numeric computations,
as well as record-oriented representations found in commercial data processing.

DFDL can be used to describe legacy data files, to simplify transfer of data across domains
without requiring global standard formats, or to allow third-party tools to easily access multiple
formats. DFDL can also be a powerful tool for supporting backward compatibility as formats
evolve.

DFDL is designed to provide flexibility and also permit implementations that achieve very high
levels of performance. DFDL descriptions are separable and native applications do not need to
use DFDL libraries to parse their data formats. DFDL parsers can also be highly efficient. The
DFDL language is designed to permit implementations that use lazy evaluation of formats and to
support seekable, random access to data. The following goals can be achieved by DFDL
implementations:

• Density. Fewest bytes to represent information (without resorting to compression).
Fastest possible I/O.

• Optimized I/O. Applications can write data aligned to byte, word, or even page
boundaries and to use memory-mapped I/O to insure access to data with the smallest
number of machine cycles for common use cases without sacrificing general access.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 10 of 235

DFDL can describe the same types of abstract data that other binary or textual data formats can
describe and, furthermore, it can describe almost any possible representation scheme for those
data. It is the spirit of DFDL to support canonical data descriptions that correspond closely to the
original in-memory representation of the data, and also to provide sufficient information to write as
well as to read the given format.

1.1 Why is DFDL Needed?

The question arises of why DFDL is needed in an era when there are so many standard data
formats available. Ultimately, it is because there are a number of social phenomena in the way
software is developed that have lead to the situation today where DFDL is needed to standardize
descriptions of diverse data formats.

First, programs are very often written speculatively, that is, without any advance understanding of
how important they will become. Given this situation, little effort is expended on data formats
since it remains easier to program the I/O in the most straightforward way possible with the
programming tools in use. Even something as simple as using an XML-based data format is
harder than just using the native I/O libraries of a programming language.

In time, however, it is realized that a software program is important because either many people
are using it, or it has become important for business or organizational needs to start using it in
larger scale deployments. At that point it is often too late to go back and change the data formats.
For example, there may be real or perceived business costs to delaying the deployment of a
program for a rewrite just to change the data formats, particularly if such rewriting will reduce the
performance of the program and increase the costs of deployment. (It takes longer to program,
but at least it's slower when you are done☺)

Additionally, the need for data format standardization for interchange with other software may not
be clear at the point where a program first becomes 'important'. Eventually, however, the need for
data interchange with the program becomes apparent.

The above phenomena are not something that is going away any time soon. There are, of course,
efforts to smoothly integrate standardized data format handling into programming languages.
Nevertheless, we see a critical role for DFDL since it allows after-the-fact description of a data
format.

1.2 What is DFDL?

DFDL is a language for describing data formats. A DFDL description allows data to be read from
its native format and to be presented as an instance of an information set or indeed converted to
the corresponding XML document. DFDL also allows data to be taken from an instance of an
information set and written out to its native format.

DFDL achieves this by leveraging W3C XML Schema Definition Language (XSDL) 1.0.
[XSDLV1]

An XML schema is written for the logical model of the data. The schema is augmented with
special DFDL annotations. These annotations are used to describe the native representation of
the data. This is an established approach that is already being used today in commercial
systems.

 Simple Example 1.2.1

Consider the following XML data:

<w>5</w>

<x>7839372</x>

<y>8.6E-200</y>

<z>-7.1E8</z>

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 11 of 235

The logical model for this data can be described by the following fragment of an XML schema
document that simply provides description of the name and type of each element:

 <xs:complexType name="example1">

 <xs:sequence>

 <xs:element name="w" type="xs:int"/>

 <xs:element name="x" type="xs:int"/>

 <xs:element name="y" type="xs:double"/>

 <xs:element name="z" type="xs:float"/>

 </xs:sequence>

 </xs:complexType>

Now, suppose we have the same data but represented in a non-XML format. A binary
representation of the data could be visualized like this (shown as hexadecimal):

0000 0005 0077 9e8c

169a 54dd 0a1b 4a3f

ce29 46f6

To describe this in DFDL, we take our original XML schema document that described the data
model and we annotate the type definition as follows:

 <xs:complexType>

 <xs:sequence>

 <xs:element name="w" type="xs:int">

 <xs:annotation>

 <xs:appinfo source="http://www.ogf.org/dfdl/">

 <dfdl:element representation="binary"

 binaryNumberRep="binary"

 byteOrder="bigEndian"

 lengthKind="implicit"/>

 </xs:appinfo>

 </xs:annotation>

 </xs:element>

 <xs:element name="x" type="xs:int ">

 <xs:annotation>

 <xs:appinfo source="http://www.ogf.org/dfdl/">

 <dfdl:element representation="binary"

 binaryNumberRep="binary"

 byteOrder="bigEndian"

 lengthKind="implicit"/>

 </xs:appinfo>

 </xs:annotation>

 </xs:element>

 <xs:element name="y" type="xs:double">

 <xs:annotation>

 <xs:appinfo source="http://www.ogf.org/dfdl/">

 <dfdl:element representation="binary"

 binaryFloatRep="ieee"

 byteOrder="bigEndian"

 lengthKind="implicit"/>

 </xs:appinfo>

 </xs:annotation>

 </xs:element>

 <xs:element name="z" type="xs:float" >

 <xs:annotation>

 <xs:appinfo source="http://www.ogf.org/dfdl/">

 <dfdl:element representation="binary"

 byteOrder="bigEndian"
 lengthKind="implicit"

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 12 of 235

 binaryFloatRep="ieee" />
 </xs:appinfo>

 </xs:annotation>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

This simple DFDL annotation expresses that the data are represented in a binary format and that
the byte order will be big endian. This is all that a DFDL parser needs to read the data.

Consider if the same data are represented in a text format:

5,7839372,8.6E-200,-7.1E8

Once again, we can annotate the same data model, this time with properties that provide the
character encoding, the field separator (comma) and the decimal separator (period):

 <xs:complexType>

 <xs:sequence>

 <xs:annotation>

 <xs:appinfo source="http://www.ogf.org/dfdl/">

 <dfdl:sequence encoding="UTF-8" separator="," />
 </xs:appinfo>

 </xs:annotation>

 <xs:element name="w" type="xs:int">

 <xs:annotation>

 <xs:appinfo source="http://www.ogf.org/dfdl/">

 <dfdl:element representation="text"

 encoding="UTF-8"

 textNumberRep ="standard"
 textNumberPattern="####0"
 textStandardDecimalSeparator="."

 lengthKind="delimited"/>

 </xs:appinfo>

 </xs:annotation>

 </xs:element>

 <xs:element name="x" type="xs:int">

 <xs:annotation>

 <xs:appinfo source="http://www.ogf.org/dfdl/">

 <dfdl:element representation="text"

 encoding="UTF-8"

 textNumberRep ="standard"

 textNumberPattern="#######0"
 textStandardDecimalSeparator="."

 lengthKind="delimited"/>

 </xs:appinfo>

 </xs:annotation>

 </xs:element>

 <xs:element name="y" type="xs:double">

 <xs:annotation>

 <xs:appinfo source="http://www.ogf.org/dfdl/">

 <dfdl:element representation="text"

 encoding="UTF-8"

 textNumberRep ="standard"

 textNumberPattern="0.0E+000"
 textStandardDecimalSeparator="."

 lengthKind="delimited"/>

 </xs:appinfo>

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 13 of 235

 </xs:annotation>

 </xs:element>

 <xs:element name="z" type="xs:float">

 <xs:annotation>

 <xs:appinfo source="http://www.ogf.org/dfdl/">

 <dfdl:element representation="text"

 encoding="UTF-8"

 textNumberRep ="standard"

 textNumberPattern="0.0E0"

 textStandardDecimalSeparator="."

 lengthKind="delimited"/>

 </xs:appinfo>

 </xs:annotation>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

Many properties are repeatedly expressed in the example for the sake of simplicity. Later
sections of this specification will define the mechanisms DFDL provides to avoid this
repetitiveness.

1.3 What DFDL is not

DFDL maps data from a non-XML representation to an instance of an information set. This can
be thought of as a data transformation. However, DFDL is not intended to be a general
transformation language and, in particular, DFDL does not intend to provide a mechanism to map
data to arbitrary XML models. There are two specific limitations on the data models that DFDL
can work to:

1. DFDL uses a subset of XML Schema, in particular, you cannot use XML attributes in the
data model.

2. The order of the data in the data model must correspond to the order and structure of the
data being described.

This latter point deserves some elaboration. The XML schema used must be suitable for
describing the physical data format. There must be a correspondence between the XML
schema's constructs and the physical data structures. For example, generally the elements in the
XML schema must match the order of the physical data. DFDL does allow for certain physically
unordered formats as well.

The key concept here is that when using DFDL, you do not get to design an XML schema to your
preference and then populate it from data. That would involve describing the data format, and
describing a transformation for mapping it to the XML schema you have designed. DFDL is only
about the format part of this problem. There are other languages, such as XSLT, which are for
transformation. In DFDL, you describe only the format of the data, and this format constrains the
nature of the XML schema you must use in its description.

1.4 Scope of version 1.0

The goals of version 1.0 are as follows:

1. Leverage XML technology and concepts

2. Support very efficient parsers/formatters

3. Avoid features that require unnecessary data copying

4. Support round-tripping, that is, read and write data in a described format from the same
description

5. Keep simple cases simple

6. Simple descriptions should be "human readable" to the same degree that XSDL is.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 14 of 235

The general features of version 1.0 are as follows:

a) Text and binary data parsing and unparsing

b) Validate the data when parsing and unparsing using XSDL validation.

c) Defaulted input and output for missing representations

d) Reference – use of the value of a previously read element in subsequent expressions

e) Choice – capability to select among format variations

f) Hidden sequence of elements – A description of an intermediate representation whose
corresponding Infoset is not exposed in the final result.

g) Basic Math – in DFDL expressions

h) Out-of-type value handling (e.g., The string value 'NIL' to indicate nil for an integer)

i) Speculative parsing to resolve uncertainty.

j) Very general parsing capability: Lookahead/Push-back

Version 1.0 of DFDL is a language capable of expressing a wide range of binary and text-based
data formats.

DFDL is capable of describing binary data as found in the data structures of COBOL, C, PL1,
Fortran, etc. In particular, it is able to describe repeating sub-arrays where the length of an array
is stored in another location of the structure.

DFDL is capable of describing a wide variety of textual data formats such as HL7, X12, and
SWIFT. Textual data formats often use syntax delimiters, such as initiators, separators and
terminators to delimit fields.

DFDL has certain composition properties. I.e., two formats can be nested or concatenated and a
working format results.

The following topics have been deferred to future versions of the standard:

- Extensibility: There are real examples of proprietary data format description languages
that we use as our base of experience from which to derive standard DFDL. However,
there are no examples of extensible format description languages. Therefore, while
extensibility is desirable in DFDL, there is not yet a base of experience with extensibility
from which to derive a standard.

- Rich Layering: Some formats require data to be described in multiple passes. Combining
these into one DFDL schema requires very rich layering functionality. In these layers one
element's value becomes the representation of another element. DFDL V1.0 allows
description of only a limited kind of layering.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 15 of 235

1.5 Related standards

1. Prescriptive systems:

a. JSON

b. EXI (binary XML) (http://www.w3.org/TR/exi)

c. Thrift (http://thrift.apache.org/static/files/thrift-20070401.pdf)

d. Avro (http://avro.apache.org/docs/1.3.0/spec.html)

e. ASN.1 with any of the prescribed encoding rules: Basic Encoding Rules (BER),
Distinguished Encoding Rules (DER), Canonical Encoding Rules(CER)
(http://www.itu.int/rec/T-REC-X.690-200811-I/en) or Packed Encoding Rules
(PER) (http://www.itu.int/rec/T-REC-X.691-200811-I/en)

2. Descriptive systems:

a. ASN1 Encoding Control Notation (also known as ITU-T X.692)
(http://www.itu.int/rec/T-REC-X.692-200811-I)

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 16 of 235

2. Notational and Definitional Conventions

The key words must, must not, required, shall, shall not, should, should not, recommended, may,
may not and optional in this document are to be interpreted as described in [RFC 2119]. Note that
for reasons of clarity these words are not always capitalized in this document.

Examples are for illustration purposes only and for clarity they will often not include all the
necessary DFDL properties.

2.1 Failure Types

Where the phrase "must be consistent with" is used, it is assumed that a conforming DFDL
implementation must check for the consistency and issue appropriate diagnostic messages when
an inconsistency is found.

There are several kinds of failures that can occur when a DFDL processor is handling data and/or
a DFDL schema.

2.2 Schema Definition Error

When the DFDL schema itself contains an error, it implies that the DFDL processor cannot
process data because the DFDL schema is not meaningful. It may be ambiguous, or contain
conflicting definitions. Equivalently, we can say that there is no possible data that conforms to the
schema; hence, the schema cannot be meaningful. All conforming DFDL processors must detect
all schema definition errors, and must issue some kind of appropriate diagnostic message. The
behavior of a DFDL processor after a schema definition error is detected is out of scope for this
specification.

When a Schema definition error can be detected statically, that is given only the schema, it is
desirable, though not required by the DFDL standard, that such errors be detected and diagnostic
messages issued before any data are processed. Of course not all schema definition errors can
be detected without reference to data as some representation properties may obtain their values
from the data (see also section 2.3.1 Ambiguity of Data Formats).

The expression language included within DFDL is strongly, statically type checkable. This means
that type checking of expressions can be performed without processing data, and
implementations are encouraged to perform this checking statically so that schema definition
errors having to do with type inconsistencies can be detected before processing data.

Note that schema definition errors cannot be suppressed by points of uncertainty.

 Schema Component Constraint: Unique Particle Attribution 2.2.1.1

A DFDL processor MUST implement the Schema Component Constraint: Unique Particle
Attribution defined in XML Schema Part 1: Structures [XSDLV1] that applies to the DFDL schema
subset.

Two elements overlap if

• They are both element declaration particles whose declarations have the same name and
target namespace.

A schema will violate the unique attribution constraint if it contains two particles which overlap
and which either

• Are both in the particles of a choice group

Or

• Either may validate adjacent information items and the first has XSDL minOccurs less
than XSDL maxOccurs.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 17 of 235

2.3 Processing Errors

If a DFDL schema contains no schema definition errors, then there is the additional possibility of
a processing error when processing data using a DFDL schema. A processing error occurs if the
data does not conform to the format described by the schema, that is to say, the data is not well-
formed relative to the schema.

Processing errors can be suppressed by a point of uncertainty. See section 9.3.3.

It is expected that DFDL implementations will provide additional mechanisms for dealing with
effective processing errors, such as the means of specifying retry points or the means of skipping
some data so as to recover from the error in some way. The DFDL specification does not provide
features for such mechanisms.

Exceptions that occur in the evaluation of the DFDL expression language are processing errors.

Non-conformance with the XSDL minOccurs or maxOccurs constraints is either a processing
error or only a validation error depending on the settings of certain DFDL properties (see section
16 below).

 Ambiguity of Data Formats 2.3.1

A data format using delimiters may be ambiguous if the delimiters are not distinct, and a data
format description which has fixed data requirements (that is, where some elements have fixed
values) may be ambiguous even with fixed length elements.

1

If the delimiter string values are stored within the data, perhaps as elements of a header part of
the data, then this ambiguity certainly cannot be examined until the data is available.

Given an ambiguous grammar, a DFDL implementation may successfully parse a particular input
data stream. That is, the part of the schema with the ambiguity may not be exercised by a
particular data stream, or the data may parse successfully anyway because the ambiguity may
not cause any kind of failure or processing error.

Hence, to insure compatible behavior, DFDL v1.0 implementations MUST NOT detect grammar
ambiguities as errors. Implementations are of course free to issue warnings to help users identify
these situations, but ambiguity is neither a Schema Definition Error nor a Processing Error.

 Unparsing Must be Unambiguous 2.3.1.1

Usually, the behavior of the unparser is symmetric to the behavior of the parser; however, there
are cases where the DFDL schema will accept several equivalent representations for the same
logical data. In this case it would be ambiguous which of these equivalent representations should
be produced by the unparser. The DFDL standard contains representation properties which are
used to eliminate this ambiguity. It is a schema definition error if a DFDL schema is being used to
unparse data and there is any ambiguity about the representation.

2.4 Validation Errors

Logical validation checks are constraints expressed in XSDL, and they apply to the logical values
of the infoset. Hence, parsing must successfully construct the infoset from the representation in
order for validation checks to be meaningful. This implies that validation errors cannot affect the

1
 A very complex analysis is needed to identify this sort of grammar ambiguity in general. While

we believe this may be decidable for DFDL v1.0, future versions of DFDL may add features (such
as recursive types) which make this analysis undecidable.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 18 of 235

ability of a DFDL processor to successfully parse or unparse data; that is, validation errors are
independent of whether the data is well-formed with respect to the DFDL schema.

DFDL processors may provide both validating and non-validating behaviors on either or both of
parse and unparse. (A DFDL implementation could support validate on parse, but not support it
on unparse and still be considered conforming.)

Validation on unparsing takes place on the augmented infoset that is created by the unparser as
a side-effect of creating the output data stream.

When resolving points of uncertainty (during parsing), validation errors are ignored.

The way a validation error is presented to the execution context of a DFDL processor is not
specified by the DFDL language. The validity of an element is recorded in the DFDL Infoset, see
Section 4 The DFDL Information Set (Infoset).

The following DFDL schema constructs are allowed in DFDL and are checked when validating:

1. XSDL pattern facet - (for XSD string type elements only)

2. XSDL minLength, maxLength

3. XSDL minInclusive, minExclusive, maxInclusive, maxExclusive

4. XSDL enumeration

5. XSDL maxOccurs

Note that validation is distinct from the checking of DFDL assert or discriminator predicates.
When a DFDL discriminator or assert is used to discriminate a choice or other point of uncertainty
when parsing, then that assert or discriminator is essential to parsing and it is evaluated
irrespective of whether validation is enabled or disabled.

There is also a function dfdl:checkConstraints available in the DFDL Expression language. This
can be used to explicitly include checking of the XSD facet constraints as part of parsing a
specific element. Such checking is part of parsing, and does not create validation errors. See
Section 23.5.3 DFDL Functions for details.

2.5 Recoverable Error

This error type is used with the dfdl:assert annotation when parsing to permit the checking of
physical format constraints without terminating a parse. For example, some formats will have
redundancy by having known lengths, as well as delimiters. A recoverable error can be issued,
using an assert to check a physical length constraint when property lengthKind is 'delimited'.

Recoverable errors are independent of validation, and when resolving points of uncertainty,
recoverable errors are ignored.

2.6 Specific Errors Classified

This section clarifies which errors are schema definition errors and which are processing errors.

The following are processing errors:

• Arithmetic Errors
o Division by zero
o Integer Arithmetic Underflow
o Integer Arithmetic Overflow
o Note: Floating point math can produce NaN (Not a Number) values. This is not

an error, nor are properly typed operations on floating point NaN values.
• Expression Errors

o Dynamic Type Error – unable to convert to target type
� Example: non-digits found in string argument to xs:int(…) constructor.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 19 of 235

� Note: if a DFDL Implementation cannot distinguish Dynamic Type Errors
from Static Type Errors, then a Dynamic Type Error should cause a
Schema Definition Error

o Index out of bounds error – index not <= number of occurrences, or is < 1.
� Note: same error for dfdl:testBit if bitPos is not 1..8, or for character

positions in a string-value
o Indexing of non-array non-optional element

� Example: x[1] when x is declared and has both minOccurs="1" and
maxOccurs="1" explicitly, or by not stating either or both of them.

o Illegal argument value (correct type, illegal value)
• Parse Errors

o Delimiter not found
o Data not convertible to type
o Assertion failed
o Discriminator failed
o Required occurrence not found
o No choice alternative successfully parsed.
o Character set decoding failure and dfdl:encodingErrorPolicy is 'error'

• Unparse Errors
o Truncation scenarios where truncation is being disallowed
o Rounding error – rounding needed but not allowed. (Unparsing)
o No choice alternative successfully unparsed.
o Character set encoding failure and dfdl:encodingErrorPolicy is 'error'

• Implementation Limit Errors - Implementations can have fixed or adjustable limits that
some formats and some data may exceed at processing time. This specification does not
further specify what these errors are, but some possible examples are:

o Data longer than allowed for representation of a given data type
� Example: exceed maximum length of representation of xs:decimal when

dfdl:representation is "text".
o Expression references too far back into infoset (parsing)
o Expression references too far forward into infoset (unparsing)
o Number of array elements exceeds limit.
o Regular expression exceeds time limit

The following are schema definition errors, regardless of whether they are detected in advance of

processing or once processing begins:

• Errors in XML Schema Construction and Structure
o See XML Schema Specification Part 1, Section 5.1 [XSDLV1]

• Use of XSD constructs outside of DFDL subset
• Implementation Limitations

o Use of DFDL schema constructs not supported by this implementation.
� Example: xs:choice is an optional part of the DFDL specification (see

section 21). If not supported, it must be rejected as a Schema Definition
Error.

� Example: use of packed-decimal when it is not supported by the
implementation.

� Example: use of dfdl:assert when it is not supported by the
implementation (See Spec section 21 on DFDL Subsets)

� Note: Unrecognized DFDL properties or property values can produce a
Schema Definition Warning and an implementation can attempt to
process data despite the warning.

o Exceeding limits of the implementation for schema size/complexity
� Example: schema too large – simply a limit on how large the schema can

be, how many files, how many top-level constructs, etc.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 20 of 235

• Schema Not Valid
o See XML Schema Specification Part 1, Section 5.2 [XSDLV1]

• UPA violation (Unique Particle Attribution)
• Reference to DFDL global definition not found

o Format definition (dfdl:defineFormat)
o Escape schema definition (dfdl:defineEscapeScheme)
o Variable Definition (dfdl:defineVariable)

• DFDL Annotations not well-formed or not valid
• DFDL Annotations Incompatible

o E.g., dfdl:assert and dfdl:discriminator at same combined annotation point, or
more than one format annotation at an annotation point.

• DFDL Properties and their values
o Property not applicable to DFDL annotation
o Property value not suitable for property
o Property conflict

� Between Element Reference and Element Declaration
� Between Element Declaration and Simple Type Definition
� Between Simple Type Definition and Base Simple Type Definition
� Between Group Reference and Sequence/Choice of Group Definition

o Required property not found
• Expressions

o Expression syntax error
o Named child element doesn't exist – E.g., /a/b, and there is no child b in

existence.
� Note: no child possible in the schema is a different error, but also a

Schema Definition Error, as /a/b would not have a type in that case.
� Note: This is an SDE, as schema authors are advised to use fn:exists(…)

to test for existence of elements when it is possible that they not exist.
o Variable read but not defined
o Variable assigned after read
o Variable assigned more than once
o Static Type error – type is incorrect for usage

� Note: if an implementation is unable to distinguish Static Type Errors
from Dynamic Type Errors, then both should cause Schema Definition
Errors.

o Path step definition not found – e.g., /a/n:b but no definition for n:b as local or
global element.

o Not enough arguments for function
o Expression value is not single node

� Most DFDL expression contexts require an expression to identify a single
node, not an array (aka sequence of nodes). There are a few exceptions
such as the fn:count(…) function, where the path expression must be to
an array or optional element.

o Expression value is not array element or optional element.
� Some DFDL expression contexts require an array or an optional

element.
� Example: The fn:count(...) function argument must be to an array or

optional element. It is an SDE if the argument expression is otherwise.
• Regular Expressions

o Syntax error

2.7 Optional Checks and Warnings

A DFDL processor:

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 21 of 235

• That only implements a DFDL parser does not have to check (for schema definition
errors) properties that are solely used when unparsing, though it is recommended that it
does so for portability reasons.

• That does not implement some optional features does not have to check properties or
annotations required by those optional features, but MUST issue a warning that an
unrecognized property or annotation has been encountered.

• Need not check global objects as they may legitimately be incomplete due to properties
intended to be supplied based on scoping rules and the context at the point of use.

There are two exceptions to this, which must be checked:

o Global simple types that are referenced by prefixLengthType property

o Global elements that are the document root.

Some situations suggest likely errors, but a DFDL processor cannot be certain. In these
situations, a DFDL processor may issue warnings to assist a DFDL schema author in identifying
likely errors. An important case of this is when the DFDL processor encounters a schema
component and annotation where there are explicitly properties that are not relevant to the
component as defined. Depending on the specifics of the component and property the DFDL
processor can or must take certain actions. If the:

• Property is not applicable to the component's DFDL annotation.

Schema definition error. Example is lengthKind on xs:sequence.

• Property is not applicable because of simple type.

Warning (optional). Example is calendarPatternKind on xs:string.

• Property is not applicable because of another DFDL property setting.

Warning (optional). Example is binaryNumberRep when representation is text.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 22 of 235

3. Glossary

Adjacent - Two parts of the input/output stream are adjacent if they are at consecutive
addresses.

Addressable Unit, or Unit - This is the unit of storage that makes up the input or output stream
holding the representation of the data. The units are bits, bytes, or characters.

Annotation point - A location within a DFDL schema where DFDL annotation elements are
allowed to appear.

Applicable properties - All the DFDL properties that apply to that type of schema construct. For
example all the DFDL properties that apply to an xs:simpleType.

Array - The set of adjacent elements whose XSDL element declaration specifies the potential for
it to have more than one occurrence (XSD property maxOccurs > '1' or 'unbounded'). Of course
any given array can have any number of element occurrences, including zero elements or exactly
1 element as long as the occurrence constraints are met. If XSD property maxOccurs is
'unbounded' then there is no constraint to the maximum number of occurrences, though
implementations may have maximum capabilities. An optional element (where XSD property
maxOccurs is '1', minOccurs is '0') is not considered to be an array as described in this
document. Note that a sequence is not to be confused with an array. A sequence is a complex
tuple type for an element; the children of a sequence can be of different types. All elements of an
array have the same type and have the same information item members except for the value
member.

Array Element – an element declaration or reference with XSD property maxOccurs > '1' or
'unbounded'.

Augmented Infoset - When unparsing one begins with the DFDL schema and conceptually with
the logical infoset. As the values of items are filled in by defaulting, and by use of the DFDL
outputValueCalc property (including on hidden items), these new item values augment the
infoset. The resulting infoset is called the augmented infoset.

Binary - There are two meanings for this word depending on context.

• Data is divided into two broad categories of representations, which are text and binary.
Hence, binary representation includes any kind of non-text representation.

• Within binary (not text) data, we distinguish base-10 representations which are called
packed decimal, from base-2 representations which are called binary. The common twos-
complement representation used for signed integers is a base-2 binary representation.

Binary Representation - of type xs:hexBinary, or of other type with property dfdl:representation
'binary'. Note that type xs:string can never have binary representation.

Bit Position - The data stream is assumed to be a collection of consecutively numbered
unsigned bytes. Each byte is a numeric value, and bit position within an individual byte is given by
numeric behavior. The bits within each byte are numbered, with the most significant bit having
position 1, and the least significant bit having position 8. This gives every bit in the data stream a
specific bit position. Furthermore, the bit position of the least significant bit of byte N is
numerically adjacent to the bit position of the most significant bit of byte N+1.

Bit String - the ordered set of bits from a first bit with bit position N, to bit position N+M is a bit
string of length M bits.

Byte - The term "byte" refers to an 8-bit octet.

CCSID - see Coded Character Set Identifier.

Character - A ISO10646 character having a unique character code as its identifier. This concept
is independent of font, typeface, size, and style, so 'F', 'F', 'F', are all the same character 'F'.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 23 of 235

Character Code - The canonical integer used to identify a character in the ISO10646 standards.
This number identifies the character, but can be independent of any specific character set
encoding of the character. Example: The '{' character known in Unicode as LEFT CURLY
BRACKET has character code U+007B. However, depending on the character set encoding, the
value 0x7B may or may not appear in the representation of that character.

Character Set - An abstract set of characters that are assigned (or mapped to) a representation
by a particular character set encoding. For most character set encodings their character set is a
subset of the Unicode character set.

Character Set Encoding - Often abbreviated to just 'encoding'. A specific representation of a
character set as bytes or bits of data. A character set encoding is usually identified by a standard
character set encoding name or a recognized alias name, or by a coded character set identifier or
CCSID. These identifiers are standardized. The names and aliases are standardized by the IANA
(where unfortunately, they are called character set names). CCSIDs are an industry standard.
Examples of character set encoding names are UTF-8, USASCII, GB2312, ebcdic-cp-it, ISO-
8859-5, UTF-16BE, Shift_JIS. The DFDL standard allows for implementation-specific character
set encodings to be supported, and standardizes one name that is DFDL-specific which is
USASCII-7bit-packed.

Character Width - The number of code units or alternatively the number of bytes or bits used to
represent a character in a specific character set encoding is called the character width.
Encodings are either fixed width (all characters encoded using the same width), or variable-width
(different characters are encoded using different widths). For example the UTF-32 character set
encoding has 4-byte character width, whereas USASCII has a 1-byte character width. UTF-8 is
variable width, and any specific character has width 1, 2, 3, or 4 bytes. See also Fixed-Width
Character Encoding and Variable-Width Character Encoding

Code Unit - When a character set encoding uses differing variable width representations for
characters, the units making up these variable width representations are called code units. For
example the UTF-8 encoding uses between 1 and 4 code units to represent characters, and for
UTF-8, the individual code units are single bytes. DFDL's interpretation of the UTF-16 encoding is
either fixed or variable width. When format property dfdl:utf16Width='variable' then UTF-16 is
variable width and this encoding uses either one or two code units per character, but in this case
each individual code unit is a 16-bit value. When a character set is fixed width, then there is no
distinction between a code unit and a code point.

Coded Character Set Identifier (CCSID) - An alternate identifier of a character set encoding.
Originally created by IBM, CCSIDs are a broadly used industry standard.

Component - A construct within a DFDL schema that may contain a DFDL annotation.

Content - The content is the bits of data that are interpreted to compute a logical value.

Content Model - Used in describing the syntactic structure of XSD and DFDL annotations of it.
An element of a schema can have empty, simple, or element-only content. An element
declaration for an element of complex type containing a xs:sequence element is said to have a
sequence in its content model.

Contiguous - An element has a contiguous representation if all parts of its representation are
adjacent in the input/output stream. Most simple types have contiguous representations naturally.
Groups containing elements that are themselves contiguous are also considered to have
contiguous representations irrespective of alignment fill or padding of any kind that exists within
the group. Similarly, arrays of elements that are themselves contiguous are also contiguous. An
example of a non-contiguous representation would be a nillable element, where a flag is used to
determine whether or not the element is nil, and the location of that flag is not adjacent to the
value representation.

Count - The number of occurrences of an element.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 24 of 235

Data Stream - The data whose format is being described by a DFDL schema. This use of
'stream' implies only that there is a numbering scheme that specifies a unique bit position for
every bit within the data. This use of 'stream' does not imply anything about whether the data is
persistently stored or not, nor does it imply anything about whether there are sequential or
random access capabilities for access to the data.

DBCS - See Double-Byte Character Set

Decimal - This term is used several different ways distinguished by context:

1. Base 10. When data has text representation, a decimal number has base-10 digits.

2. Type xs:decimal - a logical type of number that has an integer component and an
optional base-10 fractional component. This type subsumes all integer types, as they are
of type xs:decimal but with the further restriction that the fractional part doesn't exist. Note
that a base-10 fraction has different rounding properties than a base-2 or floating point
numeric fraction; hence, xs:decimal is the type commonly used to represent
currency/money in data.

3. Packed Decimal - A binary data representation. See separate glossary entry below.

Defining Annotations - The annotation elements dfdl:defineFormat, dfdl:defineVariable, and
dfdl:defineEscapeScheme

Delimiter - A character or string used to separate, or mark the start and end of, items of data. In
DFDL, dfdl:lengthKind 'delimited' scans the data for initiators, separators, and terminators.

Delimiter scanning - When parsing, the process of scanning for a specific item in the input data
which either marks the end of an item or the beginning of a subsequent item. Delimiter scanning
also takes into account escape schemes so as to allow the delimiters to appear within data if
properly escaped.

DFDL – Data Format Description Language

DFDL Processor - A program that uses DFDL schemas in order to process data described by
them.

DFDL Schema - an XML schema containing DFDL annotations to describe data format.

Double-Byte Character Set (DBCS) - a character set encoding where each character code
consists of one code unit which uses exactly 2 bytes.

Dynamic extent - This is a characteristic of the data stream. When parsing data corresponding to
a schema component, the collection of bits within the data stream that contain any aspect of the
representation of that schema component make up the component's dynamic extent.

Dynamic scope - This is a characteristic of parts of the DFDL schema. When a definition or
declaration contains or references another declaration or definition, then the contained definition
or declaration is said to be in the dynamic scope of the enclosing one. The important
characteristic of dynamic scoping is that it traverses references. When parsing, the dynamic
scope of an element declaration includes all definitions and declarations used as part of parsing
that element.

Element - A part of the data described by an element declaration in the schema and presented
as an element information item in the infoset.

Encoding - See Character Set Encoding.

Explicit properties - The explicit properties are the combination of any defined locally on the
annotation and any defined by a dfdl:defineFormat annotation referenced by a local dfdl:ref
property.

Fixed-Width Character Encoding - A character set encoding where all characters are encoded
using a single code unit for their representation. Note that a code unit is not necessarily a single

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 25 of 235

byte. It may be more than one byte, or some number of bits less than a byte. Examples of
different fixed widths are:

• 1-byte wide: ASCII, ebcdic-cp-us, iso-8859-1. See also SBCS (Single-Byte Character
Set)

• 2-bytes wide: UTF-16 when dfdl:utf16Width is 'fixed'. See also DBCS (Double-Byte
Character Set)

• 4-bytes wide: UTF-32.

• 7-bits wide: us-ascii-7-bit-packed

Fixed Array Element - An array element where XSDL minOccurs is equal to XSDL maxOccurs.

Format annotations - The annotation elements dfdl:format, dfdl:element, dfdl:simpleType,
dfdl:group, dfdl:sequence, dfdl:choice, and dfdl:escapeScheme.

Format property – a DFDL property carried on a DFDL format annotation.

Framing - framing is the term used to describe the delimiters, length fields, and other parts of the
data stream which are present, and may be necessary to determine the length or position of the
content of an element.

Index - The position of an occurrence in a count, starting at 1.

Item - A DFDL information set consists of a number of information items; or just items for short.

Length - When discussing data items and their representations, the term 'length' is used to refer
to the measure of the size of the representation of an item in units of bits, bytes, or characters.
The length of an array is the number of bits, bytes, or characters making up its representation,
and has nothing to do with the number of occurrences of the array. Any element occurrence has
length. Only array elements and optional elements have numbers of occurrences other than 1.

Lexical scope - In a DFDL Schema document, the lexical scope of any element is the collection
of schema declarations, definitions, and annotations contained within the element textually.

Local properties – Local properties are the properties defined on an annotation in either short,
attribute or element form

Logical layer - A DFDL Schema with all the DFDL annotations ignored is an ordinary XSDL
schema. The logical structure described by this XSDL is called the DFDL logical layer.

Nibble - 4 bits. A single hexadecimal digit (0 to 9, A to F) is often referred to as a nibble as it can
be represented in exactly 4 bits.

Non-representation property – a format property that is not a representation property,
specifically dfdl:ref, dfdl:hiddenGroupRef, dfdl:choiceChoiceBranchKey, dfdl:choiceDispatchKey,
dfdl:inputValueCalc, dfdl:outputValueCalc. See also representation property.

Occurrence - An instance of an element in the data, or an item in the DFDL Infoset.

Optional Element - An element declaration or reference where XSDL minOccurs is equal to
zero.

Optional Occurrence - An occurrence with an index greater than XSDL minOccurs.

Packed decimal – A physical representation of a decimal and integer numbers where each digit
is packed into one nibble (4 bits) of a byte. There are several variants, some also include a sign
nibble and some include a padding nibble. The term covers all the following enums of the
dfdl:binaryNumberRep and dfdl:binaryCalendarRep properties – 'packed' (IBM 390 packed), 'bcd'
(standard binary coded decimals or BCDs) and 'ibm4690Packed' (IBM 4690 packed).

Potentially represented - an element declaration in the schema describes a potentially
represented item if that element declaration does not have a dfdl:inputValueCalc property.
Whether the element declaration describes an occurrence that is actually represented or not

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 26 of 235

depends on whether the element declaration is for an optional element, and whether the element
has a corresponding value in the augmented infoset.

Physical Layer - A DFDL Schema adds DFDL annotations onto an XSDL language schema. The
annotations describe the physical representation or physical layer of the data.

Point of Uncertainty - A point of uncertainty occurs in the data stream when there is more than
one schema component that might occur at that point.

Representation property – a format property that is used to describe a physical characteristic of
a component. Such a property will apply to one or more grammar regions of the component. See
also non-representation property.

Required Element. An element declaration or reference where XSDL minOccurs is greater than
zero.

Required Occurrence - An occurrence with an index less than or equal to XSDL minOccurs.

Required Property – A DFDL property that must have a value. The required properties for each
xs:schema component are listed in the Property Precedence tables in section 23.

Resolved set of annotations - When DFDL annotations appear on a group reference and the
sequence or choice of the referenced global group, or appear among an element reference, an
element declaration, and its type definition, then they are combined together and the resulting set
of annotations is referred to as the resolved set of annotations for the schema component.

SBCS - See Single Byte Character Set

Scan – Examine the input data looking for delimiters such as separators and terminators, or
matches to regular expressions.

Single-Byte Character Set (SBCS) - a character set encoding where each character code
consists of one code unit which is exactly a single byte (8 bits).

Schema - The set of all declarations and definitions in the schema, including all included and
imported schemas taken together. This includes both the XSDL declarations and definitions, and
the DFDL definitions provided in the top-level DFDL annotations.

Schema Component Designator (SCD) - A notation for referring to one of the components of a
DFDL Schema. This is being standardized by W3C. See http://www.w3.org/TR/xmlschema-ref.

Schema Definition Order – the order that the schema components are defined in a schema
document.

Specified length - An item has specified length when dfdl:lengthKind is "implicit", "explicit", or
"prefixed".

Speculative Parsing – When the parser reaches a point of uncertainty it attempts to parse each
option in turn until one is known-to-exist or known-not-to-exist.

Statement annotations - The annotation elements dfdl:assert, dfdl:discriminator,
dfdl:setVariable, and dfdl:newVariableInstance. Also called DFDL Statements.

Statically - A DFDL Implementation can analyze a DFDL schema and determine the presence of
many kinds of errors this is called static analysis, compilation of the schema, or determining the
presence of the error statically.

Surrogate Pair - A Unicode character whose character code value is greater than 0xFFFF can
be encoded into variable-width UTF-16BE or UTF-16LE (which are variable-width encodings
when the DFDL property utf16Width is 'variable'). In this case the representation uses two
adjacent code units each of which is called a surrogate, and the pair of which is called a
surrogate pair.

Target length - When unparsing, the length (in dfdl:lengthUnits) of an item's representation is the
target length. The length of the content corresponding to a logical data value in the infoset may

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 27 of 235

be shorter or longer than the target length, in which case padding or truncation may be necessary
to make the logical data content conform to the target length. Rules for when padding and
truncation occur, and how they are applied are specific to simple data types, and are controlled
by a number of DFDL format properties.

Text - Consisting of characters in some character set encoding. Normally we think of text data as
being human readable, but many character set encodings contain special control characters that
are not human readable but we call data containing these text anyway.

Text Representation - of type xs:string, or of other types (except xs:hexBinary) with property
dfdl:representation 'text'. Note that type xs:hexBinary never has text representation.

Textual - see Text.

Twos-Complement - a very common scheme for representing binary integers within data. A
positive integer consisting of N bits is represented as its base-2 absolute value. A negative
integer is represented as the complement (all bits inverted) of its absolute value plus 1.

Unicode - A character set defined by the Unicode Consortium, and standardized at the
International Standards Organization (ISO) as ISO10646.

Unpadded length - This is the length of the content of an item of the infoset, prior to any filling or
padding which might be introduced due to dfdl:lengthKind "prefixed" or dfdl:lengthKind "explicit". It
is equal to or smaller than the target length.

Variable-Width Character Encoding - A character set encoding where characters are encoded
using one or more code units for their representation depending on which specific character is
being encoded. Examples with their ranges of varying width:

• 1 to 4 bytes: UTF-8

• 1 or 2 16-bit code units: UTF-16 when property dfdl:utf16Width is 'variable'

• 1 or 2 bytes: Shift-JIS

Well-formed - Data is said to be well-formed with respect to a DFDL schema if a DFDL
processor can parse the data into a DFDL Infoset, or a DFDL processor can unparse to that data
from a DFDL Infoset. The validity of values in the infoset is not necessary for data to be well-
formed.

Width - See Character Width.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 28 of 235

4. The DFDL Information Set (Infoset)

This section defines an abstract data set called the DFDL Information Set (Infoset). Its purpose
is to define the abstract data structure that must be provided:

• To an invoking application by a DFDL parser when parsing DFDL-described data using a
DFDL Schema;

• To a DFDL unparser by an invoking application when generating DFDL-described data
using a DFDL Schema

The DFDL Infoset contains enough information so that a DFDL schema can be defined that will
unparse the infoset and reparse the resultant datastream to produce the same infoset.

There is no requirement for DFDL-described data to be valid in order to have a DFDL information
set.

DFDL information sets may be created by methods (not described in this specification) other than
parsing DFDL-described data.

A DFDL information set consists of a number of information items; or just items for short. The
information set for any well-formed DFDL-described data will contain at least a document
information item and one element information item. An information item is an abstract description
of a part of some DFDL-described data: each information item has a set of associated named
members. In this specification, the member names are shown in square brackets, [thus]. The
types of information item are listed in Section 4.1 Information Items.

The DFDL Information Set does not require or favor a specific interface or class of interfaces.
This specification presents the information set as a modified tree for the sake of clarity and
simplicity, but there is no requirement that the DFDL Information Set be made available through a
tree structure; other types of interfaces, including (but not limited to) event-based and query-
based interfaces, are also capable of providing information conforming to the DFDL Information
Set.

The terms "information set" and "information item" are similar in meaning to the generic terms
"tree" and "node", as they are used in computing. However, the former terms are used in this
specification to reduce possible confusion with other specific data models.

The DFDL Information Set is similar in purpose to the XML Information Set [XMLInfo], however, it
is not identical, nor a perfect subset, as there are important differences.

4.1 Information Items

An information set contains two different types of information items, as explained in the following
sections. Every information item has members. For ease of reference, each member is given a
name, indicated [thus].

 Document Information Item 4.1.1

There is exactly one document information item in the information set, and all other information
items are accessible through the [root] member of the document information item.

There is no specific DFDL schema component that corresponds to this item. It is a concrete
artifact describing the information set.

The document information item has the following members:

1. [root] The element information item corresponding to the root element declaration of the
DFDL Schema.

2. [dfdlVersion] String. The version of the DFDL specification to which this information set
conforms. For DFDL V1.0 this is 'dfdl-1.0'

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 29 of 235

3. [schema] String. This member is reserved for future use.

4. [unicodeByteOrderMark] Enum. When the encoding of the root element of the
document is exactly UTF-8, UTF-16, or UTF-32 (or CCSID equivalent), the member value
indicates whether the document starts with a Byte-order-mark (BOM), and what the value
of the mark was. If there is a BOM at the start of the data stream, then for UTF-8
encoding the value is 'UTF-8'; for UTF-16 encoding the value is 'UTF-16LE' or 'UTF-
16BE'; for UTF-32 the value is 'UTF-32LE' or 'UTF-32BE'. If there is no BOM then the
member value is empty. When the encoding of the root element of the document is any
other encoding, the member value is empty. When unparsing, if this member is not empty
and the encoding is UTF-8, UTF-16, or UTF32, then this member's value is used to
determine the specific byte-order mark written, and for UTF-16 and UTF-32, the byte
order used when characters are encoded to the output data stream.

 Element Information Items 4.1.2

There is an element information item for each value parsed from the non-hidden DFDL-
described data. This corresponds to an occurrence of a non-hidden element declaration of simple
type in the DFDL Schema and is known as a simple element information item.

There is an element information item for each explicitly declared structure in the DFDL-
described data. This corresponds to an occurrence of an element declaration of complex type in
the DFDL Schema and is known as a complex element information item.

In this information set, as in an XML document, an array is just a set of adjacent elements with
the same name and namespace. (To represent the array explicitly, introduce a new complex type
element to contain the array elements only.)

One of the element information items is the [root] member of the document information item,
corresponding to the root element declaration of a DFDL Schema, and all other element
information items are accessible by recursively following its [children] member.

An element information item has the following members:

1. [namespace] String. The namespace, if any, of the element. If the element does not
belong to a namespace, the value is the empty string.

2. [name] String. The local part of the element name.

3. [document] The document information item representing the DFDL information set that
contains this element. This element is empty except in the root element of an information
set.

4. [datatype] String. The name of the XML Schema 1.0 built-in simple type to which the
value corresponds. DFDL supports a subset of these types listed in section 5.1 DFDL
Subset of XML Schema. In a complex element information item this member has no
value.

5. [dataValue] The value in the value space (as defined by XML Schema Part 2: Datatypes
[XSDLV1]) of the [datatype] member or special value nil. In a complex element
information item this member has no value.

For information items of datatype xs:string, the value is an ordered collection of unsigned
16-bit integer codepoints each having any value from 0x0000 to 0xFFFF. Where defined,
these are interpreted as the ISO646 character codes. Codepoints disallowed by ISO
10646, such as 0xD800 to 0xDFFF are explicitly allowed by the DFDL infoset. The
codepoints of the string are stored in 'implicit' (also known as logical), left-to-right
bidirectional ordering and orientation. DFDL's infoset represents Unicode characters with

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 30 of 235

character codes beyond 0xFFFF by way of surrogate pairs (2 adjacent codepoints) in a
manner consistent with the UTF-16 encoding of ISO 10646.

6. [children] An ordered set of zero or more element information items. The order they
appear in the set is the order implied by the DFDL Schema. 'Ordered set' is not formally
defined here, but two operations are assumed: 'count' gives the number of information
items, and 'at (index)' gives the element at ordinal position 'index' starting from 1. In a
simple element information item this member has no value. In a document information
item this member contains exactly one element information item.

7. [parent] The complex element information item which contains this information item in its
[children] member. In the root element of an information set this member is empty.

8. [schema] String. A reference to a schema component associated with this information
item, if any. If not empty, the value must be an absolute or relative Schema Component
Designator [SCD].

9. [valid] Boolean
3
. True if the element is valid as determined by a DFDL implementation

that performs validation checking. A complex element information item is not valid if any
of its [children] are not valid. Empty if validation is not enabled.

10. [unionMemberSchema]
4
 String. For simple element information items, this member

contains an SCD reference to the member of the union that matched the value of the
element. Empty if validation is not enabled. Empty if the element's type is not a union.

On unparsing, any non-empty values for the [valid] or [unionMemberSchema] members are
ignored. However, in the augmented infoset which is built during the unparse operation
[valid] will have a value, and [unionMemberSchema] may have a value.

4.2 "No Value''

Some members may sometimes have the value no value, and it is said that such a member has
no value. This value is distinct from all other values. In particular it is distinct from the empty
string, the empty set, and the empty list, each of which simply has no members, and it is also
distinct from the special value nil.

4.3 DFDL Information Item Order

On parsing and unparsing information items will be presented in the order they are defined in the
DFDL Schema.

4.4 DFDL Infoset Object model

By way of illustration, the DFDL information set is presented below as an object model using a
Unified Modeling Language (UML) class diagram, augmented using the Object Constraint
Language (OCL) [http://www.omg.org/technology/documents/modeling_spec_catalog.htm].

The structure of the information set follows the Composite design pattern. In case of
inconsistency or ambiguity, the preceding discussion takes precedence.

3
 The purpose of this member is to support construction of a W3C standard Post Schema

Validation Infoset (PSVI) from a DFDL Infoset.

4
 Also to support PSVI construction.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 31 of 235

DFDL is able to describe the format of the physical representation for data whose structure
conforms to this model. Note that this model allows hierarchically nested data, but does not allow
representation of arbitrary connected graphs of data objects.

Figure 1 DFDL Infoset Object Model

4.5 DFDL Augmented Infoset

When unparsing, one begins with the DFDL schema and conceptually with the logical infoset. As
the values of items are filled in by defaulting, and by use of the dfdl:outputValueCalc property
(including on hidden items) (see section 17 Calculated Value Properties.), these new item values
augment the infoset. The resulting infoset is called the augmented infoset.

An element declaration in the schema describes a potentially represented item if that element
declaration does not have a dfdl:inputValueCalc property (see section 17 Calculated Value
Properties.). Whether the element declaration describes an item that is actually represented or
not depends on whether the element declaration is for an optional element and whether the
element has a corresponding value in the augmented infoset.

In expressions, the function dfdl:representationLength() can be called to determine the length of
the representation of an item including all content and framing. If an element declaration is not
potentially represented, then dfdl:representationLength() is defined to return 0.

When unparsing, an element declaration and the infoset are considered as follows below. An
implementation may use any technique consistent with this algorithm:

a) If the element declaration has a dfdl:outputValueCalc property then the expression which is
the dfdl:outputValueCalc property value is evaluated and the resulting value becomes the value
of the element item in the augmented infoset. Any pre-existing value for the infoset item is
superseded by this new value.

References to other augmented infoset items from within the outputValueCalc expression must
obtain their values from the augmented infoset directly (when the value is already present) or by
recursively using these methods (a) and (b) as needed.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 32 of 235

b) If the element declaration has no corresponding value in the augmented infoset, and the
element declaration is for a required occurrence, and it has a default value specified, then an
element item having the default value is created in the augmented infoset.

c) If any Infoset item's value is requested recursively as a part of (a) above and (a) does not
apply, and the corresponding value is not present, and (b) does not apply then it is a processing
error.

Given this augmented infoset, then if the potentially represented element declaration has a
corresponding infoset item then that item is converted to its representation according to its DFDL
properties. If the element declaration is for a required occurrence, and there is no value in the
augmented infoset then it is a processing error.

Because rule (a) above is used even if the augmented infoset item already exists and has a
value, it is possible for an outputValueCalc expression to be evaluated multiple times. DFDL
implementations are free to cache values and avoid this repeated evaluation for efficiency, as the
semantics of DFDL require that the outputValueCalc expression return the same value every time
it is evaluated.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 33 of 235

5. DFDL Schema Component Model

When using DFDL, the format of data is described by means of a DFDL Schema.

The DFDL Schema Component Model is shown in conceptual UML in Figure 2. First we show the
model for elements, groups and the top of the type hierarchy.

The shaded boxes have direct corresponding element syntax and therefore appear in DFDL
schema

Figure 2 DFDL Schema UML diagram

The simple types are shown in Figure 3. The graph shows all the types defined by XML Schema
version 1.0, and the subset of these types supported by DFDL are shown as shaded.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 34 of 235

DFDL built-in types

duration

anySimpleType

string QName NOTATION float double decimal boolean base64Binary hexBinary anyURI

normalizedString

token

language Name NMTOKEN

NMTOKENSNCName

ID IDREF ENTITY

IDREFS ENTITIES

integer

long nonPositiveInteger

negativeInteger positiveInteger unsignedLong

unsignedInt

unsignedShort

unsignedByte

int

short

byte

date time dateTime gYear gYearMonth gMonth gMonthDay gDay

nonNegativeInteger

Figure 3 DFDL simple types

These types are defined as they are in XML Schema, with exceptions for:

String – In DFDL a string can contain any character codes. None are reserved. (Including
the character with character code U+0000, which is not permitted in XML documents.)

Each object defined by a class in the above UML is called a DFDL Schema component.

We express the DFDL Schema Model using a subset of the XML Schema Description Language
(XSDL). XSDL provides a standardized schema language suitable for expressing the DFDL
Schema Model.

A DFDL Schema is an XML schema containing only a restricted subset of the constructs
available in full W3C XML Schema Description Language. Within this XML schema, special DFDL
annotations are distributed that carry the information about the data's format or representation.

A DFDL Schema is a valid XML schema. However, the converse is not true since the DFDL
Schema Model does not include many concepts that appear in XML schema.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 35 of 235

5.1 DFDL Subset of XML Schema

The DFDL subset of XSDL is a general model for hierarchically-nested data. It avoids the XSDL
features used to describe the peculiarities of XML as a syntactic textual representation of data,
and features that are simply not needed by DFDL.

The following lists detail the similarities and differences between general XSDL and this subset.

DFDL Schemas consist of:

• Standard XSDL namespace management

• Standard XSDL import and management for multiple file schemas

• Local element declarations with dimensionality via maxOccurs and minOccurs.

• Global element declarations

• ComplexType definitions with empty or element-only content models.

• DFDL appinfo annotations describing the data format

• These simple types: string, float, double, decimal, integer, long, int, short, byte,
nonNegativeInteger, unsignedLong, unsignedInt, unsignedShort, unsignedByte, boolean,
date, time, dateTime, hexBinary

• These facets: minLength, maxLength, minInclusive, maxInclusive, minExclusive,
maxExclusive, totalDigits, fractionDigits, enumeration, pattern (for xs:string type only)

• Fixed values

• Default values

• 'sequence' model groups (without minOccurs and maxOccurs or with both minOccurs="1"
and maxOccurs="1")

• 'choice' model groups (without minOccurs and maxOccurs or with both minOccurs="1"
and maxOccurs="1")

• Simple type derivations derived by restriction from the allowed built-in types

• Reusable Groups: named model group definitions can only contain one model group

• Element references with dimensionality via maxOccurs and minOccurs.

• Group references without dimensionality

• Nillable attribute is "true" (that is, nillable="true" in the element declaration.)

• Appinfo annotations for sources other than DFDL are permitted and ignored

• Unions; the memberTypes must be derived from the same simple type. DFDL
annotations are not permitted on union members.

5

• XML Entities

5
 The purpose of unions is to allow multiple constraints via facets such as multiple independent

range restrictions on numbers. This enhances the ability to do rich validation of data.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 36 of 235

Note: xs:nonNegativeInteger is treated as an unsigned xs:integer.

The following constructs from XML Schema are not used as part of the DFDL Schema Model of
DFDL v1.0 schemas; however, they are all reserved

6
 for future use since the data model may be

extended to use them in future versions of DFDL:

• Attribute declarations (local or global)

• Attribute references

• Attribute group definitions

• Complex type derivations where the base type is not xs:anyType.

• Complex types having mixed content models or simple content models

• List simple types

• Union simple types where the member types are not derived from the same simple type.

• These atomic simple types: normalizedString, token, Name, NCName, QName,
language, positiveInteger, nonPositiveInteger, negativeInteger, gYear, gYearMonth,
gMonth, gMonthDay, gDay, ID, IDREF, IDREFS, ENTITIES, ENTITY, NMTOKEN,
NMTOKENS, NOTATION, anyURI, base64Binary

• maxOccurs and minOccurs on model groups (except if both are '1')

• minOccurs = 0 on branches of xs:choice model groups

• Identity Constraints

• Substitution Groups

• xs:all groups

• xs:any element wildcards

• Redefine - This version of DFDL does not support xs:redefine. DFDL schemas must not
contain xs:redefine directly or indirectly in schemas they import or include.

• whitespace facet

• Recursively-defined types and elements (defined by way of type, group, or element
references)

5.2 XSD Facets, min/maxOccurs, default, and fixed

XSD element declarations and references can carry several properties that express constraints
on the described data. These constraints are mainly used for validation. These properties include:

• the facets

• minOccurs, maxOccurs

• default

• fixed

The facets and the types they are applicable to are:

• minLength maxLength (for types xs:string, and xs:hexBinary)

6
 By reserved we mean that conforming DFDL v1.0 implementations MAY NOT assign semantics

to them.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 37 of 235

• pattern (for type xs:string and all types descending from xs:string in Figure 3 DFDL
simple types)

• enumeration (all types except xs:boolean)

• maxInclusive, maxExclusive, minExclusive, minInclusive (for types xs:float, xs:double,
xs:date, xs:time, xs:dateTime, xs:decimal and all integer types descending from
xs:decimal in Figure 3)

• totalDigits (for type xs:decimal and all integer types descending from xs:decimal in Figure
3)

• fractionDigits (for type xs:decimal)

The facets (but not maxOccurs nor minOccurs) are also checked by the dfdl:checkConstraints
DFDL expression language function.

The following sections describe these in more detail.

 MinOccurs and MaxOccurs 5.2.1

The XSDL minOccurs property is used:

• To determine if an element declaration or reference is an array, an optional element, or
neither.

• For some values of the property dfdl:occursCountKind, to determine the required
minimum number of occurrences of an array both when parsing and unparsing.

• If validating, to determine the minimum valid number of occurrences of an array both
when parsing and unparsing.

The XSDL maxOccurs property is used:

• To determine if an element declaration or reference is an array, an optional element, or
neither.

• When dfdl:occursCountKind is "fixed", then the XSDL maxOccurs value is the fixed
number of occurrences of the array element, which is then called a Fixed Array Element.
It is a schema definition error if XSDL minOccurs is not equal to XSDL maxOccurs.

• When dfdl:occursCountKind is "implicit" then XSDL maxOccurs value (if not unbounded)
is used to determine the maximum number of element occurrences both when parsing or
unparsing.

• If validating, to determine the maximum valid number of occurrences of an array both
when parsing and unparsing.

For some values of dfdl:occursCountKind such as 'implicit', it is a processing error when an array
is found to have a number of occurrences not conforming to XSDL minOccurs in the absence of a
default value specification. For other values of dfdl:occursCountKind such as 'parsed', it is only a
validation error if an array is found to have fewer than XSDL minOccurs occurrences. See
Section 16, Properties for Array Elementss and Optional Elements: Properties for Repeating and
Variable-Occurrence Data Items, for more details.

 MinLength, MaxLength 5.2.2

These facets are used:

• When dfdl:lengthKind is "implicit" and type is xs:string or xs:hexBinary. In that case the
length is given by the value of the XSD maxLength facet. In this case the XSD minLength
facet is required to be equal to the XSD maxLength facet (schema definition error
otherwise).

• For validation of variable length string elements.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 38 of 235

 MaxInclusive, MaxExclusive, MinExclusive, MinInclusive, TotalDigits, 5.2.3
FractionDigits

• Used for validation only

The format of numbers is not derived from these facets. Rather dfdl properties are used to specify
the format.

 Pattern 5.2.4

• Allowed only on elements of type xs:string or derived from it.

• Used for validation only

It is important to avoid confusion of the pattern facet with other uses of regular expressions that
are needed in DFDL (for example, to determine the length of an element by regular expression
matching).

Note: in XSD, pattern is about the lexical representation of the data, and since all is text there,
everything has a lexical representation. In DFDL only strings are guaranteed to have a lexical and
logical value that is identical.

 Enumeration 5.2.5

Enumerations are used to provide a list of valid values in XSD.

• Used for validation only

Note: in DFDL we do not use XSD enumeration as a means to define symbolic constants. These
are captured using dfdl:defineVariable constructs so they can be referenced from expressions.

 Default 5.2.6

The 'default' property is used:

• To provide the logical value of a required element while parsing when the element is
missing. See 13.15 Nil Value Processings and Default processing

• To provide the logical value of a required element when unparsing when element is
missing. See 13.15 Nil Value Processings and Default processing

 Fixed 5.2.7

The 'fixed' property is used:

• To constrain the logical value of an element when validating.

• To provide the logical value of a required element while parsing when the element is
missing. See 13.15 Nil Value Processings and Default processing

• To provide the logical value of a required element when unparsing when element is
missing. See 13.15 Nil Value Processings and Default processing

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 39 of 235

6. DFDL Syntax Basics

Using DFDL, a data format is described by placing special annotations at various positions within
an XML schema. This XML schema conveys the basic structure of the data format, while the
annotations fill in the detail. Annotations are used to describe aspects such as the file encoding
and byte ordering, as well as declaring variables for reference elsewhere, and specifying
properties that govern the capabilities of the DFDL processor. A DFDL processor requires these
annotations, along with the structural information of the enclosing XML schema, to make sense of
the physical data model.

6.1 Namespaces

The xs:appinfo source URI http://www.ogf.org/dfdl/ is used to distinguish DFDL annotations from
other annotations.

The element and attribute names in the DFDL syntax are in a namespace defined by the URI
http://www.ogf.org/dfdl/dfdl-1.0/. All symbols in this namespace are reserved. DFDL
implementations may not provide extensions to the DFDL standard using names in this
namespace. Within this specification, the namespace prefix for DFDL is "dfdl" referring to the
namespace http://www.ogf.org/dfdl/dfdl-1.0/.

Attributes on DFDL annotations that are not in the DFDL namespace or or in no namespace are
ignored.

A DFDL Schema document contains XML schema annotation elements that define and assign
names to parts of the format specification. These names are defined using the target namespace
of the schema document where they reside, and are referenced using QNames in the usual
manner. A DFDL schema document can include or import another schema document, and
namespaces work in the usual manner for XML schema documents. The schema is the schema
including all additional schemas referenced through import and include. Generally, in this
specification, when we refer to the DFDL Schema we mean the schema. When we refer to a
specific document we will use the term DFDL Schema document.

6.2 The DFDL Annotation Elements

DFDL annotations must be positioned specifically where DFDL annotations are allowed within an
XML schema document. These positions are known as annotation points. When an annotation is
positioned at an annotation point, it binds some additional information to the schema component
that encloses it. The description of a data format is achieved by correctly placing annotations on
the structural components of the schema.

DFDL specifies a collection of annotations for different purposes. They are organized into three
different annotation types: Format Annotations, Statement Annotations, and Defining Annotations

At any single annotation point of the schema there can be only one format annotation, but there
can be several statement annotations although there are rules about which of those are allowed
to co-exist as well which will be described in sections about those specific annotation types.

Annotation
Type

Annotation Element Description

Format

Annotation

choice Defines the physical data format properties of an

xs:choice group. See section 7.1.

element Defines the physical data format properties of an

xs:element and xs:element reference. See section 7.1.

format Defines the physical data format properties for multiple

DFDL schema constructs. Used on an xs:schema and as

a child of a dfdl:defineFormat annotation. This includes

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 40 of 235

aspects such as the encodings, separators, and many

more. See section 7.1.

group Defines the physical data format properties of an

xs:group reference. See section 7.1.

property Used in the syntax of format annotations. See section

7.1.2.2.

sequence Defines the physical data format properties of an

xs:sequence group. See section 7.1.

simpleType Defines the physical data format properties of an

xs:simpleType. See section 7.1.

escapeScheme Defines the scheme by which quotation marks and

escape characters can be specified. This is for use with

delimited text formats. See section 7.6.

Statement

Annotation

assert Defines a test to be used to ensure the data are well

formed. Assert is used only when parsing data. See

section 7.3

discriminator Defines a test to be used when resolving a point of

uncertainty such as choice branches or optional

elements. A dfdl:discriminator is used only when parsing

data to resolve the point of uncertainty to one of the

alternatives. See section 7.4

newVariableInstance Creates a new instance of a variable. See section 7.8

setVariable Sets the value of a variable whose declaration is in

scope See section 7.9

Defining

Annotation

defineEscapeScheme Defines a named, reusable escapeScheme See section

7.5

defineFormat Defines a reusable data format by collecting together

other annotations and associating them with a name that

can be referenced from elsewhere. See section 7.2

defineVariable Defines a variable that can be referenced elsewhere.

This can be used to communicate a parameter from one

part of processing to another part. See section 7.7

Table 1 - DFDL Annotation Elements

6.3 DFDL Properties

Properties on DFDL annotations may be one or more of the following types

• DFDL string literal
The property represents a sequence of literal bytes or characters which appear in the
data stream. The value type is a restriction of the XSDL xs:token, further disallowing the
space character. DFDL entities must be used to express whitespace in a DFDL String
Literal..

• DFDL expression
The property is an xs:string the value of which is a DFDL subset XPath 2.0 expression

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 41 of 235

that returns a value derived from other property values and/or from the DFDL infoset.
Leading and trailing spaces are allowed and ignored.

• DFDL regular expression
The property is an xs:string the value of which is a regular expression that can be used
as a pattern to calculate the length of an element by applying that pattern to the
sequence of literal bytes or characters which appear in the data stream. Note that leading
and trailing spaces are significant and are part of the regular expression value.

• Enumeration
The property value is an XSDL xs:token the value of which is one of the allowed values
listed in the property description.

• Logical Value.
The property value is a string that describes a logical value. The type of the logical value
is one of the XML schema simple types. The string must conform to the XML schema
lexical representation for the type.

• QName
The property value is an XML Qualified Name as specified in "Namespaces in XML"
[XMLNS10]

Some properties accept a list or union of types

• List of DFDL String Literals or Logical Values
The property value is a space-separated list of the specified type. When parsing, if more
than one string literal in the list matches the portion of the data stream being evaluated
then the longest matching value in the list must be used. When unparsing, the first value
in the list must be used. String literals containing whitespace or string literals
representing the empty string must use character class entities in their syntax.

• Union of types and expressions.
The property value is a union of DFDL expression and exactly one of the other types. The
expression must resolve to a value of the other type.

• Union of types.
The property value is a union of two or more types. The type is dependent on the value of
another property. For example dfdl:nilValue can be a List of DFDL String Literals or a List
of Logical Values depending on dfdl:nilKind

 DFDL String Literals 6.3.1

DFDL String Literals represent a sequence of literal bytes or characters which appear in the data
stream. This presents the following challenges

- the literal characters in the data stream might not be in the same encoding as the DFDL
schema

- it may be necessary to specify a literal character which is not valid in an XML document

- it may be necessary to specify one or more raw byte values

A DFDL string literal can describe any of the following types of literal data in any combination:

- a single literal character in any encoding

- a string of literal characters in any encoding

- a bi-directional character string

- one or more characters from a set of related characters (e.g. end-of-line characters)

- a literal byte value

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 42 of 235

A DFDL string literal is therefore able to describe any arbitrary sequence of bytes and characters.

Empty Strings: Empty string is not allowed as a DFDL string literal value unless explicitly stated
otherwise in the description of a property. In this case the use of empty string provides some
property specific behavior different from simply using the empty string as a value. When the
empty string is to be used as a value, the entity %ES; must be used in the corresponding DFDL
string literal.

Whitespace: When whitespace must be used as part of a property value, the DFDL string literal
must use entities (such as %WSP;) to represent the whitespace. (This allows a property to
represent lists of DFDL string literals by using literal spaces to separate list elements.)

 Character strings in DFDL String Literals 6.3.1.1

A literal string in a DFDL Schema is written in the character set encoding specified by the XML
directive that begins all XML documents:

<?xml version="1.0" encoding="UTF-8" ?>

In this example, the DFDL schema is written in UTF-8, so any literal strings contained in it, and
particularly string literals found in its representation property bindings in the format annotations,
are expressed in UTF-8.

However, these strings are being used to describe features of text data that are commonly in
other character set encodings. For example, we may have EBCDIC data that is comma
separated. A comma in EBCDIC has a single-byte code unit of 0x6B in the data, the numeric
value of which does not correspond to the Unicode character code for comma which is U+002C.
However, when we indicate that an item is "," (comma) separated and we specify this using a
string literal along with specifying the 'encoding' property to be 'ebcdic-cp-us' then this means that
the data are separated by EBCDIC commas regardless of what character set encoding is used to
write the DFDL Schema.

<?xml version="1.0" encoding="UTF-8">

<xs:schema ... >

 ...

 <dfdl:format encoding="ebcdic-cp-us" separator=","/>

 ...

</xs:schema>

When a DFDL processor uses the separator expressed in this manner, the string literal "," is
translated into the character set encoding of the data it is separating as specified by the encoding
representation property. Hence, in this case we would be searching the data for a character with
codepoint 0x6B (the EBCDIC comma), not a UTF-8 or Unicode (0x2C) comma which is what
exists in the DFDL schema document file.

Character strings can include bidirectional data.

 DFDL Character Entities, Character Class Entities, and Byte Values in String 6.3.1.2
Literals

DFDL character entities specify a single Unicode character and provide a convenient way to
specify code points that appear in the data stream but would be difficult to specify in XML strings.
For example, common non-printable characters or code points, such as 0x00, that are not valid in
XML documents. DFDL entities are based on XML entities, which can also be used in a DFDL
schema.

The following grammar gives the syntax of DFDL String Literals generally, including the various
kinds of entities.

DfdlStringLiteral ::= (DfdlStringLiteralPart)+

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 43 of 235

DfdlStringLiteralPart ::= LiteralString | DfdlCharEntity | DfdlCharClass | ByteValue

LiteralString ::= A string of literal characters

DfdlCharEntity ::= DfdlEntity | DecimalCodePoint | HexadecimalCodePoint

DfdlCharClass ::= '%' DfdlCharClassName ';'

ByteValue ::= '%#r' [0-9a-fA-F]{2} ';'

DfdlEntity ::= '%' DfdlEntityName ';'

DecimalCodePoint ::= '%#' [0-9]+ ';'

HexadecimalCodePoint ::= '%#x' [0-9a-fA-F]+ ';'

DfdlEntityName ::= 'NUL'|'SOH''|'STX'|'ETX'|

'EOT'|'ENQ'|'ACK'|'BEL'|

'BS'|'HT'|'LF'|'VT'|'FF'|

'CR'|'SO'|'SI'|'DLE'|

'DC1'|'DC2'|'DC3'|'DC4'|

'NAK'|'SYN'|'ETB'|'CAN'|

'EM'|'SUB'|'ESC'|'FS'|

'GS'|'RS'|'US'|'SP'|

'DEL'|'NBSP'|'NEL'|'LS'

DfdlCharClassName ::= DfdlNLEntity | DfdlWSPEntity | DfdlWSPStarEntity |
DfdlWSPPlusEntity | DfdlESEntity

DfdlNLEntity ::= 'NL'

DfdlWSPEntity ::= 'WSP'

DfdlWSPStarEntity ::= 'WSP*'

DfdlWSPPlusEntity ::= 'WSP+'

DfdlESEntity ::= 'ES'

Table 2 DFDL Character Entity, Character Class Entity, and Byte Value Entity syntax

Using %% inserts a single literal "%" into the string literal. This "%" is subject to character set
encoding translation as is any other character.

A HexadecimalCodePoint provides a hexadecimal representation of the character's code point in
ISO/IEC 10646.

A DecimalCodePoint provides a decimal representation of the character's code point in ISO/IEC
10646.

A DfdlEntityName is one of the mnemonics given in the following tables.

Mnemonic Meaning Unicode Character Code

NUL null U+0000

SOH start of heading U+0001

STX start of text U+0002

ETX end of text U+0003

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 44 of 235

EOT end of transmission U+0004

ENQ enquiry U+0005

ACK acknowledge U+0006

BEL bell U+0007

BS backspace U+0008

HT horizontal tab U+0009

LF line feed U+000A

VT vertical tab U+000B

FF form feed U+000C

CR carriage return U+000D

SO shift out U+000E

SI shift in U+000F

DLE data link escape U+0010

DC1 device control 1 U+0011

DC2 device control 2 U+0012

DC3 device control 3 U+0013

DC4 device control 4 U+0014

NAK negative acknowledge U+0015

SYN synchronous idle U+0016

ETB end of transmission block U+0017

CAN cancel U+0018

EM end of medium U+0019

SUB substitute U+001A

ESC escape U+001B

FS file separator U+001C

GS group separator U+001D

RS record separator U+001E

US unit separator U+001F

SP space U+0020

DEL delete U+007F

NBSP no break space U+00A0

 NEL Next line U+0085

 LS Line separator U+2028

Table 3 DFDL Entities

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 45 of 235

 DFDL Character Class Entities in DFDL String Literals 6.3.1.3

The following DFDL character classes are provided to specify one or more characters from a set
of related characters.

Mnemonic Meaning Unicode Character
Code(s)

NL Newline

On parse any one of the single characters CR, LF, NEL or
LS or the character combination CRLF.

On unparse the value of the dfdl:outputNewLine property
is output, which must specify one of the single characters
%CR;, %LF;, %NEL;, or %LS; or the character
combination %CR;%LF;.

U+000A LF

U+000D CR

U+000D U+000A CRLF

U+0085 NEL

U+2028 LS

WSP Single whitespace

On parse any white space character

On unparse a space (U+0020) is output

U+0009-U+000D
(Control characters)

U+0020 SPACE

U+0085 NEL

U+00A0 NBSP

U+1680 OGHAM
SPACE MARK

U+180E MONGOLIAN
VOWEL SEPARATOR

U+2000-U+200A
(different sorts of
spaces)

U+2028 LSP

U+2029 PSP

U+202F NARROW
NBSP

U+205F MEDIUM
MATHEMATICAL
SPACE

U+3000
IDEOGRAPHIC SPACE

WSP* Optional Whitespaces

On parse whitespace characters are ignored

On unparse nothing is output

Same as WSP

WSP+ Whitespaces

On parse one or more whitespace characters are ignored.
It is an processing error if no whitespace character is
found

On unparse a space (U+0020) is output

Same as WSP

ES Empty String

Used in space separated lists when empty string is one of

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 46 of 235

the values

(may only be used for the dfdl:nilValue property)

Table 4 DFDL Character Class Entities

 DFDL Byte Value Entities in DFDL String Literals 6.3.1.4

DFDL byte value entities provide a way to specify a single byte as it appears in the data stream
without any character set encoding translation. To specify a string of byte values, a sequence of
two or more byte value entities must be used. The syntax is in Table 2 above. Example:

%#rFF;

 DFDL Expressions 6.3.2

Some DFDL properties allow DFDL expressions [see Section 23 Expression language] to be
used so that the property can be set dynamically at processing-time.

The general syntax of expressions is "{" expression "}"

The rules for recognizing DFDL expressions are

• Must start with a '{' in the first position and end with '}' in the last position.

• '{' in any position other than the first is treated as a literal

• '}' in any position other than the last position is treated as a literal.

• '{{' as the first characters are treated as the literal '{' and not as the start of a DFDL
expression.

DFDL expressions reference other items in the infoset or augmented infoset using absolute or
relative paths. Relative paths are evaluated when the component containing the expression is
referenced not when it is declared. For example a global element may have a DFDL property
which is an expression that contains a relative path to another element. The relative path is
evaluated when the global element is referenced from an element reference.

DFDL expressions that are used to provide the value of DFDL properties in the dfdl:format
annotation on the top level xs:schema declaration MAY NOT contain relative paths.

 DFDL Regular Expressions 6.3.3

The DFDL lengthPattern property expects a regular expression to be specified. The DFDL
Regular Expression language is defined in the section 24 DFDL Regular Expressions.

 Enumerations in DFDL 6.3.4

Some DFDL properties accept an enumerated list of valid values. It is a schema definition error if
a value other than one of the enumerated values is specified. The case of the specified value
must match the enumeration. An enumeration is of type string unless otherwise stated.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 47 of 235

7. Syntax of DFDL Annotation Elements

This section describes the syntax of each of the DFDL annotation elements along with discussion
of their basic meanings.

The DFDL annotation elements are listed in Table 1 - DFDL Annotation Elements

7.1 Component Format Annotations

A data format can be 'used' or put into effect for a part of the schema by use of the component
format annotation elements.

There are specific annotations for each type of schema component that supports only the
representation properties applicable to that component. The table below gives the specific
annotation for each schema component.

Schema component DFDL annotation

xs:choice dfdl:choice

xs:element dfdl:element

xs:element reference dfdl:element

xs:group reference dfdl:group

xs:schema dfdl:format

xs:sequence dfdl:sequence

xs:simpleType dfdl:simpleType

Table 5 DFDL Component Format Annotations

In addition the dfdl:format annotation is used inside a dfdl:defineFormat annotation to define a
named reusable set of representation properties that can be referenced from any component
specific format annotation or from other named format definitions.

A dfdl:format annotation at the top level of a schema, that is as an annotation child element on
the xs:schema, provides a set of default properties for the lexically enclosed schema document.
See 8.1 Providing Defaults for DFDL properties.

Example of DFDL component format annotation:

<xs:schema ...>

 ...

 <xs:element name="root">

 <xs:annotation>

 <xs:appinfo source="http://www.ogf.org/dfdl/">

 <dfdl:element ref="aBaseConfig"

 representation="text"

 encoding="UTF-8"/>

 </xs:appinfo>

 </xs:annotation>

 </xs:element>

 ...

</xs:schema>

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 48 of 235

 The dfdl:ref Property 7.1.1

A named, reusable, dfdl:defineFormat definition is used by referring to its name from a format
annotation using the 'ref' property. For example:

<dfdl:element ref="reusableDef" encoding="ebcdic-cp-us" />

The behavior of this dfdl:defineFormat definition is as if all representation properties defined by
the named dfdl:defineFormat definition were instead written directly on this format annotation;
however, these are superseded by any representation properties that are defined here such as
the encoding property in the example above.

 Property Binding Syntax 7.1.2

The format properties may be specified in one of three forms:

1. Attribute form

2. Element form

3. Short form

A DFDL property may be specified using any form with the following exceptions

• The ref property may be specified in attribute or short form

• The escapeSchemeRef property may be specified in attribute or short form

• The hiddenGroupRef property may be specified in attribute or short form

• The prefixLengthType property may be specified in attribute or short form

• Short form is not allowed on the xs:schema element.

It is a schema definition error if the same property is specified in more than one form in the
resolved set of annotations for an annotation point.

 Property Binding Syntax: Attribute Form 7.1.2.1

Within the format annotation elements are bindings for properties of the form:

 Property='Value'

For example:

 <xs:annotation>

 <xs:appinfo source="http://www.ogf.org/dfdl/">

 <dfdl:format encoding="utf-8" separator="%NL;"/>

 </xs:appinfo>

 </xs:annotation>

The Property is the name of the property. The Value is an XML string literal corresponding to a
value of the appropriate type.

 Property Binding Syntax: Element Form 7.1.2.2

The representation properties can sometimes have complex syntax, so an element form for
representation property bindings is provided as element content within the format element content
model. This is provided to ease syntactic expression difficulties. The element is called
dfdl:property and it has one attribute 'name' which provides the name of the property.

For example:

 <xs:annotation>

 <xs:appinfo source="http://www.ogf.org/dfdl/">

 <dfdl:format>

 <dfdl:property name='encoding'>utf-8</dfdl:property>

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 49 of 235

 <dfdl:property name='separator'>%NL;</dfdl:property>

 </dfdl:format>

 </xs:appinfo>

 </xs:annotation>

Element form is mostly used for properties that themselves contain the quotation mark characters
and escape characters so that they can be expressed without concerns about confusion with the
XSDL syntax use of these same characters. CDATA encapsulation can be used so as to allow
malformed XML and mismatched quotes to be easily used as representation property values:

<dfdl:property name='initiator'><[CDATA[<!--]]></dfdl:property>

 Property Binding Syntax:Short Form 7.1.2.3

To save textual clutter, short-form syntax for format annotations is also allowed on xs:element,
xs:sequence, xs:choice, xs:group (for group references only), and xs:simpleType schema
elements. (The xs:schema element cannot carry short-form annotations). Attributes which are in
the namespace 'http://www.ogf.org/dfdl/dfdl-1.0/' and whose local name matches one of the
DFDL representation properties are assumed to be equivalent to specific DFDL attribute form
annotations.

For example the two forms below are equivalent in that they describe the same data format. The
first is the short form of the second:

<xs:element name="elem1">

 <xs:complexType>

 <xs:sequence dfdl:separator="%HT;" >

 ...

 </xs:sequence>

 </xs:complexType>

</xs:element>

<xs:element name="elem2">

 <xs:complexType>

 <xs:sequence>

 <xs:annotation><xs:appinfo source="http://www.ogf.org/dfdl/">

 <dfdl:sequence separator="%HT;" />

 </xs:appinfo></xs:annotation>

 ...

 </xs:sequence>

 </xs:complexType>

</xs:element>

Another example:

<xs:sequence dfdl:separator=",">

 <xs:element name="elem1" type="xs:int" maxOccurs="unbounded"

 dfdl:representation="text"

 dfdl:textNumberRep="standard"

 dfdl:initiator="["

 dfdl:terminator="]"/>

 <xs:element name="elem2" type="xs:int" maxOccurs="unbounded">

 <xs:annotation><xs:appinfo source="http://www.ogf.org/dfdl/">

 <dfdl:element representation="text"

 textNumberRep="standard"

 initiator="["

 terminator="]"/>

 </xs:appinfo></xs:annotation>

 </xs:element>

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 50 of 235

</xs:sequence>

Because short form syntax is not allowed on the xs:schema element, an attribute form dfdl:format
annotation must be used instead.

 Empty String as a Representation Property Value 7.1.3

DFDL provides no mechanism to un-set a property. Setting a representation property's value to
the empty string doesn't remove the value for that property, but sets it to the empty string value.
This may not be appropriate as a value for certain properties.

For example, in delimited text representations, it is sensible for the separator to be defined to be
the empty string. This turns off use of separator delimiters. For many other string-valued
properties, it is a schema definition error to assign them the empty string value. For example, the
character set encoding property (dfdl:encoding) cannot be set to the empty string.

7.2 dfdl:defineFormat - Reusable Data Format Definitions

One or more dfdl:defineFormat annotation elements can appear within the annotation children of
the xs:schema element. DFDL defining annotation elements may only appear as annotation
children of the xs:schema element.

The order of their appearance does not matter, nor does their position relative to other non-
annotation children of the xs:schema.

Each dfdl:defineFormat has a required name attribute.

The construct creates a named data format definition. The value of the name attribute is of XML
type NCName. The format name will become a member of the schema's target namespace.
These names must be unique within the namespace.

If multiple format definitions have the same 'name' attribute, in the same namespace, then it is a
schema definition error.

Here is an example of a format definition:

<xs:schema ...>

 <xs:annotation>

 <xs:appinfo source="http://www.ogf.org/dfdl/">

 <dfdl:defineFormat name="myConfig" >

 <dfdl:format representation="text"

 ref="textSpecialFormat1" />

 </dfdl:defineFormat>

 </xs:appinfo>

 </xs:annotation>

 ...

</xs:schema>

A dfdl:defineFormat serves only to supply a named definition for a format for reuse from other
places. It does not cause any use of the representation properties it contains to describe any
actual data.

 Inheritance for dfdl:defineFormat 7.2.1

A dfdl:defineFormat declaration can inherit from another named format definition by use of the ref
property of the dfdl:format annotation. This allows a single-inheritance hierarchy that reuses
definitions. When one definition extends another in this way, any property definitions contained in
its direct elements override those in any inherited definition.

Conceptually, the 'ref' inheritance chains can be flattened and removed by copying all inherited
property bindings and then superseding those for which there is a local binding. Throughout this
document we will assume inheritance is fully flattened. That is, all 'ref' inheritance is first removed
by flattening before any other examination of properties occurs.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 51 of 235

It is a schema definition error if use of the ref property results in a circular path.

 Using/Referencing a Named Format Definition 7.2.2

See section Error! Reference source not found. Error! Reference source not found.

7.3 The dfdl:assert Statement Annotation Element

The dfdl:assert statement annotation element is used to assert truths about a DFDL model that
are used only when parsing to ensure that the data are well-formed. These checks are separate
from validation checking and are performed even when validation is off. This distinction is needed
to ensure that switching validation off does not affect parsing.

Examples of dfdl:assert elements are below:

<dfdl:assert message="Value is not zero." test="{ ../x ne 0}" />

<dfdl:assert message="Precondition violation." >

 {../x le 0 and ../y ne "-->" and ..y ne "<!—" }

</dfdl:assert>

<dfdl:assert message="Postcondition violation." testKind='expression'>

 {../x ne "'"}

</dfdl:assert>

 Properties for dfdl:assert 7.3.1

A dfdl:assert annotation contains a test expression or a test pattern. The dfdl:assert is said to be
successful if the test expression evaluates to true or the test pattern returns a non-zero length
match, and unsuccessful if the test expression evaluates to false or the test pattern returns a zero
length match. An unsuccessful dfdl:assert causes a processing error.

The dfdl:testKind property specifies whether an expression or pattern is used by the dfdl:assert.
The expression or pattern can be expressed as an attribute or as a value.

<dfdl:assert test="{test expression}" />

<dfdl:assert>

 {test expression}

</dfdl:assert>

It is a schema definition error if a property is specified in more than one form.

It is a schema definition error if both a test expression and a test pattern are specified.

A dfdl:assert can appear as an annotation on:

• an xs:element declaration (local or global)

• an xs:element reference

• an xs:group reference

• an xs:sequence

• an xs:choice

• an xs:simpleType definition (local or global)

If the resolved set of statement annotations for a schema component contains multiple dfdl:assert
statements, then those with testKind='pattern' are executed before those with
testKind='expression' (the default). However, within each group the order of execution among
them is not specified.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 52 of 235

Once any one of the resolved set of asserts for a schema component is unsuccessful, no further
asserts in the set are executed.

Property
Name

Description

testKind Enum (optional)

Valid values are 'expression', 'pattern'

Default value is 'expression'

Specifies whether a DFDL expression or DFDL regular expression is used in the
dfdl:assert.

Annotation: dfdl:assert

test DFDL Expression

Applies when dfdl:testKind is 'expression'

A DFDL expression that evaluates to true or false. If the expression evaluates to
true then parsing continues. If the expression evaluates to false then a processing
error is raised.

Any element referred to by the expression must have already been processed or
must be a descendent of this element.

If a processing error occurs during the evaluation of the test expression then the
dfdl:assert also fails.

It is a schema definition error if dfdl:testKind is 'expression' or not specified, and an
expression is not supplied by either the value of the dfdl:assert element or the
value of the dfdl:test attribute.

Annotation: dfdl:assert

testPattern DFDL Regular Expression

Applies when dfdl:testKind is 'pattern'

A DFDL regular expression that is applied against the data stream starting at the
data position corresponding to the beginning of the representation. Consequently
the framing (including any initiator) is visible to the pattern.at the start of the
component on which the dfdl:assert is positioned.

If the pattern matching of the regular expression reads data that cannot be
decoded into characters of the current encoding, then the behavior is controlled by
the dfdl:encodingErrorPolicy property. See Section 11.2.1 Property
dfdl:encodingErrorPolicy for details.

If the length of the match is zero then the dfdl:assert evaluates to false and a
processing error is raised.

If the length of the match is non-zero then the dfdl:assert evaluates to true.

If a processing error occurs during the evaluation of the test regular expression
then the dfdl:assert also fails.

It is a schema definition error if dfdl:testKind is 'pattern', and a pattern is not
supplied by either the value of the dfdl:assert element or the value of the
dfdl:testPattern property.

It is a schema definition error if there is no value for the dfdl:encoding property in

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 53 of 235

scope.

It is a schema definition error if dfdl:leadingSkip is other than 0.

It is a schema definition error if the dfdl:alignment is not 1 or 'implicit'

Annotation: dfdl:assert

message String or DFDL Expression

Defines text to be used as a diagnostic code or for use in an error message, when
the assert is unsuccessful.

The DFDL Expression must return type xs:string. Any element referred to by the
message expression must have already been processed or must be a descendent
of this element. There is special treatment for errors that occur while evaluating the
message expression. See below for details.

Annotation: dfdl:assert

failureType Enum (optional)

Valid values are 'processingError', 'recoverableError'.

Default value is 'processingError'.

Specifies the type of failure that occurs when the dfdl:assert is unsuccessful.

When 'processingError', a processing error is raised.

When 'recoverableError', a recoverable error is raised.

If an error occurs while evaluating the test expression, a processing error occurs,
not a recoverable error.

Recoverable errors do not cause backtracking like processing errors.

Annotation: dfdl:assert

Table 6 dfdl:assert properties

Example of a dfdl:assert with a message expression:

<dfdl:assert message="{ fn:concat('unknown case ', ../data1) }">

{ if (...pred1...) then ...expr1...

 else if (...pred2...) then ...expr2...

 else fn:false()

}

</dfdl:assert>

The message specified by the message property is issued only if the assert is unsuccessful, that
is, the test expression evaluates to false or the test pattern returns a zero-length match. If so,
and the message property is an expression, the message expression is evaluated at that time.

If a processing error or schema definition error occurs while evaluating the message expression,
a recoverable error is issued to record this error containing implementation-defined content, then
processing of the assert continues as if there was no problem and in a manner consistent with the
failureType property, but using an implementation-defined substitute message.

 Controlling the Timing of Statement Evaluation 7.3.2

Schema authors can insert xs:sequence constructs to control the timing of evaluation of
statements more precisely.For example:

<xs:sequence dfdl:separator=",">

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 54 of 235

 ...

 <xs:element ref="a" .../>

 <xs:sequence>

 <xs:sequence>

 <xs:annotation><xs:appinfo source="http://www.ogf.org/dfdl/" >

 <dfdl:assert test="{test expression}" />

 </xs:appinfo></xs:annotation>

 </xs:sequence>

 <xs:element ref="b" .../>

 </xs:sequence>

 ...

</xs:sequence>

In the above, the assert test expression is evaluated after parsing element 'a', and before parsing
element "b". The use of two nested interior sequences surrounding element 'b' in this manner
insures that the outermost sequence's separator usage is not disrupted.

7.4 The dfdl:discriminator Statement Annotation Element

DFDL discriminators are used to resolve points of uncertainty that cannot be resolved by
speculative parsing. They can also be used to force a resolution earlier during the parsing of a
group so that subsequent parsing errors are treated as processing errors of a known component
rather than a failure to find a component.

A discriminator determines the existence or non-existence of a component. If the discriminator is
successful then the component is known to exist and any subsequent errors will not cause
backtracking at points of uncertainty. If a discriminator is unsuccessful then the component is
known not to exist and backtracking occurs immediately.

If the complex type of an element contains a sequence group as its content model then if the
sequence group is known not to exist, then the element is known not to exist.

Examples of dfdl:discriminator annotation are below :

<dfdl:discriminator>

 { ../recType eq 0 }

</dfdl:discriminator>

<dfdl:discriminator test="{ ../recType eq 0}" />

When the discriminator's expression evaluates to "false", then it causes a processing error, and
the discriminator is said to fail.

 Properties for dfdl:discriminator 7.4.1

A DFDL discriminator contains a test expression that is an expression that evaluates to true or
false. The discriminator is said to be successful if the test evaluates to true and unsuccessful (or
fails) if the test evaluates to false.

The dfdl:testKind property specifies whether an expression or pattern is used by the
dfdl:discriminator. The expression or pattern can be expressed as an attribute or as a value.

<dfdl:discriminator test="{test expression}" />

<dfdl:discriminator>

 { test expression }
</dfdl:discriminator>

It is a schema definition error if a property is specified in more than one form.

It is a schema definition error if both a test expression and a test pattern are specified.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 55 of 235

A dfdl:discriminator can be an annotation on

• an xs:element declaration (local or global)

• an xs:element reference

• an xs:group reference

• an xs:sequence

• an xs:choice

• an xs:simpleType definition (local or global)

The resolved set of statement annotations for a schema component can contain only a single
dfdl:discriminator or one or more dfdl:assert annotations, but not both. To clarify: dfdl:assert
annotations and dfdl:discriminator annotations are exclusive of each other. It is a schema
definition error otherwise.

Property
Name

Description

testKind Enum

Valid values are 'expression', 'pattern'

Default value is 'expression'

Specifies whether a DFDL expression or DFDL regular expression is used in the
dfdl:discriminator .

Annotation: dfdl:discriminator

test DFDL Expression

Applies when dfdl:testKind is 'expression'

A DFDL expression that evaluates to true or false. If the expression evaluates to
true then the discriminator succeeds and parsing continues. If the expression
evaluates to false then the discriminator fails and a processing error is raised.

If a processing error occurs during the evaluation of the test expression then the
discriminator also fails.

Any element referred to by the expression must have already been processed or is
a descendent of this element.

The expression must have been evaluated by the time this element and it
descendents have been processed or when a processing error occurs when
processing this element or its descendents.

It is a schema definition error if dfdl:test is the empty string and the value is not
specified and dfdl:testKind is 'expression' or not specified

Annotation: dfdl:discriminator

testPattern DFDL Regular Expression

Applies when dfdl:testKind is 'pattern'

A DFDL regular expression that is applied against the data stream starting at the
data position corresponding to the beginning of the representation. Consequently
the framing (including any initiator) is visible to the pattern.at the start of the
component on which the dfdl:discriminator is positioned.

If the pattern matching of the regular expression reads data that cannot be
decoded into characters of the current encoding, then the behavior is controlled by

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 56 of 235

the dfdl:encodingErrorPolicy property. See Section 11.2.1 Property
dfdl:encodingErrorPolicy for details.

If the length of the match is zero then the dfdl:discriminator evaluates to false and
a processing error is raised.

If the length of the match is non-zero then the dfdl:discriminator evaluates to true.

It is a schema definition error if dfdl:testPattern is the empty string and the value is
not specified and dfdl:testKind is 'pattern'.

It is a schema definition error if there is no value for the dfdl:encoding property in
scope.

It is a schema definition error if dfdl:leadingSkip is other than 0.

It is a schema definition error if the dfdl:alignment is not 1 or 'implicit'

Annotation: dfdl:discriminator

message String or DFDL Expression

Defines text to be used as a diagnostic code or for use in an error message, when
the discriminator is unsuccessful.

The DFDL Expression must return type xs:string. Any element referred to by the
message expression must have already been processed or must be a descendent
of this element. There is special treatment for errors that occur while evaluating the
message expression. See below for details.

Annotation: dfdl:discriminator

Table 7 dfdl:discriminator properties

The message specified by the message property is issued only if the discriminator is
unsuccessful, that is, the test expression evaluates to false or the test pattern returns a zero-
length match. If so, and the message property is an expression, the message expression is
evaluated at that time.

If a processing error or schema definition error occurs while evaluating the message expression,
a recoverable error is issued to record this error containing implementation-defined content, then
processing of the discriminator continues as if there was no problem, but in the case of failure
using an implementation-defined substitute message.

Examples of dfdl:discriminator annotations:

<xs:sequence>

 <xs:choice>

 <xs:element name='branchSimple' >

 <xs:annotation>

 <xs:appinfo source="http://www.ogf.org/dfdl/">

 <dfdl:discriminator test='{. eq "a"}' />

 </xs:appinfo>

 </xs:annotation>

 </xs:element>

 <xs:element name='branchComplex' >

 <xs:annotation>

 <xs:appinfo source="http://www.ogf.org/dfdl/">

 <dfdl:discriminator test='{./identifier eq "b"}' />

 </xs:appinfo>

 </xs:annotation>

 <xs:complexType >

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 57 of 235

 <xs:sequence>

 <xs:element name='identifier' />

 ...

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name='branchNestedComplex' >

 <xs:annotation>

 <xs:appinfo source="http://www.ogf.org/dfdl/">

 <dfdl:discriminator test='{./Header/identifier eq "c"}'/>

 </xs:appinfo>

 </xs:annotation>

 <xs:complexType >

 <xs:sequence>

 <xs:element name='Header' />

 <xs:complexType >

 <xs:sequence>

 <xs:element name='identifier' />

 ...

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:choice>

</xs:sequence>

7.5 The dfdl:defineEscapeScheme Defining Annotation Element

One or more dfdl:defineEscapeScheme annotation elements can appear within the annotation
children of the xs:schema. The dfdl:defineEscapeScheme elements may only appear as
annotation children of the xs:schema.

The order of their appearance does not matter, nor does their position relative to other annotation
or non-annotation children of the xs:schema.

Each dfdl:defineEscapeScheme has a required name attribute and a required
dfdl:escapeScheme child element.

The construct creates a named escape scheme definition. The value of the name attribute is of
XML type NCName. The name will become a member of the schema's target namespace. These
names must be unique within the namespace among escape schemes.

If multiple dfdl:defineEscapeScheme definitions have the same 'name' attribute, in the same
namespace, then it is a schema definition error.

Each dfdl:defineEscapeScheme annotation element contains a dfdl:escapeScheme annotation
element as detailed below.

Here is an example of an escapeScheme definition:

<xs:schema ...>

 <xs:annotation>

 <xs:appinfo source="http://www.ogf.org/dfdl/">

 <dfdl:defineEscapeScheme name="myEscapeScheme">

 ...

 <dfdl:escapeScheme escapeKind="escapeCharacter"

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 58 of 235

 escapeCharacter='/' />

 ...

 </dfdl:defineEscapeScheme>

 </xs:appinfo>

 </xs:annotation>

 ...

</xs:schema>

A dfdl:defineEscapeScheme serves only to supply a named definition for an escapeScheme for
reuse from other places. It does not cause any use of the representation properties it contains to
describe any actual data.

 Using/Referencing a Named escapeScheme Definition 7.5.1

A named, reusable, escape scheme is used by referring to its name from a
dfdl:escapeSchemeRef property on an element. For example:

<xs:element name="foo" type="xs:string" >

 <xs:annotation><xs:appinfo source="http://www.ogf.org/dfdl/">

 <dfdl:element representation="text"

 escapeSchemeRef="myEscapeScheme"/>

 </xs:appinfo></xs:annotation>

</xs:element>

7.6 The dfdl:escapeScheme Annotation Element

The escapeScheme annotation is used within a dfdl:defineEscapeScheme annotation to group
the properties of an escape scheme and allows a common set of properties to be defined that can
be reused.

An escape scheme defines the properties that describe the text escaping rules in force when data
such as text delimiters are present in the data. There are two variants on such schemes,

- The use of a single escape character to cause the next character to be interpreted
literally. The escape character itself is escaped by the escape escape character.

- The use of a pair of escape strings to cause the enclosed group of characters to be
interpreted literally. The ending escape string is escaped by the escape escape
character.

On parsing, the escape scheme is applied after pad characters are trimmed and on unparsing
before pad characters are added.

DFDL does not perform any substitutions for ampersand notations like <.

The syntax of escapeScheme is defined in Section 13.2.1.

The dfdl:escapeScheme Properties

7.7 The dfdl:defineVariable Annotation Element

Variables provide a means for communication within a set of DFDL schema. They are defined as
top-level elements in a schema and therefore have global scope. .

A new variable is introduced using dfdl:defineVariable:

<dfdl:defineVariable

 name = NCName

 type? = QName

 defaultValue? = logical value or dfdl expression

 external? = 'false' | 'true' >

 <!-- Contains: logical value or dfdl expression (default value) -->

</dfdl:defineVariable>

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 59 of 235

The name of a newly defined variable is placed into the target namespace of the schema
containing the annotation. Variable names are distinct from format and escape scheme names
and so cannot conflict with them. A variable can have any type from the DFDL subset of XML
schema simple types. If no type is specified, the type is xs:string.

The defaultValue is optional. This is a literal value or an expression which evaluates to a
constant, and it can be specified as an attribute or as the element value. If specified the default
value must match the type of the variable (otherwise it is a schema definition error).

Note that the syntax supports both a defaultValue attribute and the 'defaultValue' being specified
by the element value. Only one or the other may be present. (Schema definition error otherwise.)
To set the default value to "" (empty string), the defaultValue attribute syntax must be used, or the
expression { "" } must be used as the element value.

Note the value of the name attribute is an NCName. The name of a variable is defined in the
target namespace of the schema containing the definition. If multiple dfdl:defineVariable
definitions have the same 'name' attribute in the same namespace then it is a schema definition
error.

A default instance of the variable is created (with global scope). Further instances of the variable
may subsequently be created on schema elements. If the variable has a default value, this will
used as the default value for any instances of the variable (unless overridden when the instance
is created).

The external property is optional. If not specified it takes the default value 'false'. If true the value
may be provided by the DFDL processor and this external value will be used as the global default
value (overriding any defaultValue specified on the dfdl:defineVariable). The mechanism by which
the processor provides this value is unspecified and implementation specific.

There is no required order between dfdl:defineVariable and other schema level defining
annotations or a dfdl:format annotation that may refer to the variable.

A defaultValue expression is evaluated before processing the data stream begins.

A defaultValue expression can refer to other variables but not to the infoset (so no path
locations).The referenced variable must either have a defaultValue or be external. It is a schema
definition error otherwise.

If a defaultValue expression references another variable then that prevents the referenced
variable's value from ever changing, that is, it is considered to be a read of the variable's value.

If a defaultValue expression references another variable and this causes a circular reference, it is
a schema definition error.

It is a schema definition error if the type of the variable is a user-defined simple type restriction.

 Examples 7.7.1

 <dfdl:defineVariable name="EDIFACT_DS" type="xs:string"

 defaultValue="," />

<dfdl:defineVariable name="codepage" type="xs:string"

 external="true">utf-8</dfdl:defineVariable>

 Predefined Variables 7.7.2

The following variables are predefined

Name Namespace URI Type Default value External

encoding http://www.ogf.org/dfdl/dfdl-1.0/ xs:string 'UTF-8' true

byteOrder http://www.ogf.org/dfdl/dfdl-1.0/ xs:string 'bigEndian' true

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 60 of 235

binaryFloatRep http://www.ogf.org/dfdl/dfdl-1.0/ xs:string 'ieee' true

outputNewLine http://www.ogf.org/dfdl/dfdl-1.0/ xs:string '%LF;' true

Table 8 Pre-defined variables

These variables are expected to be commonly set externally so are predefined for convenience.

 <xs:element name="title" type="xs:string">

 <xs:annotation>

 <xs:appinfo source="http://www.ogf.org/dfdl/">

 <dfdl:element encoding="{$dfdl:encoding}" />

 </xs:appinfo>

 </xs:annotation>

 </xs:element>

7.8 The dfdl:newVariableInstance Statement Annotation Element

Scoped instances of defined variables are created using dfdl:newVariableInstance:

<dfdl:newVariableInstance

 ref = QName

 defaultValue? = logical value or dfdl expression >

 <!-- Contains: logical value or dfdl expression (value) -->

</dfdl:newVariableInstance>

Since an initial instance is created when the variable is defined, the use of
dfdl:newVariableInstance is optional. It would be used if an instance with restricted scope is
needed.

The dfdl:newVariableInstance annotation can be used on a group reference, sequence or choice
only. It is a schema definition error otherwise.

The scope of the instance of a variable is the dynamic scope of the schema component and its
content model and so is inherited by any contained constructs or construct references.

The ref property is a QName. That is, it may be qualified with a namespace prefix.

An optional defaultValue for the instance may be specified. It can be specified as an attribute or
as the element value. The expression must not contain forward references to elements which
have not yet been processed nor to the current component. If specified the default value must
match the type of the variable as specified by dfdl:defineVariable. If the instance is not assigned a
new default value then it will inherit the default value specified by dfdl:defineVariable or externally
provided by the DFDL processor. If a default value is not specified (and has not been specified by
dfdl:defineVariable) then the value of this instance is undefined until explicitly set (using
dfdl:setVariable).

If a default value is specified this initial value of the instance will be set when the instance is
created. The value will override any (global) default value which was specified by
dfdl:defineVariable or which was provided externally to the DFDL processor. A variable instance
with a valid value (specified or default) can be referenced anywhere within the scope of the
element on which the instance was created.

Note that the syntax supports both a defaultValue attribute and the 'defaultValue' being specified
by the element value. Only one or the other may be present. (Schema definition error otherwise.)

To set the default value to "" (empty string), the defaultValue attribute syntax must be used, or the
expression { "" } must be used as the element value.

The resolved set of annotations for a component may contain multiple dfdl:newVariableInstance
statements. They must all be for unique variables, it is a schema definition error otherwise.
However, the order of execution among them is not specified. Schema authors can insert
sequences to control the timing of evaluation of statements more precisely.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 61 of 235

There is no short form syntax for creating variable instances.

 Examples 7.8.1

<dfdl:newVariableInstance ref="EDIFACT_DS" defaultValue=","/>

<dfdl:newVariableInstance ref="lengthUnitBits">

 { if (../hdr/fmtCode eq "bits") then 1 else 8 }

</dfdl:newVariableInstance>

7.9 The dfdl:setVariable Statement Annotation Element

Variable instances get their values either by default, by external definition, or by subsequent
assignment using the dfdl:setVariable statement annotation.

<dfdl:setVariable

 ref = QName

 value? = logical value or dfdl expression >

 <!-- Contains: logical value or dfdl expression (value) -->

</dfdl:setVariable>

The dfdl:setVariable annotation can be used on a simpleType, group reference, sequence or
choice. It may be used on an element or element reference only if the element is of simple type. It
is a schema definition error if dfdl:setVariable appears on an element of complex type, or an
element reference to an element of complex type.

The ref property is a QName. That is, it may be qualified with a namespace prefix.

The syntax supports both a value attribute and the 'value' being specified by the element value.
Only one or the other may be present. (Schema definition error otherwise.) To set the value to ""
(empty string), the value attribute syntax must be used, or the expression { "" } must be used as
the element value.

The value must match the type of the variable as specified by dfdl:defineVariable.

A dfdl:setVariable value expression may refer to the value of this element using a relative path
value ".". Use of relative path expressions is recommended wherever possible as this will allow
the behavior of the parser to be more effectively scoped. However this practice is not enforced
and there may be situations in which use of an absolute path is in fact necessary.

The declaration of a variable must be in scope at the point of the assignment, and at the point of
reference.

In normal processing, the value of an instance can only be set once using dfdl:setVariable.
Attempting to set the value of the variable instance for a second time is a schema definition error.
In addition, if a reference to the variable's value has already occurred and returned a default or an
externally supplied value, then no assignment (even a first one) can occur. An exception to this
behavior occurs whenever the DFDL processor backtracks because it is processing multiple
branches of a choice or as a result of speculative parsing. In this case the variable state is also
rewound.

A dfdl:setVariable will override any default value specified on either dfdl:defineVariable or
dfdl:newVariableInstance, or externally.

The resolved set of annotations for an annotation point may contain multiple dfdl:setVariable
statements. They must all be for unique variables and it is a schema definition error otherwise.
However, the order of execution among them is not specified. Schema authors can insert
sequences to control the timing of evaluation of statements more precisely.

There is no short form syntax for variable assignment.

 Examples 7.9.1

<xs:element name="ds" type="xs:string">

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 62 of 235

 <xs:annotation>< xs:appinfo source="http://www.ogf.org/dfdl/">

 <dfdl:setVariable ref="EDI:EDIFACT_DS" value="{.}" />

 <dfdl:setVariable ref="delta"> {.} </dfdl:setVariable>

 </xs:appinfo></xs:annotation>

</xs:element>

In the above example, the element named "ds" contains the string to be used as the
EDI:EDIFACT_DS delimiter at other places in the data, so the above defines the value of the
EDI:EDIFACT_DS variable to take on the value of this element.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 63 of 235

8. Property Scoping Rules

This section describes the rules that govern the scope over which DFDL representation
properties apply

The scope of the representational properties on each of the component format annotations is
given in Table 9 DFDL annotation scoping

Annotation Point Property Scope

Schema
declaration

dfdl:format representation properties apply lexically as default properties
over all components in the schema

Element
declaration

dfdl:element properties apply locally

Element
reference

dfdl:element properties apply locally

Simple type
definition

dfdl:simpleType properties apply locally

Sequence dfdl:sequence properties apply locally

Choice dfdl:choice properties apply locally

Group reference dfdl:group properties apply locally

Table 9 DFDL annotation scoping

Note: This table lists DFDL annotations on schema components. DFDL annotations can also be
placed on other DFDL annotations, such as a dfdl:format within a dfdl:defineFormat, to provide a
named reusable format definition. In this case the annotation applies only where the named
format is referenced.

DFDL representation properties explicitly defined on annotations, other than a dfdl:format on an
xs:schema declaration, apply locally to that component only. The explicitly defined properties are
the combination of any defined locally on the annotation and any defined on the dfdl:defineFormat
annotation referenced by a local dfdl:ref property. When a property is defined both locally and on
the dfdl:defineFormat, the locally defined property takes precedence.

The dfdl:format annotation on the top level xs:schema declaration provides defaults for the DFDL
representation properties at every DFDL-annotatable component contained in the schema
document. They do not apply to any components in any included or imported schema document
(these may have their own defaults).

8.1 Providing Defaults for DFDL properties

A dfdl:format annotation on the top level xs:schema declaration may provide defaults for some or
all the DFDL representation properties at every annotation point within the schema document.
The default properties may be specified in attribute or element form. (Short form is not allowed on
the xs:schema element.)

The dfdl:ref property is not a representation property so no default can be set.

The dfdl:escapeSchemeRef property provides a default reference to a dfdl:defineEscapeScheme,
the properties of dfdl:escapeScheme are not defaulted individually.

DFDL representation properties defined explicitly on a component apply only to that component
and override the default value of that property provided by a default format specified by an
xs:schema dfdl:format annotation.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 64 of 235

The example below demonstrates the overriding of the encoding property. The value'ASCII' is

the default value for the title element, but then it is overridden by the locally defined utf-8
value for the encoding property, which takes precedence.

<xs:schema>

 <xs:annotation>

 <xs:appinfo source="http://www.ogf.org/dfdl/">

 <dfdl:format encoding="ASCII" />

 </xs:appinfo>

 </xs:annotation>

 <xs:element name="book">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="title" type="xs:string">

 <xs:annotation>

 <xs:appinfo source="http://www.ogf.org/dfdl/">

 <dfdl:element encoding="utf-8" />

 </xs:appinfo>

 </xs:annotation>

 </xs:element>

 <xs:element name="pages" type="xs:int"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

8.2 Combining DFDL Representation Properties from a dfdl:defineFormat

The DFDL representation properties contained in a referenced dfdl:defineFormat are combined
with any DFDL representation properties defined locally on a construct as if they had been
defined locally. If the same property is defined locally in and in the referenced dfdl:defineFormat
then the local property takes precedence. The combined set of explicit DFDL properties has
precedence over any defaults set by a dfdl:format on the xs:schema.

<xs:schema>

 <xs:annotation>

 <xs:appinfo source="http://www.ogf.org/dfdl/">

 <dfdl:defineFormat name='myFormat'>
 <dfdl:format encoding="ASCII" />

 </dfdl:defineFormat>

 </xs:appinfo>

 </xs:annotation>

 <xs:element name="book">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="title" type="xs:string">

 <xs:annotation>

 <xs:appinfo source="http://www.ogf.org/dfdl/">

 <dfdl:element ref='myFormat' encoding="UTF-8" />

 </xs:appinfo>

 </xs:annotation>

 </xs:element>

 <xs:element name="pages" type="xs:int"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 65 of 235

</xs:schema>

The example above demonstrates the overriding of an encoding property. The 'ASCII' format
encoding from the 'myFormat' is overridden by the UTF-8 format encoding, which as a locally
defined property takes precedence.

8.3 Combining DFDL Properties from References

The DFDL properties from the following types of reference are combined using the rules below:

• An xs:element and its referenced xs:simpleType restriction,

• An xs:element reference and its referenced global xs:element

• An xs:group reference and an xs:sequence or xs:choice in its referenced global xs:group

• An xs:simpleType restriction and its base xs:simpleType restriction

Rules

1. Create an empty working set of "explicit" properties. Create an empty working set of
"default" properties.

2. Move to the innermost schema component in the chain of references.

3. Assemble its applicable "explicit" properties from its local dfdl:ref (if present) and its local
properties (if present), the latter overriding the former (that is, local wins over referenced).

4. Combine these with the current working set of "explicit" properties. It is a schema
definition error if the same property appears twice. The result is a new working set of
"explicit" properties.

5. Obtain applicable "default" properties from a dfdl:format annotation on the xs:schema that
contains the component (if such annotation is present). Combine these with the current
working set of "default" properties, the latter overriding the former (that is, inner wins).
Result is a new working set of "default" properties.

6. Move to the schema component that references the current component, and repeat
starting at step 3. If there is no referencing component, carry out step 5 and then go to
step 7.

7. Combine the resultant sets of properties. The "explicit" properties take priority, "defaults"
only used when no "explicit" is present. It is a schema definition error if a required
property is in neither the "explicit" nor the "default" working sets.

"Applicable" properties are all the DFDL properties that apply to that schema component. For
example all the DFDL properties that apply to a particular xs:simpleType (as defined by section
13).

<xs:simpleType name="newType">

 <xs:annotation>

 <xs:appinfo source="http://www.ogf.org/dfdl/">

 <dfdl:simpleType alignment="16"/>

 </xs:appinfo>

 </xs:annotation>

 <xs:restriction base="xs:integer">

 <xs:maxInclusive value="10"/>

 </xs:restriction>

</xs:simpleType>

<xs:element name="testElement1" type="newType">

 <xs:annotation>

 <xs:appinfo source="http://www.ogf.org/dfdl/">

 <dfdl:element representation="binary"/>

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 66 of 235

 </xs:appinfo>

 </xs:annotation>

</xs:element>

The locally defined dfdl:alignment property with value '16' from the xs:simpleType 'newType' is
combined with the locally defined dfdl:representation property with value 'binary' and applied to
element 'testElement1',

<xs:simpleType name="otherNewType">

 <xs:annotation>

 <xs:appinfo source="http://www.ogf.org/dfdl/">

 <dfdl:simpleType alignment="64"/>

 </xs:appinfo>

 </xs:annotation>

 <xs:restriction base="newType">

 <xs:maxInclusive value="5"/>

 </xs:restriction>

</xs:simpleType>

<xs:simpleType name="newType">

 <xs:annotation>

 <xs:appinfo source="http://www.ogf.org/dfdl/">

 <dfdl:simpleType representation='binary'/>

 </xs:appinfo>

 </xs:annotation>

 <xs:restriction base="xs:int">

 <xs:maxInclusive value="10"/>

 </xs:restriction>

</xs:simpleType>

The locally defined dfdl:representation property with value 'binary' is combined with the locally
defined dfdl:alignment property with value '64' from the xs:simpleType restriction 'otherNewType'.

<xs:sequence>

 <xs:element ref="testElement1">

 <xs:annotation>

 <xs:appinfo source="http://www.ogf.org/dfdl/">

 <dfdl:element binaryNumberRep ="binary"/>

 </xs:appinfo>

 </xs:annotation>

 </xs:element>

</xs:sequence>

<xs:element name="testElement1" type="newType">

 <xs:annotation>

 <xs:appinfo source="http://www.ogf.org/dfdl/">

 <dfdl:element representation="binary"/>

 </xs:appinfo>

 </xs:annotation>

</xs:element>

<xs:simpleType name="newType">

 <xs:annotation>

 <xs:appinfo source="http://www.ogf.org/dfdl/">

 <dfdl:simpleType alignment="16"/>

 </xs:appinfo>

 </xs:annotation>

 <xs:restriction base="xs:int">

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 67 of 235

 <xs:maxInclusive value="10"/>

 </xs:restriction>

</xs:simpleType>

The locally defined dfdl:alignment property with value '16' from the xs:simpleType 'newType' is
combined with the locally defined dfdl:representation property with value 'binary' and locally
defined dfdl:binaryNumberRep with a value of 'binary'

<!-- SCHEMA1 -->

<xs:schema targetNamespace="" xmlns:tns1="http://tns1">

 <xs:annotation>

 <xs:appinfo source="http://www.ogf.org/dfdl/">

 <dfdl:format encoding="ASCII" byteOrder="littleEndian"

 initiator="" terminator=""

 sequenceKind="ordered" />

 </xs:appinfo>

 </xs:annotation>

 <xsd:import namespace="http://tns2" schemaLocation="SCHEMA2.xsd"/>

 <xs:element name="book">

 <xs:complexType>

 <xs:group ref="tns2:ggrp1" dfdl:separator=","></xs:group>

 </xs:complexType>

 </xs:element>

</xs:schema>

<!-- SCHEMA2 -->

<xs:schema targetNamespace="" xmlns:tns2="http://tns2">

 <xs:annotation>

 <xs:appinfo source="http://www.ogf.org/dfdl/">

 <dfdl:format encoding="UTF-8" byteOrder="littleEndian"

 initiator=""

 sequenceKind="ordered" />

 </xs:appinfo>

 </xs:annotation>

 <xs:group name="ggrp1" >

 <xs:sequence dfdl:separatorPosition="infix" >

 <xs:element name="customer" type="xs:string"

 dfdl:length="8" dfdl:lengthKind="explicit" />

 </xs:sequence>

 </xs:group>

</xs:schema>

The DFDL properties applied to the xs:sequence in xs:group "ggrp1" in SCHEMA2 when
referenced from the group reference in SCHEMA1 are

1. dfdl:separator="," from the group reference in SCHEMA1

2. dfdl:separatorPosition="infix" from the group declaration in SCHEMA2

3. dfdl:encoding="UTF-8", dfdl:initiator=''" from the default dfdl:format annotation in
SCHEMA2

4. dfdl:terminator="" from the default dfdl:format annotation in SCHEMA1

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 68 of 235

9. DFDL Processing Introduction

A DFDL Parser is an application or code library that takes as input:

• A DFDL annotated schema

• A data stream.

It is able to use the DFDL schema description to interpret the data stream and realize the DFDL
Information Model. This information set could then be written out (for example it could be realized
as an XML text string) or it could be accessed by an application through an API (for example, a
DOM-like tree could be created in memory for access by applications).

Symmetrically, there is a notion of a DFDL Unparser. The unparser works from an instance of the
DFDL Information Model, a DFDL annotated schema and writes out to a target data stream in the
appropriate representation formats.

Often both parser and unparser would be implemented in the same body of software and so we
do not always distinguish them. Collectively they are called a DFDL Processor. The parser and
unparser may, of course, be different bodies of software. Conforming DFDL processors may
implement only a parser, because the unparser is an optional feature of DFDL.

9.1 Parser Overview

The DFDL logical parser is a recursive-descent parser [RDP] having guided, but potentially
unbounded look ahead that is used to resolve points of uncertainty.(Points of Uncertainty.) A
DFDL parser reads a specification (the DFDL schema) and it recursively walks down and up the
schema as it processes the data. This is done in a manner consistent with the scoping of
properties and variables described in Section 8 Property Scoping Rules.

The unbounded look ahead means that there are situations where the parser must speculatively
attempt to parse data where the occurrence of a processing error causes the parser to suppress
the error, back out and make another attempt.

Implementations of DFDL may provide control mechanisms for limiting the speculative search
behavior of DFDL parsers. The nature of these mechanisms is beyond the scope of the DFDL
specification which defines the behavior of conforming parsers only on correct data. That is, data
that can be parsed without any effective processing errors.

The logical parser recursively descends the DFDL schema beginning with the element
declaration specified (in an implementation specific manner, see Section 18) of the distinguished
root node of the schema passed to the DFDL processor. Depending on the kind of schema
construct that is encountered and the DFDL annotations on it, and the pre-existing context, the
parser performs specific parsing operations on the data stream. These parsing operations
typically recognize and consume data from the stream and construct values in the logical model.
For values of complex types and for arrays, these logical model values may incorporate values
created by recursive parsing.

DFDL Implementations are free to use whatever techniques for parsing they wish so long as the
semantics are equivalent to that of the speculative recursive-descent logical parser described in
this specification. It is required that implementations distinguish the various kinds of errors
(schema definition error, processing error, etc.) no matter what time they are detected. Some
implementations may not detect certain schema definition errors until data are being parsed;
however, they must still distinguish schema definition errors (which indicate that the schema itself
is not meaningful), from parsing errors (which indicate that the input data doesn't satisfy the
requirements of the schema), or unparsing errors (which indicate that the infoset does not satisfy
the requirements of the schema).

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 69 of 235

9.2 DFDL Data Syntax Grammar

Data in a format describable via a DFDL schema obeys the grammar given here. A given DFDL
schema is read by the DFDL processor to provide specific meaning to the terminals and
decisions in this grammar.

The bits of the data are divided into two broad categories:

1 Content

2 Framing

The content is the bits of data that are interpreted to compute a logical value.

Framing is the term we use to describe the delimiters, length fields, and other parts of the data
stream which are present, and may be necessary to determine the length or position of the
content of DFDL Infoset items.

Note that sometimes the framing is not strictly necessary for parsing, but adds useful redundancy
to the data format, allowing corrupt data to be more robustly detected, and sometimes the framing
adds human readability to the data format.

In the grammar tables below, the terminal symbols are shown in bold italic font.

Productions

Document = UnicodeByteOrderMark DocumentElement

DocumentElement = SimpleElement | ComplexElement

SimpleElement = SimpleLiteralNilElementRep | SimpleEmptyElementRep |

 SimpleNormalRep

SimpleEnclosedElement = SimpleElement | AbsentElementRep

ComplexElement = ComplexLiteralNilElementRep | ComplexNormalRep |

 ComplexEmptyElementRep

ComplexEnclosedElement = ComplexElement | AbsentElementRep

EnclosedElement = SimpleEnclosedElement | ComplexEnclosedElement

AbsentElementRep = Absent

SimpleEmptyElementRep = EmptyElementLeftFraming EmptyElementRightFraming

ComplexEmptyElementRep = EmptyElementLeftFraming EmptyElementRightFraming

EmptyElementLeftFraming = LeadingAlignment EmptyElementInitiator PrefixLength

EmptyElementRightFraming = EmptyElementTerminator TrailingAlignment

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 70 of 235

SimpleLiteralNilElementRep = NilElementLeftFraming [NilLiteralCharacters |

 NilElementLiteralContent] NilElementRightFraming

ComplexLiteralNilElementRep = NilElementLeftFraming NilLiteralValue
NilElementRightFraming

NilElementLeftFraming = LeadingAlignment NilElementInitiator PrefixLength

NilElementRightFraming = NilElementTerminator TrailingAlignment

NilElementLiteralContent = LeftPadding NilLiteralValue RightPadOrFill

SimpleNormalRep = LeftFraming PrefixLength SimpleContent RightFraming

ComplexNormalRep = LeftFraming PrefixLength ComplexContent ElementUnused

 RightFraming

LeftFraming = LeadingAlignment Initiator

RightFraming = Terminator TrailingAlignment

PrefixLength = SimpleContent | PrefixPrefixLength SimpleContent

PrefixPrefixLength = SimpleContent

SimpleContent = LeftPadding [NilLogicalValue | SimpleValue] RightPadOrFill

ComplexContent = Sequence | Choice

Sequence = LeftFraming SequenceContent RightFraming

SequenceContent = [PrefixSeparator EnclosedContent [Separator EnclosedContent]*

 PostfixSeparator]

Choice = LeftFraming ChoiceContent RightFraming

ChoiceContent = [EnclosedContent] ChoiceUnused

EnclosedContent = [EnclosedElement | Array | Sequence | Choice]

Array = [EnclosedElement [Separator EnclosedElement]* [Separator StopValue]]

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 71 of 235

StopValue = SimpleElement

LeadingAlignment = LeadingSkip AlignmentFill

TrailingAlignment = TrailingSkip

RightPadOrFill = RightPadding | RightFill | RightPadding RightFill

Table 10 DFDL Grammar Productions

XML Schema and DFDL properties are used to control constraints on the terminals of the above
grammar, as well as repetition (the "*" operator), and alternatives (the "|" operator). For a given
set of XML Schema and DFDL properties, and prior data, any terminal may be allowed to be
length zero, to contain specific data, or to contain a variety of different admissible data.

Some definitions are needed to cover the range of representations that are possible in the data
stream for an element. These definitions are with respect to the grammar above.

 Nil Representation 9.2.1

An element occurrence has a nil representation if the element has XSDL nillable property 'true'
and the occurrence either:

a) conforms to the grammar for SimpleNilLiteralElementRep or
ComplexNilLiteralElementRep. Specifically, the NilElementInitiator and
NilElementTerminator regions must be conformant with dfdl:nilValueDelimiterPolicy. (If
non-conformant it is not a processing error and the representation is not nil).

b) conforms to the grammar for SimpleNormalRep and its value is NilLogicalValue.

The LeadingAlignment, TrailingAlignment, PrefixLength regions may be present.

 Empty Representation 9.2.2

An element occurrence has an empty representation if the occurrence does not have a nil
representation and it conforms to the grammar for SimpleEmptyElementRep or
ComplexEmptyElementRep. Specifically, the EmptyElementInitiator and
EmptyElementTerminator regions must be conformant with dfdl:emptyValueDelimiterPolicy and
the occurrence's content in the data stream is of length zero. (If non-conformant it is not a
processing error and the representation is not empty). LeadingAlignment, TrailingAlignment,
PrefixLength regions may be present.

The empty representation is special in DFDL, because when parsing it is this condition that can
trigger the creation of a default value for an element occurrence. See Section 9.4 Element
Defaults below about default values.

 Normal Representation 9.2.3

An element occurrence has a normal representation if the occurrence does not have the nil
representation or the empty representation and it conforms to the grammar for SimpleNormalRep
or ComplexNormalRep.

 Absent Representation 9.2.4

An element occurrence has an absent representation if the occurrence does not have a nil or
empty or normal representation, and it conforms to the grammar for AbsentElementRep.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 72 of 235

Specifically, the occurrence's representation in the data stream is of length zero. Consequently,
the Initiator, Terminator, LeadingAlignment, TrailingAlignment, PrefixLength regions must not be
present.

Example of an absent representation: During unparsing, if an optional element does not have an
item in the infoset then nothing is output. However if a separator of an enclosing structure is
subsequently output as the immediate next thing, then a subsequent parse of the element may
return a representation of length zero. If this happens, and this zero-length representation does
not conform to any of the nil representation, the empty representation, or the normal
representation, then it is the absent representation, and it behaves as if the element occurrence is
'missing'. (The term 'missing' is defined below.)

The point of this term 'absent representation', is that often we know the location where an
element or group's representation would be in the data based on the delimiters of an enclosing
group. (An example: if there are adjacent delimiters of an enclosing sequence.) When this
location in the data, which is of zero length, cannot be a nil, empty, or normal representation, then
we say it has absent representation, or "the representation is absent".

 Zero-length Representation 9.2.5

We use the term zero-length representation to describe the situations where any of the above
representations turn out to be of length zero due to specific combinations of data type and format
properties:

• The nil representation can be a zero-length representation if dfdl:nilValue is "%ES;", and
there is no framing or framing is suppressed by dfdl:nilValueDelimiterPolicy.

• The empty representation can be a zero-length representation if there is no framing or
framing is suppressed by dfdl:emptyValueDelimiterPolicy.

• The normal representation can be a zero-length representation if the type is xs:string or
xs:hexBinary and there is no framing.

• The absent representation always has a zero-length representation.

If the nil representation may be zero-length, then the absent representation cannot occur because
zero-length will be interpreted as nil representation.

If the nil representation may not be zero length, but the empty representation is zero-length, then
the absent representation cannot occur because zero-length will be interpreted as the empty
representation.

If the nil and empty representations can not be zero-length, but the normal representation may be
zero length then the absent representation cannot occur because zero length will be interpreted
as a normal representation.

If the nil representation may not be zero-length, the empty representation is not zero-length, and
the normal representation may not be zero-length, then a zero-length representation is the absent
representation, or "is absent".

 Missing 9.2.6

When parsing, an element occurrence is missing if it does not have nil, empty, or normal
representations, or it has the absent representation.

When parsing, the term missing really covers two situations. Firstly it subsumes absent
representation. Secondly it applies when an element does not have a representation at all in the
data stream, that is, when we do not even have the constructs in the data stream to determine
the location of the representation of the element; hence, none of the concepts above apply. This
will be made clearer in the examples below. If an element occurrence is missing when parsing, no
item is ever added to the Infoset.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 73 of 235

When unparsing, an element occurrence is missing if there is no item in the infoset. For a
required element occurrence, it is this condition that can trigger the creation of a default value in
the augmented infoset. See Section 9.4 Element Defaults below about default values. For an
optional element occurrence, no item is ever added to the augmented Infoset nor any
representation ever output in the data stream.

 Examples of Missing and Empty Representation 9.2.7

The following examples illustrate missing and empty representation.

<xs:sequence dfdl:separator="," dfdl:terminator="@"

 dfdl:separatorSuppressionPolicy="trailingEmpty">

 <xs:element name="A" type="xs:string"

 dfdl:lengthKind="delimited"/>

 <xs:element name="B" type="xs:string" minOccurs="0"

 dfdl:lengthKind="delimited"/>

 <xs:element name="C" type="xs:string" minOccurs="0"

 dfdl:lengthKind="delimited"/>

</xs:sequence>

In data stream aaa,@ element B has the empty representation, and element C does not have a
representation so is missing.

<xs:sequence dfdl:separator=","

 dfdl:separatorSuppressionPolicy="anyEmpty">

 <xs:element name="A" type="xs:string"

 dfdl:lengthKind="delimited" dfdl:initiator="A:"

 dfdl:emptyValueDelimiterPolicy=initiator"/>

 <xs:element name="B" type="xs:string" minOccurs="0"

 dfdl:lengthKind="delimited" dfdl:initiator="B:"

 dfdl:emptyValueDelimiterPolicy="initiator"/>

 <xs:element name="C" type="xs:string" minOccurs="0"

 dfdl:lengthKind="delimited" dfdl:initiator="C:"

 dfdl:emptyValueDelimiterPolicy=initiator"/>

</xs:sequence>

In data stream A:aaaa,C:cccc element B does not have a representation so is missing.

In data stream A:aaaa,B:,C:cccc element B has the empty representation.

In the data stream A:aaaa,,C:cccc element B has the absent representation so is missing.

 Round Trip Ambiguities 9.2.8

The overlapping nature of the possible representations: normal, empty, nil, and absent, creates a
number of ambiguities where taking an Infoset, unparsing it, and reparsing it will result in a
second Infoset that is not the same as the original. However taking the second Infoset, unparsing
it, and reparsing it, will result in a third Infoset which is the same as the second.

When unparsing, if a string Infoset item happens to contain a string that matches either one of the
nilValues or the default value, it is not given any special treatment. The string's characters are
output, or if the value is the empty string, zero length content is output. (In both cases along with
an initiator or terminator if defined.) This creates an ambiguity where one can unparse an Infoset
item which is not the special value nil, but when reparsed will produce nil in the Infoset.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 74 of 235

These ambiguities are natural and unavoidable. If the nilValue is the 3-character string "nil", then
encountering the characters "nil" in the data stream will parse to produce the special value nil in
the Infoset. If you unparsed a string infoset item with contents of the 3 characters "nil", this will be
output as the letters "nil", which on parse will not produce a string with the characters "nil", but
rather the special value nil in the Infoset.

To avoid this issue, one can use validation, along with a pattern that prevents the string from
matching any of the nil values.

9.3 Parsing Algorithm

A DFDL parser proceeds by determining the existence of occurrences of schema components. It
does this by examining the data and the schema, so as to:

a) Establish representation

b) Resolve points of uncertainty

These two activities are defined below. They are mutually recursive in the expected way as a
DFDL schema is a recursive nest of schema components.

Establishing the representation of an occurrence of a schema component and resolving points of
uncertainty involve the concepts of known-to-exist and known-not-to-exist.

 Known-to-exist and Known-not-to-exist 9.3.1

 Known-to-exist 9.3.1.1

An occurence of a schema component is said to be known-to-exist when any of these positive
discriminations hold:

1. There is a dfdl:discriminator
8
 applying to the component and its expression evaluates to

true or regular expression pattern matches.

2. The component is a direct child of an xs:sequence or xs:choice with dfdl:initiatedContent
'yes' and an initiator defined for the component is found.

3. The component is a direct child of an xs:choice with dfdl:choiceDispatchKey and the
result of the dfdl:choiceDispatchKey expression matches the
dfdl:choiceChoiceBranchKey property of the child.

If none of those hold because they are not applicable then the occurrence is still known-to-exist if
ALL of the following hold, and no processing error occurs during their determination:

1. There are dfdl:asserts with failureType 'processingError' on the component and all their
expressions evaluate to true or their regular expression patterns match,

2. It has nil, empty, or normal representation

3. When it has normal representation, this of course implies that the content of the
representation is convertible to the element type without error.

8
 DFDL discriminators are described in section: 7.4 The dfdl:discriminator Statement Annotation

Element.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 75 of 235

Note that validation errors or recoverable errors do not prevent determination that a component is
known-to-exist.

 Processing Error After Determining Known-to-exist 9.3.1.2

Note that it is possible for an occurrence of a schema component to be known-to-exist due to a
positive discrimination, but then subsequently a processing error occurs when evaluating a
statement annotation such as a dfdl:assert or a dfdl:setVariable, or a processing error occurs
when determining the representation, or in the case of normal representation and simpleType,
when converting that representation's content into a value of the type. This processing error does
not change the fact that the schema component was determined to be known-to-exist. This is
important in the discussion of resolving Points of Uncertainty below.

 Known-not-to-exist 9.3.1.3

An occurrence of a schema component is known-not-to-exist when any of these negative
discriminations holds:

1. There is a dfdl:discriminator applying to the component and its expression evaluates to
false or regular expression pattern fails to match, or a processing error occurs while
processing the dfdl:discriminator.

2. The component is a direct child of an xs:sequence or xs:choice with dfdl:initiatedContent
'yes' and an initiator defined for the component is not found.

3. The component is a direct child of an xs:choice with dfdl:choiceDispatchKey and the
result of the dfdl:choiceDispatchKey expression does not match the
dfdl:choiceChoiceBranchKey property of the child.

If none of those hold because they are not applicable, then a schema component is known-not-to-
exist when any of the following hold:

1. The occurrence is missing

2. There is a dfdl:assert with failureType 'processingError' on the component and its
expression evaluates to false or its regular expression pattern fails to match, or a
processing error occurs while processing the dfdl:assert.

3. A processing error occurs when parsing the component. Processing errors include, but
are not limited to, inability to identify any of nil, empty, normal or absent representations,
or failure to convert a value to the built-in logical type.

Note that validation errors or recoverable errors do not cause a component to be known-not-to-
exist.

Note: based on the above, when processing a sequence for which a separator is defined, the
presence of a match in the data for the separator is not sufficient to cause the parser to determine
that an associated component is known-to-exist. See Section 14.2 Sequence Groups with
DelimitersSeparators for details.

 Establishing Representation 9.3.2

Unless an element occurrence is known-not-to-exist, it must be established if it has the nil, empty,
normal, or absent representation.

The first step is to see if the content is trivially of length zero. This is dfdl:lengthKind dependent.

• explicit => length is zero (either fixed or from expression evaluation)

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 76 of 235

• prefixed => length given by the prefix is zero
• implicit (simple) => length is zero

10

• implicit (complex) => not possible.
• delimited => length is zero (delimiter is immediately encountered)
• pattern => pattern returns zero length match
• endOfParent => already positioned at parent's end so length is zero

 Simple element 9.3.2.1

If the result is length zero as described above, the representation is then established by checking,
in order for:

• nil representation (if %ES; is a literal nil value).

• empty representation.

• normal representation (xs:string or xs:hexBinary only)

• absent representation (if none of the prior representations apply).

If the result is not length zero, the representation is then established by checking, in order, for:

• nil representation (as a literal nil value)

• nil representation (as a logical nil value)

• normal representation

 Complex element 9.3.2.2

If the result is length zero as described above, the representation is then established by checking
for:

• nil representation (if %ES; is a literal nil value).
11

To establish any other representations requires that the parser descends into the complex type
for the element, and returns successfully (that is, no unsuppressed processing error occurs). If
the result is zero bits consumed, the representation is then established by checking, in order, for:

• empty representation.

• absent representation (if none of the prior representations apply).

Otherwise the element has normal representation.

Note: The DFDL parser shall not recursively parse the schema components inside a complex
element when it has already established that the element occurrence is missing

12
.

10
 This is a corner case that only happens when type is xs:string or xs:hexBinary and the maxLength facet is

0. Such an element can only be of length 0.

11
 It is a schema definition error if a complex element has XSDL nillable ‘true’ and dfdl:lengthKind ‘implicit’.

12
 The rationale for this is that otherwise this could give rise to misleading error messages where the parser

reported that required child elements were missing required occurrences. (This is consistent with XML
Schema validation, where if a required element is missing, it gets reported as such, and there is nothing
reported about its children).

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 77 of 235

 Points of Uncertainty 9.3.3

A point of uncertainty occurs in the data stream when there is more than one schema component
that might occur at that point. Points of uncertainty can be nested.

Any one of the following constructs is a potential point of uncertainty:

1. An xs:choice

2. All xs:elements in an unordered xs:sequence (dfdl:sequenceKind is 'unordered')

3. An optional xs:element

4. An array xs:element.

5. All xs:elements in an xs:sequence containing one or more floating xs:elements.

The parser resolves these points of uncertainty by way of a set of construct-specific rules given
below along with determining whether schema components are known-to-exist or known-not-to-
exist. For some of these constructs, whether there is an actual point of uncertainty depends on
the representation of the constructs in the data.

An xs:choice is always a point of uncertainty. It is resolved sequentially, or by direct dispatch.
Sequential choice resolution occurs by parsing each choice branch in schema definition order
until one is known-to-exist. It is a processing error if none of the choice branches are known-to-
exist. Direct-dispatch choice resolution occurs by matching the value of the
dfdl:choiceDispatchKey property to the value of the dfdl:choiceChoiceBranchKey property of one
of the choice branches. It is a processing error if none of the choice branches have a matching
value in their dfdl:choiceChoiceBranchKey property.

An element in an unordered xs:sequence is always a point of uncertainty. It is resolved by parsing
for the child components of the sequence in schema definition order at each point in the data
stream where a component can exist until the required number of occurrences of each child
component is known- to-exist or the sequence is terminated by delimiters or specified length.

An element in a sequence with one or more floating elements is always a point of uncertainty. It is
resolved by parsing for the expected element at that point in the data stream. If the expected
element is known-not-to-exist then an occurrence of each floating element is parsed in schema
definition order.

When parsing an array, points of uncertainty only occur for certain values of occursCountKind, as
follows:

occursCountKind Details of Point of Uncertainty

fixed No point of uncertainty (maxOccurs occurrences expected).

implicit A point of uncertainty exists after minOccurs occurrences found and until

maxOccurs found.

parsed A point of uncertainty exists for all occurrences

expression No point of uncertainty (occursCount occurrences expected)

stopValue No point of uncertainty (stopValue must always be present, even

when minOccurs=0).

An optional element point of uncertainty is resolved by parsing the element until it is either known-
to-exist or known-not-to-exist. Whether an optional element is an actual point of uncertainty
depends on property dfdl:occursCountKind as described above. (Property dfdl:occursCountKind
is defined in Section 16.1 dfdl:occursCountKind property.)

For an array element, the point of uncertainty is resolved for each occurrence separately by
parsing the occurrence until it is either known-to-exist or known-not-to-exist.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 78 of 235

 Nested Points of Uncertainty 9.3.3.1

A point of uncertainty can be resolved because a schema component has been determined to be
known-to-exist due to positive discrimination. In that case, if a subsequent processing error
occurs when completing the parsing of that schema component this will cause the next enclosing
schema component surrounding this point of uncertainty to be determined to be known-not-to
exist.

For example, when parsing an element occurrence for an array with a variable number of
occurrences, a positive discrimination tells the parser that the currently-being-parsed occurrence
is known-to-exist. If a subsequent processing error occurs while completing the parsing of this
occurrence, then the entire array is then known-not-to-exist.

Another example is a choice. If a discriminator resolves the choice point of uncertainty to the first
of the choice's alternatives, a subsequent processing error causes the entire choice construct to
be determined to be known-not-to-exist.

This will cause the next enclosing point of uncertainty to try the next possible alternative, or if
there isn't one, will cause an unsuppressed processing error.

The behavior of a DFDL processor on an unsuppressed processing error is not specified, but it is
allowable for implementations to abort further parsing.

9.4 Element Defaults

A DFDL processor can create element defaults in the Infoset for both simple and complex
elements. This happens quite differently for parsing and unparsing as will be explained in this
section.

 Definition 'default value' 9.4.1

A simple element has a default value if any of these are true:

1. The XSDL default property exists. The default value is the property's value.

2. The XSDL fixed property exists. The default value is the property's value.

3. The element has XSDL nillable is 'true' and dfdl:useNilForDefault is 'yes'. The default
value is the special value nil.

 Element Defaults When Parsing 9.4.2

If empty representation is established when parsing, the possibility of applying an element default
arises. Essentially, if a required occurrence of an element has empty representation, then an
element default will be applied if present, though there are a couple of variations on this rule.
Remember that in order to have established empty representation, the occurrence must be
compliant with the dfdl:emptyValueDelimiterPolicy for the element, and for a complex element the
parser must have descended into the type and returned with no unsuppressed processing error.

The rules for applying element defaults are not dependent on dfdl:occursCountKind. However, if a
required occurrence does not produce an item in the Infoset after the rules have been applied,
then whether it is a processing error or a validation error (if validation is enabled) does depend on
dfdl:occursCountKind (see Section 16.1 dfdl:occursCountKind property).

There are three main cases to consider. In what follows the term 'string' encompasses both
xs:string and xs:hexBinary as these are the two data types for which a zero length (empty) string
is valid for the type.

 Simple element (non-string) 9.4.2.1

Required occurrence: If the element has a default value then an item is added to the Infoset using
the default value, otherwise nothing is added to the Infoset.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 79 of 235

Optional occurrence: Nothing is added to the Infoset.

 Simple element (string) 9.4.2.2

Required occurrence: If the element has a default value then an item is added to the infoset using
the default value, otherwise an item is added to the Infoset using empty string as the value.

Optional occurrence: If dfdl:emptyValueDelimiterPolicy is not 'none'
13

 then an item is added to the
Infoset using empty string as the value, otherwise nothing is added to the Infoset.

Note: To prevent unwanted empty strings from being added to the Infoset, use XSD minLength >
'0' and a dfdl:assert that uses the dfdl:checkConstraints() function, to raise a processing error.

 Complex element 9.4.2.3

Required occurrence: An item is added to the Infoset.

Optional occurrence: If dfdl:emptyValueDelimiterPolicy is not 'none' then an item is added to the
Infoset, otherwise nothing is added to the Infoset. (Note that when dfdl:emptyValueDelimiterPolicy
is other than 'none', either an initiator, terminator or both must have been found in the data
stream.)

For both required and optional occurrences, the Infoset item may also have a child item.

1. If the first child element of the complex type is a required simple element, then an empty
string or default value will also be added to the Infoset.

2. If the first child element of the complex type is a required complex element, then an item
is added to the Infoset (which may itself have a child via (1)

As an example, consider a sequence S0 with a separator that contains among other content an
optional non-nillable non-initiated element E1 of complex type. The content of the type is a
sequence S1 with a different separator and the first child is a required non-initiated element E2 of
type xs:string. The dfdl:lengthKind of both E1 and E2 is 'delimited'. The representation of E1 has
zero length, that is, the data contains adjacent S0 separators. On processing E1, the parser will
establish a point of uncertainty and descend into E1's complex type and process E2. It scans for
in-scope delimiters and immediately encounters S0 separator. E2 has the empty representation,
so E1 is added to the Infoset along with a value of empty string for E2. All other content of S1 is
missing, so the parser returns from the descent. E1 is therefore known-to-exist. Because the
position in the data has not changed, E1 therefore has the empty representation. Because E1 is
empty and optional it is not added to the Infoset, and the Infoset items for E1 and E2 are
discarded.

 Element Defaults When Unparsing 9.4.3

If an element is missing from the Infoset when unparsing, the possibility of applying an element
default arises. Essentially if a required occurrence of an element is missing, then an element
default will be applied if present, and the resulting item is added to the augmented Infoset.

The rules for applying element defaults are not dependent on dfdl:occursCountKind. However if a
required occurrence does not produce an item in the augmented Infoset after the rules have been
applied then whether it is a processing error or a validation error (if enabled) is dependent on
dfdl:occursCountKind (see Section 16.1 dfdl:occursCountKind property).

There are two main cases to consider.

13 If other than ‘none’, either an initiator, terminator or both must have been found in the data stream.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 80 of 235

 Simple element 9.4.3.1

Required occurrence: If an element has a default value then an item is added to the augmented
Infoset using the default value, otherwise nothing is added.

Optional occurrence: Nothing is added to the augmented Infoset.

 Complex element 9.4.3.2

Required occurrence: An item is added to the augmented Infoset as specified below.

Optional occurrence: Nothing is added to the augmented Infoset.

For a required occurrence, the unparser descends into the complex type:

• For a sequence, each child element is examined in schema order and the rules for simple
and complex elements applied (recursively). The lack of a default may give rise to a
processing error, as described above.

• For a choice, each branch is examined in schema order and the above rules applied
recursively to the branch. The lack of a default may give rise to a processing error, as
described above, and if so the error is suppressed and the next branch is tried, otherwise
that branch is selected. It is a processing error if no choice branch is ultimately selected.

9.5 Evaluation Order for Statement Annotations

Given a component of a DFDL schema, there is a resolved set of annotations for it.

Of these, some are statement annotations and the order of their evaluation relative to the actual
processing of the schema component itself (parsing or unparsing via its format annotations) is as
given in the ordered lists below.

For elements and element refs:

1. dfdl:discriminator or dfdl:assert(s) with testKind='pattern' (parsing only)

2. dfdl:element following property scoping rules

3. dfdl:setVariable(s)

4. dfdl:discriminator or dfdl:assert(s) with testKind='expression' (parsing only)

For sequences, choices and group refs:

1. dfdl:discriminator or dfdl:assert(s) with testKind='pattern' (parsing only)

2. dfdl:newVariableInstance(s)

3. dfdl:setVariable(s)

4. dfdl:sequence or dfdl:choice or dfdl:group following property scoping rules

5. dfdl:discriminator or dfdl:assert(s) with testKind='expression' (parsing only)

 Asserts and Discriminators with testKind 'expression' 9.5.1

Implementations are free to optimize by recognizing and executing discriminators or asserts with
testKind 'expression' earlier so long as the resulting behavior is consistent with what results from
the description above.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 81 of 235

 Discriminators with testKind 'expression' 9.5.2

When parsing, an attempt to evaluate a discriminator must be made even if preceding statements
or the parse of the schema component ended in a processing error.

This is because a discriminator's expression could evaluate to true thereby resolving a point of
uncertainty even if the complete parsing of the construct ultimately caused a processing error.

Such discriminator evaluation has access to the DFDL Infoset of the attempted parse as it existed
immediately before detecting the parse failure. Attempts to reference parts of the DFDL Infoset
that do not exist are processing errors.

 Elements and setVariable 9.5.3

The resolved set of dfdl:setVariable statements for an element are executed after the parsing of
the element. This is in contrast to the resolved set of dfdl:setVariable statements for a group
which are executed before the parsing of the group.

For elements, this implies that these variables are set after the evaluation of expressions
corresponding to any computed DFDL properties for that element, and so the variables may not
be referenced from expressions that compute these DFDL properties.

That is, if an expression is used to provide the value of a property (such as dfdl:terminator or
dfdl:byteOrder), the evaluation of that property expression occurs before any dfdl:setVariable
annotation from the resolved set of annotations for that element are executed; hence, the
expression providing the value of the property may not reference the variable. Schema authors
can insert sequences to provide more precise control over when variables are set.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 82 of 235

10. Core Representation Properties and their Format Semantics

The next sections specify the core set of DFDL v1.0 properties that may be used in DFDL
annotations in DFDL Schemas to describe data formats.

It is a schema definition error when a DFDL schema does not contain a definition for a
representation property that is needed to interpret the data. For example, a DFDL schema
containing any textual data must provide a definition of the character set encoding property
(dfdl:encoding) for that textual data, and if it is not part of the format properties context for that
data, then it is a schema definition error.

Furthermore, no default values are provided for representation properties as built-in definitions by
any DFDL processor. This requires DFDL schemas to be explicit about the representation
properties of the data they describe, and avoids any possibility of DFDL schemas that are
meaningful for some DFDL processors but not others.

The properties are organized as follows:

• Common to both Content and Framing (see 11)

• Common Framing, Position, and Length (see 12)

• Simple Type Content (see 13)

• Sequence Groups (see 14)

• Choice Groups (see 15)

• Array elements and optional elements (see 16)

• Calculated Values (see 17)

Where properties are specific to a physical representation, the property name may choose to
reflect this. Where properties are related to a specific logical type grouping (defined below), the
property name may choose to reflect this.

A limited number of properties can take a DFDL expression which must return a value of the
proper type for the property. Those properties that take an expression explicitly state in the
description. Other properties do not take an expression.

The property description defines which schema component that the property may be specified on.
In addition all the DFDL properties may be specified on a dfdl:format annotation.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 83 of 235

11. Properties Common to both Content and Framing

Property Name Description

byteOrder Enum or DFDL Expression

Valid values 'bigEndian', 'littleEndian'.

This property can be computed by way of an expression which returns
the string 'bigEndian' or 'littleEndian'. The expression must not contain
forward references to elements which have not yet been processed.

Note that there is, intentionally, no such thing as 'native' endian
14

.

This property applies to all Numbers and Calendars with representation
binary. Specifically that is binary integers, all packed decimals, binary
floats, binary seconds and binary milliseconds.

This property is never used to establish the byte order for text /strings
with Unicode fixed-width encodings that do not specify the byte order
(UTF-16 and UTF-32). See Section 11.1 Unicode Byte Order Marks
(BOM) for details.

Annotation: dfdl:element, dfdl:simpleType, dfdl:sequence, dfdl:choice,
dfdl:group

encoding Enum or DFDL Expression

Values are IANA charsets or CCSID
15

s, or one of a set of DFDL-specific
encoding names.

This property can be computed by way of an expression which returns
an appropriate enum value. The expression must not contain forward
references to elements which have not yet been processed.

Note that there is, deliberately, no concept of 'native' encoding
16

.

Conforming DFDL v1.0 processors must accept at least 'UTF-8'', 'UTF-
16', 'UTF-16BE', 'UTF-16LE', 'ASCII', and 'ISO-8859-1' as encoding
names.

Encoding names are case-insensitive, so 'utf-8' and 'UTF-8' are
equivalent.

Unicode character set encodings that do not specify a byte order (such

14
 The concept of native-endian is avoided in DFDL since a DFDL schema containing such a

property binding does not contain a complete description of data, but rather an incomplete one
which is parameterized by characteristics of the machine and implementation where the DFDL
processor is executed. In DFDL this same behavior is achieved using variables or, for example,
by use of external setting of pre-defined variables to set dfdl:byteOrder.

15
 CCSID stands for Coded Character Set ID, a decimal number syntax for a coded charater set

specifier. [CCSID].

16
 The concept of native character encoding is avoided in DFDL since a DFDL schema containing

such a property binding does not contain a complete description of data, but rather an incomplete
one which is parameterized by characteristics of the operating environment where the DFDL
processor executes. In DFDL this same behavior is achieved through use of true
parameterization using variables or, for example, by use of external setting of pre-defined
variables to set dfdl:encoding.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 84 of 235

as UTF-16 or UTF-32) can have their byte-order controlled by a
document-level byte-order-mark (BOM). See Section 11.1 Unicode Byte
Order Marks (BOM) for details.

The encoding name 'UTF-8' is interpreted strictly and does not include
variants such as CESU-8.

DFDL-specific encoding names include:

• US-ASCII-7-bit-packed – a US-ASCII variant where character
codes occupy only 7 bits, not a full 8-bit byte.

Implementations may allow additional implementation-specific encoding
names only for character set encodings for which there is no IANA name
standard nor CCSID standard. These implementation-specific encodings
must have "x-" as a prefix to their name, and they are subject to being
superceded with DFDL standard names in future versions of the
specification.

Annotation: dfdl:element, dfdl:simpleType, dfdl:sequence, dfdl:choice,
dfdl:group

utf16Width Enum

Valid values are 'fixed', 'variable'.

Applies only when encoding is 'UTF-16', 'UTF-16BE', UTF16-LE' or their
CCSID equivalents.

Specifies whether the encoding 'UTF-16' should be treated as a fixed or
variable width encoding. 'UTF-16' can contain characters which require
two codepoints (called a surrogate pair) to represent. When utf16Width
is 'fixed' these surrogate code points are treated as separate characters.
When utf16Width is 'variable', then surrogate pairs are converted into a
single character on parsing, and such a character is split into two
characters on unparsing.

When utf16Width is 'variable', then on parsing an un-paired surrogate
codepoint causes a decode error, which can be controlled via
dfdl:encodingErrorPolicy described below.

Annotation: dfdl:element, dfdl:simpleType, dfdl:sequence, dfdl:choice,
dfdl:group

ignoreCase Enum

Valid values are 'yes', 'no'.

Whether mixed case data is accepted when matching delimiters and
data values on input.

This affects the behavior of matching for these properties: initiator,
terminator, separator, nilValue, textStandardExponentRep,
textStandardInfinityRep, textStandardNaNRep, textStandardZeroRep,
textBooleanTrue, textBooleanFalse.

Property ignoreCase plays no part when comparing an element value
with an XSDL enum facet, matching an element value to an XSDL
pattern facet, or comparing an element value with the XSDL fixed
property. It is therefore not used by validation (when validation is
enabled), nor by the dfdl:checkConstraints function.

 On unparsing always use the delimiters or value as specified.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 85 of 235

Annotation: dfdl:element, dfdl:simpleType, dfdl:sequence, dfdl:choice,
dfdl:group

encodingErrorPolicy Enum

Valid values are 'error' or 'replace'.

This property applies whenever dfdl:encoding is applicable.

This property provides control of how decoding and encoding errors are
handled when converting the data to text, or text to data. This includes
converting when scanning for delimiters, matching regular expression
length or test patterns, matching textual data type representation
patterns against the data, and of course isolating the text content that
will become the value of an element (parsing) or constructing the content
from the value (unparsing).

When parsing, an error can occur when decoding characters from their
encoded form into the DFDL Infoset character set (ISO10646). This can
occur due to invalid byte sequences, or not enough bytes found to make
up the full encoding of a character.

If 'replace', then the Unicode replacement character (U+FFFD) is
substituted for the offending errors, one replacement character for any
incorrect fragment of an encoding.

If 'error' then a processing error occurs.

When unparsing, the errors that can occur when encoding characters
from Unicode/ISO 10646 into the specified encoding include when no
mapping is provided by the encoding character set specification and
when there is not enough space to output the entire encoding of the
character (e.g., need 2 bytes for a 2-byte character codepoint, but only 1
byte remains in the available length.)

If 'replace' then encoding-specific replacement/substitution character is
output. It is a processing error if no such character is defined, and it is a
processing error if there is any error when attempting to output the
replacement (such as not enough room for the representation of the
entire encoding of the replacement character).

If error' then a processing error occurs.

See Section 11.2 Character Encoding and Decoding Errors for further
details.

Annotation: dfdl:element, dfdl:simpleType, dfdl:sequence, dfdl:choice,
dfdl:group

11.1 Unicode Byte Order Marks (BOM)

DFDL provides automatic detection and generation of Unicode BOMs at the document level and
saves (for parsing), or retrieves (for unparsing) the BOM information from the DFDL Infoset
[unicodeByteOrderMark] member.

Parsing behaviour: When the dfdl:encoding property of the root element is specified, and is
exactly one of UTF-8, UTF-16, or UTF-32 (or CCSID equivalents), then a DFDL parser will look
for the appropriate BOM as the very first bytes in the data stream.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 86 of 235

• UTF-8. If a BOM is found
17

 then this is used to set the document information item
[unicodeByteOrderMark] member. If no BOM is found the parser takes no action. There is
no need to model the BOM explicitly.

• UTF-16. If a BOM is found then this is used to set the document information item
[unicodeByteOrderMark] member, and all data with dfdl:encoding UTF-16 throughout the
rest of the stream are assumed to have the implied byte order. If no BOM is found then all
data with dfdl:encoding UTF-16 throughout the rest of the stream are assumed to have big-
endian byte order. There is no need to model the BOM explicitly.

• UTF-32. If a BOM is found then this is used to set the document information item
[unicodeByteOrderMark] member, and all data with dfdl:encoding UTF-32 throughout the
rest of the stream are assumed to have the implied byte order . If no BOM is found then all
data with dfdl:encoding UTF-32 throughout the rest of the stream are assumed to have big-
endian byte order. There is no need to model the BOM explicitly.

When the dfdl:encoding property of the root element is specified, and is exactly one of UTF-16LE,
UTF-16BE, UTF-32LE or UTF-32BE (or CCSID equivalents), then a DFDL parser will not look for
the appropriate BOM. The byte order to use is implicit in the encoding. If a BOM does appear at
the start of the data stream, then it will simply be treated as a Unicode Zero-Width Non-Breaking
Space (ZWNBS) character, because this shares the same codepoint as a BOM.

The dfdl:byteOrder property is never used to establish the byte order for Unicode encodings.

The parser never looks for a BOM at any other point in the data stream, so if a BOM appears
elsewhere it will be treated as a Unicode ZWNBS character as described above

18
.

Unparsing behaviour: When the dfdl:encoding property of the root element is specified, and is
exactly one of UTF-8, UTF-16 or UTF-32 (or CCSID equivalents), then a DFDL unparser will look
in the infoset document information item for a BOM.

• UTF-8. If the document information item [unicodeByteOrderMark] member is 'UTF-8', the
UTF-8 BOM is output as the very first bytes in the data stream. If the property is empty then
no BOM is output. If the property has any other value, it is a processing error. There is no
need to model the BOM explicitly.

• UTF-16. If the document information item [unicodeByteOrderMark] member is 'UTF-16LE'
or 'UTF-16BE', the corresponding UTF-16 BOM is output as the very first bytes in the data
stream, and all data with dfdl:encoding UTF-16 throughout the rest of the document will be
output with the implied byte order. If the property is empty then no BOM is output, and all
data with dfdl:encoding UTF-16 throughout the rest of the document are assumed to have
big-endian byte order. If the property has any other value, it is a processing error. There is no
need to model the BOM explicitly.

• UTF-32. If the document information item [unicodeByteOrderMark] member is 'UTF-32LE'
or 'UTF-32BE', the corresponding UTF-32 BOM is output as the very first bytes in the data
stream, and all data with dfdl:encoding UTF-32 throughout the rest of the document will be
output with the implied byte order . If the property is empty then no BOM is output, and all
data with dfdl:encoding UTF-32 throughout the rest of the document are assumed to have

17
 While UTF-8 has no true notion of byte-order, the 16-bit codepoint for a byte-order mark is often

translated into a 3-byte utf-8 sequence of bytes that appear at the start of a document. This information is
helpful to establish that the document is encoded in Unicode (specifically UTF-8).

18
 A way of eliminating a BOM at the beginning of a string so that it does not end up in the infoset is to model

it as a separate hidden element before the string. This BOM element can be either required or optional

depending on whether a BOM is expected or optional at the beginning of the string.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 87 of 235

big-endian byte order. If the property has any other value, it is a processing error. There is no
need to model the BOM explicitly.

When the dfdl:encoding property of the root element is specified, and is exactly one of UTF-16LE,
UTF-16BE, UTF-32LE or UTF-32BE (or CCSID equivalents), then a DFDL unparser will not look
at the document information item [unicodeByteOrderMark] member and will not output a BOM.
The byte order to use is implicit in the encoding. If a BOM does need to be output at the start of
the data stream, then it must be explicitly modelled as such.

The dfdl:byteOrder property is never used to establish the byte order for Unicode encodings.

The unparser never outputs a BOM at any other point in the data stream. If a BOM needs to
appear, then it must be explicitly modelled as such.

11.2 Character Encoding and Decoding Errors

When parsing, these are the errors that can occur when decoding characters into Unicode/ISO
10646.

1. The data is broken - invalid bit/byte sequences are found which do not match the
definition of a character for the encoding.

2. Not enough data is found to make up the entire encoding of a character. That is, a
fragment of a valid encoding is found.

When unparsing, these are the errors that can occur when encoding characters from
Unicode/ISO 10646 into the specified encoding.

1. No mapping provided by the encoding specification.

2. Not enough room to output the entire encoding of the character (e.g., need 3 bytes for a
character encoding that uses 3-bytes for that character, but only 1 byte remains in the
available length.

The subsections below describe how these errors are handled.

 Property dfdl:encodingErrorPolicy 11.2.1

The property dfdl:encodingErrorPolicy has two possible values: 'error' and 'replace'.

 dfdl:encodingErrorPolicy 'error' 11.2.1.1

If 'error', then any error when decoding characters while parsing causes a processing error. For
unparsing, any error when encoding characters causes a processing error.

When parsing, it does not matter if this happens when scanning for delimiters, matching a regular
expression, matching a literal nil value, or constructing the value of a textual element.

There is one exception. When dfdl:lengthUnits is 'bytes', the 'not enough data' decoding error is
ignored, and the data making up the fragment character is skipped over. Symmetrically, when
unparsing the 'not enough room' encoding error is ignored and the left-over bytes are filled with
the dfdl:fillByte.

 dfdl:encodingErrorPolicy 'replace' for parsing 11.2.1.2

If 'replace' then any error when decoding characters results in the insertion of the Unicode
Replacement Character (U+FFFD) as the replacement for that error.

It does not matter if this error and replacement happens when scanning for delimiters, matching a
regular expression, matching a literal nil value, or constructing the value of a textual element.

There is one exception. When dfdl:lengthUnits is 'bytes', the 'not enough data' decoding error is
ignored, no replacement character is created. The data making up the fragment character is
skipped over. (It will be filled with the dfdl:fillByte when unparsing.)

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 88 of 235

Note that the "." wildcard in regular expressions will match the Unicode Replacement Character,
so ".*" and ".+" regular expressions can potentially cause very large matches (up to the entire
data stream) to occur when data contains errors and dfdl:encodingErrorPolicy 'replace'. DFDL
Schema authors are advised that bounded length negated regular expressions can help in this
case. E.g., "[^\uFFFD]{0,50}" says to match any character (excluding the Unicode Replacement
Character), but only up to length 50.

It is also worth noting that the Unicode Replacement Character can appear in data as an ordinary
character, and this cannot be distinguished from the insertion of the Unicode Replacement
Character due to a decoding error. This is likely to happen for data that is (a) initially parsed by a
DFDL parser with dfdl:encodingErrorPolicy 'replace', and (b) which contains some decoding
errors, but (c) is nevertheless successfully parsed, (d) is written back out to a file or other data
repository, and (e) is parsed again. The written data will have replaced data errors with the
Unicode Replacement Character, and so if the data is parsed again, it will no longer have errors,
but will have the Unicode Replacement Character as a regular character in the data.

If dfdl:lengthUnits is 'characters', then a Unicode Replacement Character counts as contributing a
single character to the length.

If the data contains more than one adjacent decode error, then the specific number of Unicode
Replacement Characters that are inserted as the replacement of these errors is implementation
dependent. That is, some implementations may view, for example, three consecutive erroneous
bytes as three separate decode errors, others may view them as a single or two decode errors.
All implementations MUST, however, insert some number of Unicode Replacement Characters,
and then continue to decode characters following the erroneous data.

The trimming of pad characters always happens after Unicode Replacement Characters have
been inserted into the data.

 dfdl:encodingErrorPolicy 'replace' for unparsing 11.2.1.3

For unparsing, each encoding has a replacement/substitution character specified by the ICU. This
character is substituted for the unmapped character or the character that has too large an
encoding to fit in the available space.

There is one exception. When dfdl:lengthUnits is 'bytes', the 'not enough room' encoding error is
ignored. The left-over bytes are filled with the dfdl:fillByte (they are skipped when parsing.)

The definitions of these substitution characters can be conveniently found for many encodings in
the ICU Converter Explorer (http://demo.icu-project.org/icu-bin/convexp).

An encoding error is a processing error if the encoding does not provide a
substitution/replacement character definition. (This would be rare, but could occur if a DFDL
implementation allows many encodings beyond the minimum set.)

 Unicode UTF-16 Decoding/Encoding Non-Errors 11.2.2

The following specific situations involving encodings UTF-16, UTF-16LE, and UTF-16BE when
dfdl:utf16Width="fixed", and they do not cause a decoding or encoding error.

• unpaired surrogate codepoint

• out-of-order surrogate codepoint pair

• surrogate codepoint pair is encountered

In all these cases the code-point(s) becomes a character code in the DFDL Information Item for
the string.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 89 of 235

 Preserving Data Containing Decoding Errors 11.2.3

There can be situations where data wants to be preserved exactly even if it contains errors.

It is suggested that if a DFDL schema author wants to preserve information containing data
where the encodings have these kinds of errors, that they model such data as xs:hexBinary, or as
xs:string but using an encoding such as iso-8859-1 which preserves all bytes.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 90 of 235

12. Framing

Several properties are common across the various framing styles or are used to distinguish them.
Generally these have to do with position and length for text, bit fields, or opaque data.

12.1 Aligned Data

Alignment properties control the leading alignment and trailing alignment regions.

When the alignment properties are applied to an array element, the properties are applied to each
occurrence of the element; that is, not only to the first occurrence.

The following properties are used to define alignment rules.

Property Name Description

alignment Non-negative Integer or 'implicit'

A non-negative number that gives the alignment required for the
beginning of the item. If alignment is needed then the size of the
AlignmentFill grammar region will be non-zero if the item must be
aligned to a boundary.

'implicit' specifies that the natural alignment for the representation type is
used. See the table of implicit alignments Table 11 Implicit Alignment in
bits for simple elements. The 'implicit' alignment of a complex element is
the alignment of its model group. The 'implicit' alignment of a model group
is the alignment of its child with the greatest alignment. If alignment is
'implicit' then alignmentUnits is ignored.

For textual data, minimum alignment is mandated by the character-set
encoding, and this property must be 'implicit' or set to a multiple of the
character-set's mandatory alignment. See Section 12.1.2.

Annotation: dfdl:element, dfdl:simpleType, dfdl:sequence, dfdl:choice,
dfdl:group

alignmentUnits Enum

Valid values are 'bits' or 'bytes'

Scales the alignment so alignment can be specified in either units of bits
or units of bytes.

Only used when dfdl:alignment not 'implicit'

Annotation: dfdl:element, dfdl:simpleType, dfdl:sequence, dfdl:choice,
dfdl:group

fillByte DFDL String Literal

A single byte specified as a DFDL byte value entity or a single character.
If a character is specified, it must be a single-byte character in the
applicable encoding.

Used on unparsing to fill empty space such as between two aligned
elements.

Used to fill these regions specified in the grammar: RightFill,
ElementUnused, ChoiceUnused, LeadingSkip, AlignmentFill, and
TrailingSkip.

Annotation: dfdl:element, dfdl:simpleType, dfdl:sequence, dfdl:choice,

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 91 of 235

dfdl:group

leadingSkip Non-negative Integer

A non-negative number of bytes or bits, depending on
dfdl:alignmentUnits, to skip before alignment is applied. Gives the size of
the grammar region having the same name.

Annotation: dfdl:element, dfdl:simpleType, dfdl:sequence, dfdl:choice,
dfdl:group

trailingSkip Non-negative Integer

A non-negative number of bytes or bits, depending on
dfdl:alignmentUnits, to skip after the element, but before considering the
alignment of the next element. Gives the size of the grammar region
having the same name.

If dfdl:trailingSkip is specified when dfdl:lengthKind is 'delimited' then a
dfdl:terminator must be specified.

Annotation: dfdl:element, dfdl:simpleType, dfdl:sequence, dfdl:choice,
dfdl:group

There are two properties which control the data alignment by controlling the length of the
AlignmentFill region

• alignment - an integer 1 or greater

• alignmentUnits - bits or bytes

An element's representation is aligned to N units if P is the first position in the representation and
P mod N = 1. When parsing, the position of the first unit of the data stream is 1.

For example, if dfdl:alignment is 4, and dfdl:alignmentUnits is 'bytes', then the element's
representation must begin at 1 or 1 plus a multiple of 4 bytes. I.e., 1, 5, 9, 13, 17 and so on.

The length of the AlignmentFill region is measured in bits. If alignmentUnits is 'bytes' then we
multiply the alignment value by 8 to get the bit alignment, B. If the current position (first position
after the end of the previous element) is bit position N, then the length of the AlignmentFill
region is the smallest non-negative integer L such that (L + N) mod B = 1. The position of the first
bit of the aligned element is P = L + N.

To avoid ambiguity when parsing, optional elements where the minimum number of occurrences
is zero cannot have alignment properties different from the items that follow them. It is a schema
definition error otherwise. This avoids the possibility that the following item is incorrectly parsed
as if it were a valid optional element occurrence.

The LeadingSkip and TrailingSkip regions length are controlled by two properties of
corresponding names and the dfdl:alignmentUnits property.

 Implicit Alignment 12.1.1

When dfdl:alignment is 'implicit' the following alignment values are applied for each logical type.

Type Alignment

text binary

String Not applicable

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 92 of 235

Float

Encoding
Specific
(usually 8 bits,
with
exceptions:
See Section
12.1.2)

32

Double 64

Decimal, Integer,
nonNegativeInteger

Packed decimals: 8

binary: 8

Long, UnsignedLong binary: 64

Int, UnsignedInt binary: 32

Short,
UnsignedShort

binary: 16

Byte, UnsignedByte binary: 8

DateTime binarySeconds: 32,
binaryMilliseconds:64

Date binarySeconds: 32,
binaryMilliseconds:64

Time binarySeconds: 32,
binaryMilliseconds:64

Boolean 32

HexBinary Not applicable 8

Table 11 Implicit Alignment in bits

Note: The above table specifies the implicit alignment in bits, but this does not imply that
dfdl:alignmentUnits 'bits' can be specified for all simple types. Rather, dfdl:alignmentUnits and
dfdl:lengthUnits are independent and have their own rules for when they are applicable.

 Mandatory Alignment for Textual Data 12.1.2

We use the term textual data to describe data of type xs:string, data with dfdl:representation
"text", as well as data being matched to delimiters (parsing) or output as delimiters (unparsing),
and data being matched to regular expressions (parsing only - as in a dfdl:assert with testKind
'pattern', or an element with dfdl:lengthKind 'pattern').

Textual data has mandatory alignment that is character-set-encoding dependent. That is, these
mandates come from the character set encoding specified by the dfdl:encoding property.

When processing textual data, it is a schema definition error if the dfdl:alignment and
dfdl:alignmentUnits properties are used to specify alignment that is not a multiple of the encoding-
specified mandatory alignment.

If the data is not aligned to the proper boundary for the encoding when textual data is processed,
then bits are skipped (parsing) or filled from dfdl:fillByte (unparsing) to achieve the mandatory
alignment.

All required character set encodings in DFDL have 8-bit/1-byte alignment.

Some implementations may include additional encodings which have other alignments. The
DFDL standard specifies a name for one such character set encoding though conforming
implementations are not required to support this encoding:

• US-ASCII-7bit-packed: the alignment is 1-bit (textual data in this encoding may appear on
any bit boundary, i.e., no byte alignment is required).

Implementations may also provide identifiers for non-standard encodings, and these will have
their own specific alignments as well.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 93 of 235

Note the 16-bit and 32-bit Unicode character set encodings UTF-16, UTF-16BE, UTF-16LE, UTF-
32, UTF-32BE, UTF-32LE, all have 8-bit/1-byte alignment.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 94 of 235

 Mandatory Alignment for Packed Decimal Data 12.1.3

Packed decimal data must have a multiple of 4-bit alignment. It is a schema definition error
otherwise.

12.2 Properties for Specifying Delimiters

The following properties apply to all objects that use text delimiters to delimit, that is, to initiate
and/or terminate data. Delimiters can apply to binary data; however they are most often called
'text' delimiters because the concept is much more commonly used for textual data formats.

Property Name Description

initiator List of DFDL String Literals or DFDL Expression

Specifies a whitespace separated list of alternative literal strings one
of which marks the beginning of the element or group of elements.

This property can be computed by way of an expression which
returns a string containing a whitespace separated list of DFDL
String Literals. The expression must not contain forward references
to elements which have not yet been processed.

Each string literal in the list, whether apparent in the schema, or
returned as the value of an expression, is restricted to allow only
certain kinds of syntax:

• DFDL character entities are allowed.

• DFDL Byte Value entities (%#r) are allowed.

• DFDL Character Class ES is not allowed.

• DFDL Character Classes NL, WSP, WSP+, and WSP* are
allowed. However, the WSP* entity cannot appear alone. It must
be used in combination with other text characters or entities so
as to describe a representation that cannot ever be an empty
string.

The Initiator region contains one of the initiator strings defined by
dfdl:initiator.

When parsing, the list of values is processed in a greedy manner,
meaning it takes all the initiators, that is, each of the string literals in
the white space separated list, and matches them each against the
data. In each case the longest possible match is found. The initiator
with the longest match is the one that is selected as having been
'found', with length-ties being resolved so that the matching initiator
is selected that is first in the order written in the schema. Once a
matching initiator is found, no other matches will be subsequently
attempted (ie, there is no backtracking).

When an initiator is specified, it is a processing error if the
component is required and one of the values is not found.

If dfdl:initiator is "" (the empty string), then the Initiator region is of
length zero, and no initiator is expected. It is not permitted for an
expression to return an empty string. That is a schema definition
error.

On unparsing the first initiator in the list is automatically inserted into

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 95 of 235

the Initiator region.

If dfdl:ignoreCase is 'yes' then the case of the string is ignored by
the parser.

Annotation: dfdl:element, dfdl:simpleType, dfdl:sequence,
dfdl:choice, dfdl:group

terminator List of DFDL String Literals or DFDL Expression

Specifies a whitespace separated list of alternative text strings that
one of which marks the end of an element or group of elements.
The strings MUST be searched for in the longest first order.

This property can be computed by way of an expression which
returns a string of whitespace separated list of values. The
expression must not contain forward references to elements which
have not yet been processed.

Each string literal in the list, whether apparent in the schema, or
returned as the value of an expression, is restricted to allow only
certain kinds of syntax:

• DFDL character entities are allowed.

• DFDL Byte Value entities (%#r) are allowed.

• DFDL Character Class ES is not allowed.

• DFDL Character Classes NL, WSP, WSP+, and WSP* are
allowed. However, the WSP* entity cannot appear alone. It must
be used in combination with other text characters or entities so
as to describe a representation that cannot ever be an empty
string.

The Terminator region contains the terminator string.

If dfdl:terminator is "" (the empty string), then the terminator region is
of length zero, and no terminator is expected. It is not permitted for
an expression to return an empty string, that is a schema definition
error.

When parsing, the list of values is processed in a greedy manner,
meaning it takes all the terminators, that is, each of the string literals
in the white space separated list, and matches them each against
the data. In each case the longest possible match is found. The
terminator with the longest match is the one that is selected as
having been 'found', with length-ties being resolved so that the
matching terminator is selected that is first in the order written in the
schema. Once a matching terminator is found, no other matches will
be subsequently attempted (ie, there is no backtracking).

When a terminator is expected it is a processing error if no matching
terminator is found. However, if
dfdl:documentFinalTerminatorCanBeMissing is specified then it is
not an error if the last terminator in the data stream is not found.

On unparsing the first terminator in the list is automatically inserted
in the Terminator region.
If dfdl:ignoreCase is 'yes' then the case of the string is ignored by
the parser.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 96 of 235

Annotation: dfdl:element, dfdl:simpleType, dfdl:sequence,
dfdl:choice, dfdl:group

emptyValueDelimiterPolic
y

Enum

Valid values are 'none', 'initiator', 'terminator' or 'both'

Indicates that when an element in the data stream is empty, an
initiator (if one is defined), a terminator (if one is defined), both an
initiator and a terminator (if defined) or neither must be present.

Ignored if both dfdl:initiator and dfdl:terminator are "" (empty string).

'initiator' indicates that, on parsing, if the content region (which can
be either the SimpleContent region or the ComplexContent region
defined in Section 9.2) is empty then the dfdl:initiator must be
present. It also indicates that on unparsing when the content region
is empty that the dfdl:initiator will be output.

'terminator' indicates that, on parsing, if the content region is empty
then the dfdl:terminator must be present. It also indicates that on
unparsing when the content region is empty the dfdl:terminator will
be output.

'both' indicates that, on parsing, if the content region is empty both
the dfdl:initiator and dfdl:terminator must be present. On unparsing
when the content region is empty the dfdl:initiator followed by the
dfdl:terminator will be output.

'none' indicates that if the content region is empty neither the
dfdl:initiator or dfdl:terminator must be present. On unparsing when
the content region is empty nothing will be output.

It is a schema definition error if emptyValueDelimiterPolicy set to
'none' or 'terminator' when the parent xs:sequence has
dfdl:initiatedContent 'yes'.

This property plays an important role in establishing empty
representation. See 9.2.2 Empty Rrepresentation for details.

Annotation: dfdl:element, dfdl:simpleType

documentFinalTerminator
CanBeMissing

Enum

Valid values are 'yes', 'no'

When the documentFinalTerminatorCanBeMissing property is true,
then when an element is the last element in the data stream, then
on parsing, it is not an error if the terminator is not found.

For example, if the data are in a file, and the format specifies lines
terminated by the newline character (typically LF or CRLF), then if
the last line is missing its newline, then this would normally be an
error, but if documentFinalTerminatorCanBeMissing is true, then
this is not a processing error.

On unparsing the terminator is always written out regardless of the
state of this property.

Annotation: dfdl:format (but applies to elements only)

outputNewLine DFDL String Literal or DFDL Expression

Specifies the character or characters that will be used to replace the
%NL; character class entity during unparse

It is a schema definition error if any of the characters are not in the

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 97 of 235

set of characters allowed by the DFDL entity %NL; Only individual
characters or the %CR;%LF; combination are allowed.

It is a schema definition error if the DFDL entity %NL; is specified

This property can be computed by way of an expression which
returns a DFDL string literal. The expression must not contain
forward references to elements which have not yet been processed.

Annotation: dfdl:element, dfdl:simpleType, dfdl:sequence,
dfdl:choice, dfdl:group

12.3 Properties for Specifying Lengths

These properties are used to determine the representation length of an element and apply to
elements of all types (simple and complex).

Property Name Description

lengthKind Enum

Controls how the representation length of the component is
determined.

Valid values are: 'explicit', 'delimited', 'prefixed', 'implicit', 'pattern',
'endOfParent'

A full description of each enumeration is given in the later sections.

'explicit' means the length of the element is given by the dfdl:length
property

'delimited' means the element length is determined by scanning for a
terminator or separator.

'prefixed' means the length of the element is given by an immediately
preceding PrefixLength data region the format of which is specified
using prefixLengthType.

'implicit means the length is to be determined in terms of the type of
the element and its schema-specified properties if any.

'pattern' means the length of the element is given by scanning for a
regular expression specified using the dfdl:lengthPattern property.

'endOfParent' means that the length extends to the end of the
containing (parent) construct.

Annotation: dfdl:element, dfdl:simpleType

lengthUnits Enum

Valid values 'bytes', 'characters', ''bits'.

Specifies the units to be used whenever a length is being used to
extract or write data. Applicable when lengthKind is 'explicit', 'implicit'
(for xs:string and xs:hexBinary) or 'prefixed'.

'characters' may only be used for complex elements and simple
elements with text representation.

'bits' may only be used for xs:boolean, xs:byte, xs:short, xs:int,
xs:long, xs:unsignedByte, xs:unsignedShort, xs:unsignedInt, and
xs:unsignedLong simple types with representation 'binary'.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 98 of 235

 Annotation: dfdl:element, dfdl:simpleType

 dfdl:lengthKind 'explicit' 12.3.1

When dfdl:lengthKind is 'explicit' the length of the item is given by the dfdl:length property. Used
on parsing and unparsing.

When unparsing an element with dfdl:lengthKind 'explicit' and where dfdl:length is an expression,
then the data in the Infoset is treated as variable length and not fixed length. The behaviour is the
same as dfdl:lengthKind 'prefixed'. See Section 12.3.4.

When parsing, data is extracted without regard to any in-scope delimiters.

Property Name Description

length Non-negative Integer or DFDL Expression.

Only used when lengthKind is 'explicit'.

Specifies the length of this element in units that are either always
bytes (type xs:hexBinary), or are specified by dfdl:lengthUnits.

This property can be computed by way of an expression which returns
a non-negative integer. The expression must not contain forward
references to elements which have not yet been processed.

Annotation: dfdl:element, dfdl:simpleType

When dfdl:lengthKind 'explicit', the method of extracting data is described in section: 12.3.7
Elements of Specified Length

 dfdl:lengthKind 'delimited' 12.3.2

On parsing, the length of an element with dfdl:lengthKind 'delimited' is determined by scanning
the datastream for the delimiter.

The data stream is scanned for any of

• the element's terminator (if specified)

• an enclosing construct's separator or terminator

• the end of an enclosing element designated by its known length

• the end of the data stream

dfdl:lengthKind 'delimited' may be specified for

• elements of simple type with text representation

• elements of number or calendar simple type with dfdl:representation 'binary' that have a
packed decimal representation

• elements of type xs:hexBinary

• elements of complex type.

The rules for resolving ambiguity between delimiters are:

1. When two delimiters have a common prefix, the longest delimiter is tried first.

2. When two delimiters have exactly the same length, but on different schema components,
the innermost (most deeply nested) delimiter is tried first.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 99 of 235

3. When the separator and terminator on a group have the same value, then at a point in
the data where either the separator or terminator could be found, the separator is tried
first. (Speculative execution may try the terminator subsequently).

4. If the length of the delimiters cannot be determined because character class entities
(which are variable length) are being used then the delimiters must each be matched
against the data, and the longest matching delimiter is taken as the match for the
delimiter.

5. Ties (same matched length) are broken by giving a separator priority over a terminator of
a sequence, or by choosing the innermost, or first in schema order.

When unparsing a simple element with text representation, the length in the data stream is the
length of the content region, padded to dfdl:textOutputMinLength or the XSD minLength facet if
dfdl:textPadKind is 'padChar'.

When unparsing a simple element with binary representation, then for hexBinary the length is the
number of bytes in the infoset value padded to the XSD minLength facet value using dfdl:fillByte,
and for the other types the length is the minimum number of bytes to represent the value and any
sign.

When unparsing a complex element, the length is that of the ComplexContent region.

 Simple Elements of Specified Length within Delimited Constructs 12.3.2.1

When a simple or complex element has a specified length or dfdl:lengthKind 'pattern' then
delimiter scanning is suspended for the duration of the processing of that element.

This allows formats to be parsed which are delimited, but have nested elements which contain
non-character data so long as that nested data can be isolated from the delimited data context
surrounding it.

 Delimited Binary Data 12.3.2.2

Formats involving binary data, most notably packed decimals, can use delimiter scanning but
care must be taken that the delimiters cannot match data represented in these formats. In
particular, the delimiters must be chosen with knowledge that BCD data can contain any byte
both of whose nibbles are 0 to 9 (that is, excluding A to F). Packed data adds bytes with a sign
indicator, that is, a nibble in the range A to F.

General binary data can contain any bit pattern whatsoever, so delimiter scanning for numbers
and calendars with dfdl:representation 'binary' are disallowed, with the specific exception of
packed decimals. Delimiter scanning is also allowed for type xs:hexBinary.

 dfdl:lengthKind 'implicit' 12.3.3

When dfdl:lengthKind is 'implicit', the length is determined in terms of the type of the element and
its schema-specified properties.

For complex elements, 'implicit' means the length is determined by the combined lengths of the
contained children, that is the ComplexContent region.

For simple elements the length is fixed and is given in Table 12 Length in Bits in bits for
simpleTypes SimpleTypes when when dfdl:lengthKind is ='implicit' .

Type Length

text binary

String The XSD maxlength facet
gives length in characters, but
this is also the length in bytes.

Not applicable

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 100 of 235

(See note below: character
set encoding must be single-
byte.) Multply by 8 to get
number of bits.

Float Not allowed 32 bits

Double Not allowed 64 bits

Decimal, Integer,
nonNegativeInteg
er

Not allowed

packed decimal: Not
allowed

binary: Not
allowed

Long,
UnsignedLong

Not allowed binary: 64 bits

Int, UnsignedInt Not allowed binary: 32 bits

Short,
UnsignedShort

Not allowed binary: 16 bits

Byte,
UnsignedByte

Not allowed binary: 8 bits

DateTime Not allowed binarySeconds: 32
bits,
binaryMilliseconds
: 64 bits.

Date Not allowed binarySeconds: 32
bits,
binaryMilliseconds
: 64 bits

Time Not allowed binarySeconds: 32
bits,
binaryMilliseconds
: 64 bits

Boolean Length of longest of
dfdl:textBooleanTrue and
dfdl:textBooleanFalse values

32 bits

HexBinary Not applicable The XSD maxLength facet gives the length
in bytes. Multiply by 8 to convert to number
of bits.

Table 12 Length in Bits for SimpleTypes when dfdl:lengthKind is 'implicit'

• 'Not Allowed' means that there is no implicit length for the combination of simple type and
representation and it is a schema definition error if dfdl:lengthKind 'implicit' is specified.

• packed decimal means dfdl:binaryNumberRep is 'packed', 'bcd', or 'ibm4690Packed'

• binary means dfdl:binaryNumberRep is 'binary'

• binarySeconds means dfdl:binaryCalendarRep is 'binarySeconds'

• binaryMilliseconds means dfdl:binaryCalendarRep is 'binaryMilliseconds'.

When dfdl:lengthKind is 'implicit', the method of extracting data is described in section: 12.3.7
Elements of Specified Length.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 101 of 235

It is a schema definition error if type is xs:string and lengthKind is 'implicit' and lengthUnits is
'bytes' and encoding is not an SBCS (exactly 1 byte per character code) encoding. This prevents
a scenario where validation against the XSD maxLength facet is in characters but parsing and
unparsing using the XSD maxLength facet is in bytes.

 dfdl:lengthKind 'prefixed' 12.3.4

When dfdl:lengthKind is 'prefixed' the length of the element is given by the integer value of the
PrefixLength region specified using prefixLengthType. The property prefixIncludesPrefixLength
also can be used to adjust the length appropriately.

When dfdl:lengthKind is 'prefixed' the method of extracting data is described in section: 12.3.7
Elements of Specified Length

Data is extracted without regard to any in-scope delimiters.

Property Name Description

prefixIncludesPrefixLengt
h

Enum

Valid values are 'yes', 'no'

Whether the length given by a prefix includes the length of the prefix
as well as the length of the content region (which can be either the
SimpleContent region or the ComplexContent region defined in
Section 9.2 DDFDL Data Syntax Grammar).)

Used only when dfdl:lengthKind 'prefixed'.

Annotation: dfdl:element, dfdl:simpleType

prefixLengthType QName

Name of a simple type derived from xs:integer or any subtype of it.

This type, with its DFDL annotations specifies the representation of
the length prefix, which is in the PrefixLength region.

It is a schema definition error if the xs:simpleType specifies
dfdl:lengthKind 'delimited' or 'endOfParent' or 'pattern' or 'explicit'
where length is an expression, a dfdl:outputValueCalc, a value for
dfdl:initiator or dfdl:terminator other than empty string, dfdl:alignment
other than '1', or dfdl:leadingSkip or dfdl:trailingSkip other than '0'.

19

Annotation: dfdl:element, dfdl:simpleType

The representation of the element is in two parts.

19
 Note: These restrictions are in place because it would not be sensible for these properties to

reside on a type used for a prefixLengthType. These properties are irrelevant to the format of a
SimpleContent region (they control regions that are part of other surrounding regions present only
for a full element). However, the dfdl:simpleType annotation allows these properties to be present
on a simpleType definition. It is only in this specific usage of simpleType to define a type for use
as a prefixLengthType that these properties are disallowed. Normal usage of a simpleType from
an element would combine these with properties on the element to create a combined set, and in
that case, these properties might be expressed on the simpleType, but be used when the
combined set of properties is created.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 102 of 235

1. The 'prefix length' is an integer which specifies the length of the element's content. The
representation of the length prefix is described by a simple type which is identified using
the dfdl:prefixLengthType property.

2. The content of the element.

When parsing, the length of the element's content is obtained by parsing the simple type
specified by dfdl:prefixLengthType to obtain an integer value. Note that all required properties
must be present on the specified simple type or defaulted because there is no element
declaration to supply any missing required properties.

If the dfdl:prefixIncludesPrefixLength property is 'yes' then the length of the element's content is
the value of the prefix length minus the length of the content of the prefix length.

If the prefix type is lengthKind 'implicit' or 'explicit' then the lengthUnits properties of both the
prefix type and the element must be the same.

The DFDL properties that specify the format of the prefix come from annotations directly on the
prefixLengthType's type definition, and from the default format annotation for the schema
document containing the definition of that type. . If the using element resides in a separate
schema, the simple type does not pick up values from the element's schema's default dfdl:format
annotation.

When unparsing, the length of the element's content region must be determined first as described
below. Then the value of the prefix length must be adjusted using dfdl:prefixIncludesPrefixLength.

Then the prefix length can be written to the data stream using the properties on the
dfdl:prefixLengthType, and finally the element's content can be written to the data stream.

Consider this example:

<xs:element name="myString" type="xs:string"

 dfdl:lengthKind="prefixed"

 dfdl:prefixIncludesPrefixLength="false"

 dfdl:prefixLengthType="packed3"/>

<xs:simpleType name="packed3"
 dfdl:representation="binary"

 dfdl:binaryNumberRep="packed"

 dfdl:lengthKind="explicit"

 dfdl:length="2" >
 <xs:restriction base="integer" />

</xs:simpleType>

In the above, the string has a prefix length of type 'packed3' containing 3 packed decimal digits.

The property dfdl:prefixIncludesPrefixLength is an enumeration which allows the length
computation to be varied to include or exclude the length of the prefix element itself.

The prefix length's value contains the length measured in units given by dfdl:lengthUnits.

When parsing, if the lengthUnits are bits, then any number of bits can be in the
representation.However, the same is not true when unparsing. The DFDL Infoset does not store
the number of bits in a number, so the number of bits will always be a multiple of 8 bits.

When unparsing, the value of the prefix is computed automatically by obtaining the length of the
element's content.

For a simple element with text representation, the length is computed as for lengthKind
'delimited'.

For a simple element with binary representation, the length is given in the table below.

For a complex element, the length is that of the ComplexContent region.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 103 of 235

Type Length

String Not applicable

Float 32

Double 64

Decimal, Integer,
NonNegativeInteger

Compute the minimum number of bytes to represent significant digits and
sign. Multiply by 8 for number of bits.

Long, UnsignedLong

packed decimal: as Decimal

binary: 64

Int, UnsignedInt binary: 32

Short, UnsignedShort binary: 16

Byte, UnsignedByte binary: 8

DateTime binarySeconds: 32,
binaryMilliseconds:64

Date binarySeconds: 32,
binaryMilliseconds:64

Time binarySeconds: 32,
binaryMilliseconds:64

Boolean 32

HexBinary

Compute the number of bytes in the infoset value padded to the value of
the XSD minLength facet (which gives minimum length in bytes) using
dfdl:fillByte if necessary. This gives the unparse length in bytes. Multiply
by 8 for the number of bits.

Table 7 Unparse Lengths (in Bits) for Binary Data with dfdl:lengthKind 'prefixed'

 Nested Prefix Lengths
20

 12.3.4.1

It is possible for a prefix length, as specified by prefixLengthType, to itself have a prefix length

It is a schema definition error if this nesting exceeds 1 deep. That is, an element can have a
prefix length, which defines a PrefixLength region (see Section 9.2 DDFDL Data Syntax
Grammar). The PrefixLength region can itself have a type which also specifies a prefix length,
thereby defining a PrefixPrefixLength region. It is a schema definition error unless the type
associated with the PrefixPrefixLength is different from the type associated with the PrefixLength.

20
 This feature allows DFDL to describe the needed “one more level” of prefix that is needed

for modeling an ASN.1 format, but without the complexities of general recursion

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 104 of 235

 dfdl:lengthKind 'pattern' 12.3.5

The dfdl:lengthKind 'pattern' means the length of the element is given by a regular expression
specified using the dfdl:lengthPattern property. The DFDL processor scans the data stream to
determine a string value that is the match to a regular expression. The pattern is only used on
parsing.

When dfdl:lengthKind is 'pattern', it means that delimiter scanning is turned off and in-scope
delimiters are not looked for within or between elements.

Property Name Description

lengthPattern DFDL Regular Expression.

Only used when lengthKind is 'pattern'.

Specifies a regular expression that, on parsing, is executed against
the datastream to determine the length of the element.

The data stream beginning at the starting offset of the content region
(which can be either the SimpleContent region or the ComplexContent
region defined in Section 9.2 DDFDL Data Syntax Grammar) of the
element is interpreted as a stream of characters in the encoding of the
element, and the regular expression contained in the
dfdl:lengthPattern property is executed against that stream of
characters. When the element is complex the encoding used is the
dfdl:encoding of the complex element itself.

It is a schema definition error if there is no value for the dfdl:encoding
property in scope.

DFDL Escape Schemes (per dfdl:escapeSchemeRef) are not used
when executing the regular expression.

If the pattern matching of the regular expression reads data that
cannot be decoded into characters of the current encoding, then the
behavior is controlled by the dfdl:encodingErrorPolicy property. See
dfdl:encodingErrorPolicy in Section 11 Properties Common to both
Content and Framing.

Annotation: dfdl:element, dfdl:simpleType

On unparsing the behavior is the same as for lengthKind 'prefixed'.

When the DFDL regular expression is matched against data:

• The data is considered to be text in the character set encoding specified by the
dfdl:encoding property, regardless of the actual representation of the element.

• The data is decoded from the specified encoding into Unicode before the actual matching
takes place.

• If there is no match (ie, a zero-length match) it is not a processing error but instead it
means the length is zero.

 dfdl:lengthKind 'endOfParent' 12.3.6

The dfdl:lengthKind 'endOfParent' means that the element is terminated by the end of the data
stream or the end of an enclosing complex element, sequence or choice. The enclosing
component must have an identifiable end point, such as a specified length, a delimiter, a pattern,
or end of data stream. The enclosing component does not have to be the immediate parent of the
element, but there must be no other elements defined between the element specifying
'endOfParent' and the end of the enclosing component.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 105 of 235

A dfdl:lengthKind of 'endOfParent' can only be used on simple and complex elements in the
following locations:

• When the immediate parent is a sequence, on the final element in the sequence

• When the immediate parent is a choice, on any element that is a branch of the choice

• A simple type or global element declaration referenced by one of the above.

• A global element declaration that is the document root.

It is a schema definition error if:

• the element has a terminator.

• the element has dfdl:trailingSkip not equal to 0.

• the element has maxOccurs > 1.

• any other element is defined between this element and the end of the enclosing
component.

• parent element lengthKind is 'implicit' or 'delimited'.

If the element is in a sequence then it is a schema definition error if:

• the sequence is not the content model of a complex type definition

• the separatorPosition of the sequence is 'postFix'

• the sequenceKind of the sequence is not 'ordered'

• the sequence has a terminator

• there are floating elements in the sequence

• the sequence has a non-zero trailingSkip

If the element is in a choice where choiceLengthKind is 'implicit' then it is a schema definition
error if:

• the choice is not the content model of a complex type definition

• the choice has a terminator

• the choice has a non-zero trailingSkip

A simple element must have either type xs:string, or dfdl:representation 'text', or type
xs:hexBinary, or dfdl:representation 'binary' and a packed decimal representation.

The dfdl:lengthKind 'endOfParent' is used when the length of an element is defined by an
enclosing element . For example, the parent is a fixed length element then an element with
dfdl:lengthKind 'endOfParent' will consume all the remaining data up to the length of the parent. A
dfdl:lengthKind 'endOfParent' can also be used to allow the last element to consume the data up
to the end of the data stream.

This is distinct from situation where the lengths of the elements of a sequence are known but are
not sufficient to fill the fixed length parent. In that case the remaining data are ignored on parsing
and filled with dfdl:fillByte on unparsing.

When looking for end of parent, the parser is not sensitive to any in-scope terminating delimiters.

A complex element can have 'endOfParent'. If so then its last child element can be any
dfdl:lengthKind including 'endOfParent'.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 106 of 235

 An element with 'endOfParent' must be the last thing in its 'box'. A 'box' is defined as a portion of
the data stream that has an established length prior to the parsing of its children. Specifically a
box is either:

• A complex element with dfdl:lengthKind 'explicit', 'prefixed' or 'pattern' AND no (sequence
right framing or sequence postfix separator or choice right framing)

• A choice with choiceLengthKind 'explicit'

When unparsing, if the parent is a complex element with dfdl:lengthKind 'explicit' or a choice with
dfdl:choiceLengthKind 'explicit' then the element with dfdl:lengthKind 'endOfParent' is padded or
filled in the usual manner to the required length.

 Elements of Specified Length 12.3.7

An element has a specified length when dfdl:lengthKind is 'explicit', 'implicit' (simple type only) or
'prefixed'. The units that the length represents are specified by the dfdl:lengthUnits property
except when dfdl:lengthKind is 'implicit' and the simple type is not xs:string or xs:hexBinary.

Using specified length, it is possible for an element to have content length longer than needed to
represent just the data value. For example, a simple text element may be padded in the
RightPadding region if the data is not long enough.

When an element has specified length, but appears inside a complex type element having
delimited length kind, delimiter scanning is turned off and in-scope delimiters are not looked for
within or between elements.

An element of specified length with dfdl:lengthKind 'implicit' or 'explicit' where dfdl:length is not an
expression has a known length when unparsing. However, an element of specified length with
dfdl:lengthKind 'prefixed' or 'explicit' where dfdl:length is an expression is considered to have a
variable length when unparsing.Specifically:

• For dfdl:lengthKind 'explicit' (expression), the processor cannot automatically determine
in what way the length information is to be stored. Normally the values of one or more
elements would be computed using dfdl:outputValueCalc, with expressions that measure
the length of the element using functions such as dfdl:contentLength or dfdl:valueLength.

• For dfdl:lengthKind 'prefixed' the processor automatically determines the value to store in
the prefix, based on the length of the infoset element, and the properties which modify
the interpretation of the prefix length value, such as dfdl:prefixIncludesPrefixLength.

When parsing, if the data stream ends without enough data to parse an element, that is, N bits
are needed based on the dfdl:length, but only M < N bits are available, then it is a processing
error.

If dfdl:lengthUnits is 'characters' then the length (in bits) of the content region (i.e.,
SimpleContent or ComplexContent defined in Section 9.2 DDFDL Data Syntax Grammar) will
depend on the encoding of the characters.

• If the dfdl:encoding property specifies a fixed-width encoding then the content length is
the character width (in bits) multiplied by the length.

• If the dfdl:encoding property specifies a variable-width encoding then the length will
depend on the actual characters in the element's value. The characters must be decoded
one by one, adding up their widths (in bits), while counting up to the specified length
value.

For a simple element, dfdl:lengthUnits 'characters' may only be used for textual elements, it is a
schema definition error otherwise.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 107 of 235

Keep in mind that some DFDL implementations may support character set encodings where the
characters are not a multiple of 8-bits wide. Encodings which are 5, 6, 7, and 9 bits wide are rare,
but do exist, so the overall length of the content region may not be a multiple of 8-bits wide.

 Length of Simple Elements with Textual Representation 12.3.7.1

Textual data is defined to mean either data of type string or data where the representation
property is 'text'.

For a textual element, the dfdl:lengthUnits property can be either 'bytes' or 'characters'.

12.3.7.1.1 Text Length Specified in Bytes

If a textual element has dfdl:lengthUnits of 'bytes', and the dfdl:encoding is not SBCS, then it is
possible for a partial character encoding to appear after the code units of the characters. In this
case, the following rules apply:

• When parsing, as many characters as possible are extracted from the bytes of the simple
content region. Any left over bytes are skipped. (They are considered part of the grammar
RightFill region).

• When unparsing, if the simple content region is larger than the encoded length of the element
(as padded when dfdl:textPadKind is not 'none') then the remaining bytes, which are
insufficient to hold another character code, are filled with dfdl:fillByte (Again, this is the
grammar RightFill region.)

It is a schema definition error if type is xs:string and dfdl:textPadKind is not 'none' and
dfdl:lengthUnits is 'bytes' and dfdl:encoding is not an SBCS encoding and the XSD minLength
facet is not zero. This prevents a scenario where validation against the XSD minLength facet is in
characters but padding would be performed in bytes.

 Simple Elements with Binary Representation 12.3.7.2

This section discusses the dfdl:lengthKind 'explicit' and 'prefixed' specified lengths for the different
binary representations. When dfdl:lengthKind is 'implicit', see Section 12.3.3 dfdl:lengthKind
'implicit'.

The dfdl:lengthUnits can be 'bytes' or 'bits' unless otherwise stated. It is schema definition error if
dfdl:lengthUnits is 'characters'.

It is a schema definition error if the specified dfdl:length for an element of dfdl:lengthKind 'explicit'
is a string literal integer such that the length of the data exceeds the capacity of the simple type.

It is a processing error if the specified length for an element of dfdl:lengthKInd 'prefixed' or
'explicit' (with dfdl:length an expression) is an integer such that the length of the data exceeds the
capacity of the simple type.

12.3.7.2.1 Base-2 Binary Number Elements

Non-floating point numbers with binary representation and dfdl:binaryNumberRep 'binary' are
represented as a bit string which contains a base-2 representation.

The value of the specified length is constrained per the table below. The lengths are expressed in
bits and are inclusive.

Type Minimum value of length Maximum value of length

xs:byte 2 8

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 108 of 235

xs:short 2 16

xs:int 2 32

xs:long 2 64

xs:unsignedByte 1 8

xs:unsignedShort 1 16

xs:unsignedInt 1 32

xs:unsignedLong 1 64

xs:nonNegativeInteger 1 Implementation defined (but not less than
64)

xs:integer 2 Implementation defined (but not less than
64)

xs:decimal 2 Implementation defined (but not less than
64)

Table 13: Allowable Specified Lengths in Bits for Base-2 Binary Number Elements

For signed integer types, the bits are interpreted as a twos-complement integer with the most-
significant bit representing the sign (0 for positive, 1 for negative). For unsigned types the bits are
interpreted as a base-2 magnitude. See Section 13.7.1.1 Converting Base-2 Binary Numbers for
details of the conversion to/from numeric values.

12.3.7.2.2 Length of Floating Point Binary Number Elements

For binary elements of types xs:float and xs:double, a specified length must be either exactly 4
bytes or exactly 8 bytes.

The dfdl:lengthUnits property must be 'bytes'. It is a schema definition error otherwise.

See Section 13.8 Properties Specific to Float/Double with Binary Representation.

12.3.7.2.3 Length of Binary Boolean Elements

The specified length of a binary element of type xs:boolean is as for type xs:unsignedInt
described in 12.3.7.2.1 Base-2 Binary NumberBase-2 Binary Numeric Elements.

See also Section 13.10 Properties Specific to Boolean with Binary Representation for details of
how the data is converted to/from a Boolean value.

12.3.7.2.4 Length of Binary Calendar Elements

For calendar types, the dfdl:lengthUnits property must be 'bytes' It is a schema definition error
otherwise.

The property dfdl:binaryCalendarRep dictates the means of determining the specified length.
There are 3 cases:

1. 'binarySeconds' - the specified length must be 4 bytes.

2. 'binaryMillseconds' - the specified length must be 8 bytes.

3. Any of the packed decimal values - the maximum specified length is implementation
defined.

See Section 13.13 Properties Specific to Calendar with Binary Representation for details of how
the data is converted to/from the calendar type.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 109 of 235

12.3.7.2.5 Length of Packed Decimal Binary Number Elements

Non-floating point numbers with dfdl:representation 'binary' and dfdl:binaryNumberRep of
'packed', 'bcd', or 'ibm4690Packed', are represented as a bit string of 4 bit nibbles. We use the
term packed decimal to describe such numbers.

It is a schema definition error if the specified length is not a multiple of 4 bits.

The maximum specified length of a packed decimal is implementation defined.

See Section 13.7 Properties Specific to Numbers with Binary Rrepresentation for details of the
conversion of the packed decimal bit string to/from a numeric value.

12.3.7.2.6 Length of Binary Opaque Elements

The dfdl:lengthUnits property must be 'bytes'. It is a schema definition error otherwise.

When unparsing a specified length element of type xs:hexBinary, and the simple content region is
larger than the length of the element in the Infoset, then the remaining bytes are filled using the
dfdl:fillByte property.

The dfdl:fillByte is not used to trim an element of type xs:hexBinary when parsing.

 Length of Complex Elements 12.3.7.3

A complex element of specified length is defining a 'box' in which its child elements exist. An
example of this would be a fixed length record element with a variable number of children
elements. In that case the children may not fill the full length of the record when one or more of
them is not present.

The dfdl:lengthUnits may be 'bytes' or 'characters' and it is a schema definition error otherwise.

For example, an element of complex type may have specified length of 100 characters, but
contain a sequence of child elements that use up less than 100 characters of data. In this case
the remaining unused data is called the ElementUnused region in the data syntax grammar of
section 9.2. It is skipped when parsing, and is filled with the dfdl:fillByte on unparsing.

Note that a poorly chosen value for dfdl:fillByte may fill the region with data that cannot be
decoded in the character set encoding, resulting in a decode error when this data is subsequently
parsed again. When dfdl:lengthUnits is 'characters' the value for dfdl:fillByte should be chosen so
as to avoid this error.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 110 of 235

13. Simple Types

The 'representation' property identifies the physical representation of the element. The DFDL
logical types are grouped to illustrate which physical representations apply to each logical type.

These properties provide the correct interpretation of the data found in the SimpleContent
grammar region.

The allowable physical representations for each logical type grouping are also shown, where the
logical type groupings are defined as:

Logical Type
Group

Types

Number xs:double, xs:float, xs:decimal, xs:integer and its restrictions (xs:int,
xs:unsignedLong, etc.)

String xs:string

Calendar xs:dateTime, xs:date, xs:time

Opaque xs:hexBinary

Boolean xs:boolean

Table 14 Logical type groups

13.1 Properties Common to All Simple Types

Property
Name

Description

representation Enum

Valid values are dependent on logical type.

Number: 'text, 'binary'

String: representation is assumed to be 'text' and the representation property
is not examined

Calendar: 'text, 'binary'

Boolean: 'text, 'binary'

Opaque: representation is assumed to be 'binary' and the representation
property is not examined.

Annotation: dfdl:element, dfdl:simpleType

The permitted representation properties for each logical type are shown in Table 15: Logical Type
to Representation properties

Logical type dfdl:representation Additional representation
property

String Assumed to be text

Float, Double text textNumberRep:
standard

binary binaryFloatRep:
ieee, ibm390Hex

Decimal, Integer, nonNegativeInteger text textNumberRep:

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 111 of 235

standard, zoned

binary binaryNumberRep:
packed, bcd, ibm4690Packed,
binary

Long, Int, Short, Byte,
UnsignedLong, Unsignedint,
Unsignedshort, UnsignedByte

text textNumberRep:
standard, zoned

binary binaryNumberRep:
packed, bcd, ibm4690Packed,
binary

DateTime, Date, Time text

binary binaryCalendarRep:
packed, bcd, ibm4690Packed,
binarySeconds,
binaryMilliseconds

Boolean text

binary

HexBinary Assumed to be
binary

Table 15: Logical Type to Representation properties

13.2 Properties Common to All Simple Types with Text representation

Property Name Description

textPadKind Enum

Valid values 'none', 'padChar'.

Indicates whether to pad the representation text on unparsing. This
controls the contents of the LeftPadding and RightPadding regions of
the data syntax grammar in section 9.2.

'none': No padding occurs. When lengthKind is 'implicit' or 'explicit' the
representation text must match the expected length otherwise it is a
processing error.

'padChar': The element is padded using the dfdl:textStringPadCharacter,
dfdl:textNumberPadCharacter, dfdl:textBooleanPadCharacter or
dfdl:textCalendarPadCharacter depending on the type of the element.
The padding characters populate the LeftPadding and/or RightPadding
regions depending on dfdl:textStringJustification,
dfdl:textNumberJustification, or dfdl:textCalendarJustification, depending
on the type of the element.

When lengthKind is 'implicit' the element is padded to the implicit length
for the type.

When lengthKind is 'explicit' the element is padded to the length given by
the dfdl:length property.

When lengthKind is 'delimited', 'prefixed', 'pattern' or 'endOfParent' the
element is padded to the length given by the XSD minLength facet for
type 'xs:string' or dfdl:textOutputMinLength property for other types.

Annotation: dfdl:element, dfdl:simpleType

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 112 of 235

textTrimKind Enum

Valid values 'none', 'padChar'

Indicates whether to trim data on parsing. This controls the expected
contents of the LeftPadding and RightPadding regions of the data
syntax grammar in section 9.2.

When 'none' no trimming takes place.

When 'padChar' the element is trimmed of the
dfdl:textStringPadCharacter, dfdl:textNumberPadCharacter,
dfdl:textBooleanPadCharacter or dfdl:textCalendarPadCharacter
depending on the type of the element. The padding characters populate
the LeftPadding and/or RightPadding regions depending on
dfdl:textStringJustification, dfdl:textNumberJustification, or
dfdl:textCalendarJustification, depending on the type of the element.

Annotation: dfdl:element , dfdl:simpleType

textOutputMinLength Non-negative Integer.

Only used when dfdl:textPadKind is 'padChar' and dfdl:lengthKind is
'delimited', 'prefixed', 'pattern', 'explicit' (when dfdl:length is an expression)
or 'endOfParent', and type is not xs:string

Specifies the minimum representation length during unparsing for simple
types that do not allow the XSD minLength facet to be specified.

For dfdl:lengthKind 'delimited', 'pattern' and 'endOfParent' the length units
are always characters, for other dfdl:lengthKinds the length units are
specified by the dfdl:lengthUnits property.

If dfdl:textOutputMinLength is zero or less than the length of the
representation text then no padding occurs.

Annotation: dfdl:element, dfdl:simpleType

escapeSchemeRef QName or empty String

The name of the dfdl:defineEscapeScheme annotation that provides the
additional properties used to describe the escape scheme. If the value is
the empty string then escaping is explicitly turned off.

See: Section 7.6 The dfdl:escapbveScheme Annotation Element, and
Section 7.5 The dfdl:defineEscapeScheme Defining Annotation Element.

Annotation: dfdl:element, dfdl:simpleType

 The dfdl:escapeScheme Properties 13.2.1

The dfdl:escapeScheme annotation is used within a dfdl:defineEscapeScheme annotation to
group the properties of an escape scheme and allows a common set of properties to be defined
that can be reused.

An escape scheme is needed when the content of a text element contains sequences of
characters that are the same as an in-scope separator or terminator. If the characters are not
escaped, a parser scanning for a separator or terminator would erroneously find the character
sequence in the content.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 113 of 235

An escape scheme defines the properties that describe the text escaping rules. There are two
variants on such schemes:

• The use of a single escape character to cause the next character to be interpreted literally.
The escape character itself is escaped by the escape escape character.

• The use of a pair of escape strings to cause the enclosed group of characters to be
interpreted literally. The ending escape string is escaped by the escape escape character.

On parsing, the escape scheme is applied after pad characters are trimmed and on unparsing
before pad characters are added. A pad character is not escaped by an escape character. When
parsing, pad characters are trimmed without reference to an escape scheme. When unparsing,
pad characters are added without reference to an escape scheme.

On unparsing, the application of escape scheme processing takes place before the application of
the emptyValueDelimiterPolicy property.

Property Name Description

escapeKind Enum

Valid values 'escapeCharacter', 'escapeBlock'

The type of escape mechanism defined in the escape scheme

When 'escapeCharacter': On unparsing a single character of the data
is escaped by adding an dfdl:escapeCharacter before it. The following
are escaped if they are in the data

• Any in-scope terminating delimiter by escaping its first
character.

• dfdl:escapeCharacter (escaped by
dfdl:escapeEscapeCharacter)

• any dfdl:extraEscapedCharacters

On parsing the dfdl:escapeCharacter and
dfdl:escapeEscapeCharacter are removed from the data, unless the
dfdl:escapeCharacter is preceded by the
dfdl:escapeEscapeCharacter, or the dfdl:escapeEscapeCharacter
does not proceed the dfdl:escapeCharacter.

When 'escapeBlock': On unparsing the entire data are escaped by
adding dfdl:escapeBlockStart to the beginning and
dfdl:escapeBlockEnd to the end of the data. The data is either always
escaped or escaped when needed as specified by
dfdl:generateEscapeBlock. If the data is escaped and contains the
dfdl:escapeBlockEnd then first character of each appearance of the
dfdl:escapeBlockEnd is escaped by the dfdl:escapeEscapeCharacter.

On parsing the dfdl:escapeBlockStart is removed from the beginning
of the data and dfdl:escapeBlockEnd is removed from end of the data
and any dfdl:escapeEscapeCharacters are removed when they
precede a dfdl:escapeBlockEnd.

Annotation: dfdl:escapeScheme

escapeCharacter DFDL String Literal or DFDL Expression

Specifies one character that escapes the subsequent character.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 114 of 235

Used when dfdl:escapeKind = 'escapeCharacter'

It is a schema definition error if dfdl:escapeCharacter is empty when
dfdl:escapeKind is 'escapeCharacter'

This property can be computed by way of an expression which returns
a character. The expression must not contain forward references to
elements which have not yet been processed.

Escape and Quoting Character Restrictions: The string literal is
restricted to allow only certain kinds of syntax:

• DFDL character entities are allowed

• The DFDL byte value entity (%#r) is not allowed

• DFDL Character classes NL, WSP, WSP+, WSP*, and ES
are not allowed

It is a schema definition error if the string literal contains any of the
disallowed constructs.

Escape characters contribute to the representation length of the field

Annotation: dfdl:escapeScheme

escapeBlockStart DFDL String Literal

The string of characters that denotes the beginning of a sequence of
characters escaped by a pair of escape strings.

Used when dfdl:escapeKind = 'escapeBlock'

It is a schema definition error if escapeBlockStart is empty when
dfdl:escapeKind is 'escapeBlock'

The string literal value is restricted in the same way as described in
"Escape and Quoting Character Restrictions" in the description of the
escapeCharacter property.

An dfdl:escapeBlockStart string contributes to the representation
length of the field

Annotation: dfdl:escapeScheme

escapeBlockEnd DFDL String Literal

The string of characters that denotes the end of a sequence of
characters escaped by a pair of escape strings.

Used when dfdl:escapeKind = 'escapeBlock' .

It is a schema definition error if dfdl:escapeBlockEnd is empty when
dfdl:escapeKind is 'escapeBlock'

The string literal value is restricted in the same way as described in
"Escape and Quoting Character Restrictions" in the description of the
escapeCharacter property.

A dfdl:escapeBlockEnd string contributes to the representation length
of the field

Annotation: dfdl:escapeScheme

escapeEscapeCharacter DFDL String Literal or DFDL Expression

Specifies one character that escapes the subsequent escape

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 115 of 235

character or first character of dfdl:escapeBlockEnd.

Used when dfdl:escapeKind = 'escapeCharacter' or 'escapeBlock'.

This property can be computed by way of an expression which returns
a character. The expression must not contain forward references to
elements which have not yet been processed.

The string literal value is restricted in the same way as described in
"Escape and Quoting Character Restrictions" in the description of the
escapeCharacter property.

If the empty string is specified then no escaping of escape characters
occurs.

It is explicitly allowed for both the dfdl:escapeCharacter and the
dfdl:escapeEscapeCharacter to be the same character. In that case
processing functions as if the dfdl:escapeCharacter escapes itself.

Annotation: dfdl:escapeScheme

extraEscapedCharacters List of DFDL String Literals

A space separated list of single characters that must be escaped in
addition to the in-scope delimiters. If there are no extra characters to
escape the property should be set to "".

The string literal values are restricted in the same way as described in
"Escape and Quoting Character Restrictions" in the description of the
escapeCharacter property.

This property only applies on unparsing.

Annotation: dfdl:escapeScheme

generateEscapeBlock Enum

Valid values 'always', 'whenNeeded'

Controls when escaping is used on unparsing when dfdl:escapeKind
is 'escapeBlock'.

If 'always' then escaping is always occurs as described in
dfdl:escapeKind.

If 'whenNeeded' then escaping occurs as described in
dfdl:escapeKind when the data contains any of the following:

• any in-scope terminating delimiter

• dfdl:escapeBlockStart at the start of the data

• any dfdl:extraEscapedCharacters

Annotation: dfdl:escapeScheme

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 116 of 235

13.3 Properties for Bidirectional support for All Simple Types with Text representation

Bidirectional text consists of mainly right-to-left text with some left-to-right nested segments (such
as an Arabic text with some information in English), or vice versa (such as an English letter with a
Hebrew address nested within it.)

Note: the bidirectional properties apply to the content of the element and not to the initiator,
terminator or separator if defined.

Property name Description

textBidi Enum

Valid values are 'yes', 'no'

Indicates the text content of the element is bidirectional.

Annotation: dfdl:element, dfdl:simpleType (representation text)

textBidiOrdering Enum

Valid values 'implicit', 'visual'.

Defines how bidirectional text is stored in memory.

'Implicit' means that the characters are stored in the order they are
read or typed. That is with the first character in the first position in the
data. (This is also called logical). 'Visual means that the characters are
stored in the order they would be printed or displayed. That is, the last
character of a right to left sequence is in the first position in the data
and the first character of a left to right sequence is in the first position
in the data.

Annotation: dfdl:element , dfdl:simpleType (representation text) ,

textBidiOrientation Enum

Valid values 'LTR', 'RTL', 'contextual_LTR', 'contextual_RTL'.

Indicates how the text should be displayed.

'LTR' means left-to-right

'RTL' mean right to left.

'contextual_LTR' and 'contextual_RTL' means that the orientation
should be taken from the context of the data. The data may contain
'strong' characters that are either orientation left or orientation right.
The term following contextual (LTR or RTL) specifies what should be
the default orientation when the data are orientation-neutral (i.e. there
are no strong characters).

Annotation: dfdl:element, dfdl:simpleType (representation text)

textBidiSymmetric Enum

Valid values are 'yes', 'no'

Defines whether characters such as < ([{ that have a symmetric
character with an opposite directional meaning: >)] } should be
swapped

Annotation: dfdl:element, dfdl:simpleType (representation text)

textBidiShaped Enum

Valid values are 'yes', 'no'

Defines whether characters should be shaped on unparsing.
Character shaping occurs when the shape of a character is dependent

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 117 of 235

on its position in a word.

Annotation: dfdl:element, dfdl:simpleType (representation text)

textBidiNumeralShapes Enum

Valid values 'nominal', 'national'.

Defines on unparsing whether logical numbers with text representation
should have Arabic shapes (0123456789) or Arabic-Indic (
٠١٢٣٤٥٦٧٨٩)

When 'nominal': All numbers are presented using Arabic shapes

When 'national': All numbers are presented using Arabic-Indic
shapes.

Annotation: dfdl:element, dfdl:simpleType (number with representation
text)

13.4 Properties Specific to Strings with Text representation

Property Name Description

textStringJustification Enum

Valid values 'left', 'right', 'center'

Unparsing:

'left': Justifies to the left and adds padding chars to the string
contents if the string is too short, to the length determined by the
dfdl:textPadKind property.

'right': Justifies to the right and adds padding chars to the string
contents if the string is too short, to the length determined by the
dfdl:textPadKind property.

'center': Adds equal padding chars left and right of the string
contents if the string is too short, to the length determined by the
dfdl:textPadKind property. It adds one extra padding char on the
left if needed.

Parsing:

'left': Trims any pad characters from the right of the string,
according to dfdl:textTrimKind property.

'right': Trims any pad characters from the left of the string,
according to dfdl:textTrimKind property.

'center' Trims any pad characters from the left and right of the
string, according to dfdl:textTrimKind property.

Annotation: dfdl:element, dfdl:simpleType

textStringPadCharacter DFDL String Literal

The value that is used when padding or trimming string
elements.
The value can be a single character or a single byte.

If a character, then it can be specified using a literal character or

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 118 of 235

using DFDL entities.

If a byte, then it must be specified using a single byte value
entity otherwise it is a schema definition error

If a pad character is specified when dfdl:lengthUnits is 'bytes'
then the pad character must be a single-byte character.

If a pad byte is specified when dfdl:lengthUnits is 'characters'
then
- the encoding must be a fixed-width encoding
- padding and trimming must be applied using a sequence of N
pad bytes, where N is the width of a character in the fixed-width
encoding.

Padding Character Restrictions: The string literal is restricted to
allow only certain kinds of syntax:

• DFDL character entities are allowed

• The DFDL byte value entity (%#r) is allowed.

• DFDL Character classes NL, WSP, WSP+, WSP*, and
ES are not allowed

It is a schema definition error if the string literal contains any of
the disallowed syntax.

Annotation: dfdl:element, dfdl:simpleType

truncateSpecifiedLengthString

Enum

Valid values are 'yes', 'no'

Used on unparsing only

'yes' means if the logical type is xs:string and the value is longer
than the specified length, the string is truncated to this length.
(See section 12.3.7 Elements of Specified Length.) No
processing error is raised.

The position from which data is truncated is determined by the
value of the dfdl:textStringJustification property. If the value of
the dfdl:textStringJustification property is 'left', data is truncated
from the right; if the value of the dfdl:textStringJustification
property is 'right', data is truncated from the left. However if the
value of the dfdl:textStringJustification property is 'center',
truncation does not occur and a processing error occurs if the
value is too long.

When unparsing, validation errors cannot be prevented by
truncation as validation takes place on the augmented infoset,
before any truncation has occurred.

Annotation: dfdl:element, dfdl:simpleType

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 119 of 235

13.5 Properties Specific to Number with Text or Binary representation

Property Name Description

decimalSigned Enum

Valid values are 'yes', 'no'

Indicates whether an xs:decimal element is signed. See 13.6.2
Converting logical numbers to/from text representation and
13.7.1 Converting logical Logical numbers Numbers to/from
binary Binary representation to see how this affects the presence
of the sign in the data stream.

'yes' means that the xs:decimal element is signed

'no' means that the xs:decimal element is not signed

Annotation: dfdl:element, dfdl:simpleType

13.6 Properties Specific to Number with Text representation

Property Name Description

textNumberRep Enum

Valid values are 'standard', 'zoned'

'standard' means represented as characters in the character
set encoding specified by the dfdl:encoding property.

'zoned' means represented as a zoned decimal in the
character set encoding specified by the dfdl:encoding
property. Zoned is not supported for float and double
numbers. Base 10 is assumed, and the encoding must be for
an EBCDIC or ASCII compatible encoding. It is a schema
definition error if any of these requirements are not met.

Annotation: dfdl:element, dfdl:simpleType

textNumberJustification Enum

Valid values 'left', 'right', 'center'

Controls how the data is padded or trimmed on parsing and
unparsing.

Behavior as for dfdl:textStringJustification.

Annotation: dfdl:element, dfdl:simpleType

textNumberPadCharacter DFDL String Literal

The value that is used when padding or trimming number
elements.

The value can be a single character or a single byte.

If a character, then it can be specified using a literal character
or using DFDL entities.
If a byte, then it must be specified using a single byte value
entity

If a pad character is specified when dfdl:lengthUnits is 'bytes'

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 120 of 235

then the pad character must be a single-byte character.

If a pad byte is specified when dfdl:lengthUnits is 'characters'
then

• the encoding must be a fixed-width encoding

• padding and trimming must be applied using a sequence
of N pad bytes, where N is the width of a character in the
fixed-width encoding.

When parsing, if the pad character is '0' and the
SimpleContent region consists entirely of '0' characters, then
the last remaining '0' is not trimmed and a single '0' is the
result of the trimming. This rule also applies when the pad
character is a DFDL character entity equivalent to '0'. This
rule does not apply when the pad character is any other
character nor when a pad byte is specified.

The string literal value is restricted in the same way as
described in "Pad Character Restrictions" in the description of
the textStringPadCharacter property.

Annotation: dfdl:element, dfdl:simpleType

textNumberPattern String

Defines the ICU-like pattern that describes the format of the
text number. The pattern defines where grouping separators,
decimal separators, implied decimal points, exponents,
positive signs and negative signs appear. It permits definition
by either digits/fractions or significant digits. Allows rounding.

When dfdl:textNumberRep is 'standard' this property only
applies when dfdl:textStandardBase is 10. When
dfdl:textNumberRep is 'standard' and dfdl:textStandardBase
is not 10 the number is represented as the minimum number
of characters to represent the digits. There is no sign or
virtual decimal point.

The syntax of dfdl:textNumberPattern is described in section
13.6.1 The dfdl:textNumberPattern Property

Annotation: dfdl:element, dfdl:simpleType

textNumberRounding Enum

Specifies how rounding is controlled during unparsing.

Valid values 'pattern', 'explicit'

When dfdl:textNumberRep is 'standard' this property only
applies when dfdl:textStandardBase is 10.

If 'pattern' then rounding takes place according to the pattern.
A rounding increment may be specified in the
dfdl:textNumberPattern using digits '1' though '9', otherwise
rounding is to the width of the pattern. The rounding mode is
always 'roundHalfEven'.

If 'explicit' then the rounding increment is specified by the
dfdl:textNumberRoundingIncrement property, and any digits
'1' through '9' in the dfdl:textNumberPattern are treated as
digit '0'. The rounding mode is specified by the

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 121 of 235

dfdl:textRoundingMode property.

To disable rounding, use 'explicit' in conjunction with
'roundUnnecessary' for the dfdl:textNumberRoundingMode. If
rounding is disabled then any excess precision is treated as a
processing error.

Annotation: dfdl:element, dfdl:simpleType

textNumberRoundingMode Enum

Specifies how rounding occurs during unparsing, when
dfdl:textNumberRounding is 'explicit'.

When dfdl:textNumberRep is 'standard' this property only
applies when dfdl:textStandardBase is 10.

To switch off rounding, use 'roundUnnecessary'.

Valid values 'roundCeiling', 'roundFloor', 'roundDown',
'roundUp', 'roundHalfEven', 'roundHalfDown', 'roundHalfUp',
'roundUnnecessary'

Annotation: dfdl:element, dfdl:simpleType

textNumberRoundingIncrement Double

Specifies the rounding increment to use during unparsing,
when dfdl:textNumberRounding is 'explicit'.

When dfdl:textNumberRep is 'standard' this property only
applies when dfdl:textStandardBase is 10.

A negative value is a schema definition error.

Annotation: dfdl:element, dfdl:simpleType

textNumberCheckPolicy Enum

Values are 'strict' and 'lax'.

Indicates how lenient to be when parsing against the pattern.

When dfdl:textNumberRep is 'standard' this property only
applies when dfdl:textStandardBase is 10.

If 'lax' and dfdl:textNumberRep is 'standard' then grouping
separators are ignored, leading and trailing whitespace is
ignored, leading zeros are ignored and quoted characters
may be omitted.

If 'lax' and dfdl:textNumberRep is 'standard' then grouping
separators can be omitted, decimal separator can be either '.'
or ',' (as long as this is unambiguous), leading positive sign
can be omitted, all whitespace is treated as zero, and leading
and trailing whitespace is ignored. Also the exponent is also
optional and assumed to be '1' if not supplied

If 'lax' and dfdl:textNumberRep is 'zoned' then positive
punched data is accepted when parsing an unsigned type,
and unpunched data is accepted when parsing a signed type

If 'strict' and dfdl:textNumberRep is 'standard' then the data
must follow the pattern with the exceptions that digits 0-9,
decimal separator and exponent separator are always

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 122 of 235

recognised and parsed.

If 'strict' and dfdl:textNumberRep is 'zoned' then the data
must follow the pattern.

On unparsing the pattern is always followed and follow the
rules in 13.6.2 Converting logical numbers to/from text
representation.

Annotation: dfdl:element, dfdl:simpleType

textStandardDecimalSeparator List of DFDL String Literals or DFDL Expression

Defines the a whitespace separated list of single characters
that will appear (individually) in the data as the decimal
separator.

This property is applicable when type is xs:decimal, xs:float or
xs:double and dfdl:textNumberRep is 'standard' and
dfdl:textStandardBase is 10. It must be set if
dfdl:textNumberPattern contains a decimal separator symbol
("."), or the E or @ symbols. (it is a schema definition error
otherwise.) Empty string is not an allowable value.

This property can be computed by way of an expression
which returns a character. The expression must not contain
forward references to elements which have not yet been
processed.

Text Number Character Restrictions: The the string literal is
restricted to allow only certain kinds of syntax:

• DFDL character entities are allowed

• The DFDL byte value entity (%#r) is not allowed.

• DFDL Character classes NL, WSP, WSP+, WSP*, and
ES are not allowed

It is a schema definition error if the string literal contains any
of the disallowed syntaxconstructs.

Annotation: dfdl:element, dfdl:simpleType

textStandardGroupingSeparator DFDL String Literal or DFDL Expression

Defines the single character that will appear in the data as the
grouping separator.

This property is applicable when dfdl:textNumberRep is
'standard' and dfdl:textStandardBase is 10. It must be set if
dfdl:textNumberPattern contains a grouping separator symbol
(it is a schema definition error otherwise.) Empty string is not
an allowable value.

This property can be computed by way of an expression
which returns a character. The expression must not contain
forward references to elements which have not yet been
processed.

The string literal value is restricted in the same way as

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 123 of 235

described in "Text Number Character Restrictions" in the
description of the dfdl:textStandardDecimalSeparator
property.

Annotation: dfdl:element, dfdl:simpleType

textStandardExponentRep DFDL String Literal or DFDL Expression

Defines the actual character(s) thr that will appear in the data
as the exponent indicator. If the empty string is specified then
no exponent character will be used.

This property is applicable when dfdl:textNumberRep is
'standard' and dfdl:textStandardBase is 10. .Empty string is
an allowable value, so that formats like NNN+M (meaning
NNN x 10 with MM exponent) can be expressed.

This property must be set even if the dfdl:textNumberPattern
does not contain an 'E' (exponent) character. It is a schema
definition error if this property is not set or in scope for any
number with dfdl:representation 'text'.

This property can be computed by way of an expression
which returns a DFDL String Literalcharacter. The expression
must not contain forward references to elements which have
not yet been processed.

The string literal value is restricted in the same way as
described in "Text Number Character Restrictions" in the
description of the dfdl:textStandardDecimalSeparator
property.

If dfdl:ignoreCase is 'yes' then the case of the string is
ignored by the parser.

Annotation: dfdl:element, dfdl:simpleType

textStandardInfinityRep DFDL String Literal

The value used to represent infinity.

Infinity is represented as a string with the positive or negative
prefixes and suffixes from the dfdl:textNumberPattern
applied.

This property is applicable when dfdl:textNumberRep is
'standard', dfdl:textStandardBase is 10 and the simple type is
float or double.

If dfdl:ignoreCase is 'yes' then the case of the string is
ignored by the parser.

The string literal value is restricted in the same way as
described in "Text Number Character Restrictions" in the
description of the dfdl:textStandardDecimalSeparator
property.

Annotation: dfdl:element, dfdl:simpleType

textStandardNaNRep DFDL String Literal

The value used to represent NaN.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 124 of 235

NaN is represented as string and the positive or negative
prefixes and suffixes from the dfdl:textNumberPattern are not
used.

This property is applicable when dfdl:textNumberRep is
'standard', dfdl:textStandardBase is 10 and the simple type is
float or double.

If dfdl:ignoreCase is 'yes' then the case of the string is
ignored by the parser.

The string literal value is restricted in the same way as
described in "Text Number Character Restrictions" in the
description of the dfdl:textStandardDecimalSeparator
property.

Annotation: dfdl:element, dfdl:simpleType

textStandardZeroRep List of DFDL String Literals

Valid values: empty string, any character string

The whitespace separated list of alternative literal strings that
are equivalent to zero, for example the characters 'zero'.

The representation is examined for a match to one of the
values of this property after padding has been trimmed away.

On unparsing the first value is used.

If dfdl:ignoreCase is 'yes' then the case of the string is
ignored by the parser.

The empty string means that there is no special literal string
for zero.

This property is applicable when dfdl:textNumberRep is
'standard' and dfdl:textStandardBase is 10.

The string literal is restricted to allow only certain kinds of
syntax:

• DFDL character entities are allowed.

• DFDL Byte Value entities (%#r) are not allowed.

• DFDL Character class entities NL and ES are not
allowed.

• DFDL Character class entities WSP, WSP+, and WSP*
are allowed. However, the WSP* entity cannot appear
alone. It must be used in combination with other text
characters or entities so as to describe a representation
that cannot ever be an empty string.

It is a schema definition error if the string literal contains any
of the disallowed syntaxconstructs.

Annotation: dfdl:element, dfdl:simpleType

textStandardBase Non-negative Integer

Valid Values 2, 8, 10, 16

Indicates the number base.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 125 of 235

Only used when dfdl:textNumberRep is 'standard'.

When base is not 10, xs:decimal, xs:float and xs:double are
not supported.

When dfdl:textNumberRep is 'zoned' dfdl:textNumberBase 10
is not used and base 10 is assumed.

Annotation: dfdl:element, dfdl:simpleType

textZonedSignStyle Enum

Specifies the characters that are used to overpunch the sign
nibble when the encoding is an ASCII-derived character
set.encoding. The location of this sign nibble is indicated in
the dfdl:textNumberPattern.

This property is applicable when dfdl:textNumberRep is
'zoned'

Used only when dfdl:encoding specifies an ASCII-derived
character set encoding. That is when the printable character
code points 0x20 - 0x7E are the assigned the same
characters assame as in the US-ASCII encoding. This
includes all the Unicode character set encodingss, and all
variations of ASCII and ISO-8859.

Valid values 'asciiStandard', 'asciiTranslatedEBCDIC',
'asciiCARealiaModified', and 'asciiTandemModified'

Which characters are used to represent 'overpunched'
(included) positive and negative signs, varies by encoding,
Cobol compiler and system. It is fixed for EBCDIC systems
but not for ASCII.

In EBCDIC-based encodings, characters '{ABCDEFGHI' or
'0123456789' represent a positive sign and digits 0 to 9.
(Character codes 0xC0 to 0xC9 or 0xF0 to 0xF9). The
characters '}JKLMNOPQR' or '^£¥·©§¶¼½¾ ' represent a
negative sign and digits 0 to 9. (character codes 0xD0 to
0xD9 or 0xB0 to 0xB9) On parsing both ranges of characters
will be accepted. On unparsing the range 0xC0 to 0xC9 will
be produced for positive signs and 0xD0 to 0xD9 will be
produced for negative signs.

asciiStandard: ASCII characters '0123456789' represent a
positive sign and the corresponding digit. (Sign nibble for '+'
is 0x3, which is the high nibble of these character codes
unmodified.) ASCII characters 'pqrstuvwxy' represent
negative sign and digits 0 to 9. (Character codes 0x70 to
0x79)

asciiTranslatedEBCDIC: The overpunched character is the
ASCII equivalent of the EBCDIC above. So the characters
'{ABCDEFGHI' still represent a positive sign and digits 0 to 9.
(These are character codes 0x7B, 0x41 through 0x49). The
characters '}JKLMNOPQR' still represent negative sign and
digits 0 to 9. (These are character codes 0x7D, 0x4A through

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 126 of 235

0x52). This case comes up if ebcdic zoned decimal data is
translated to ASCII as if it were textual data.

asciiCARealiaModified
22

: In this style, the ASCII characters
'0123456789' represent positive sign and digits 0 to 9 as in
standard. However, ASCII characters from code 0x20 to 0x29
are used for negative sign and the corresponding decimal
digit. This doesn't translate well into printing characters.
These characters include the space (' ') for zero, characters
'!"#$%&' for 1 through 6, the single quote character "'" for 7,
and the parenthesis '()' for 8 and 9.

asciiTandemModified: In this style the ascii characters '0-9'
represent positive sign and digits 0 to 9, but bytes from 0x80
to 0x89 are used to represent overpunched negative sign and
a digit. There are no corresponding character codepoints in
the standard ASCII encoding since these values are all above
128 (decimal). This means the resultant bytes are not code
points in standard ASCII, so the modeller must specify an
encoding like ISO-8859-1 in order for such zoned decimals to
parse without an encoding error. (Note that neither ISO-8859-
1 encoding nor Unicode have assigned glyphs for these
codepoints. They are considered control characters.)

Annotation: dfdl:element, dfdl:simpleType

The dfdl:textStandardDecimalSeparator, dfdl:textStandardGroupingSeparator,
dfdl:textStandardExponentRep, dfdl:textStandardInfinityRep, dfdl:textStandardNaNRep, and
dfdl:textStandardZeroRep must all be distinct, and it is a schema definition error otherwise. Note
that if dfdl:textStandardDecimalSeparator, dfdl:textStandardGroupingSeparator, or
dfdl:textStandardExponentRep are expressions, this checking can only be carried out during
processing (parsing or unparsing.)

Implementation note: This rule is in the interests of clarity, and is an extra constraint compared to
ICU.

 The dfdl:textNumberPattern Property 13.6.1

The dfdl:textNumberPattern describes how to parse and unparse text representations of number
logical types with base 10.

22
 Reference for this CA Realia 0x20 overpunch for negative sign is the article: "EBCDIC to ASCII

Conversion of Signed Fields" at http://www.discinterchange.com/TechTalk_signed_fields_.html, where it
says:

COBOL compilers that run on ASCII platforms have a "signed" data type that operates in a similar
manner to the EBCDIC Signed field -- that is, they over punch the sign on the LSD. However,
this is not standardized in ASCII, and different compilers use different overpunch codes. For
example, Computer Associates' Realia compiler uses a 30 hex for positive values and a 20 hex
for negative values, but Micro Focus® and Microsoft® use 30 hex for positive values and 70 hex
for negative values.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 127 of 235

The length of the representation of the number is determined first, and the number pattern is used
only for conversion of the content text to and from a numeric logical infoset value.

The pattern described below is derived from the ICU DecimalFormat class described here:
[ICUDecForm]

The pattern is an ICU-like syntax that defines where grouping separators, decimal separators,
implied decimal points, exponents, positive signs and negative signs appear. It permits definition
by either digits/fractions or significant digits.

 dfdl:textNumberPattern for dfdl:textNumberRep 'standard' 13.6.1.1

When dfdl:textNumberRep is 'standard' this property only applies when dfdl:textStandardBase is
10

The pattern comes in two parts separated by a semi-colon. The first is mandatory and applies to
positive numbers, the second is optional and applies to negative numbers.

Examples: The first shows digits/fractions and positive/negative signs, the second shows
exponent, the third shows virtual decimal point, the fourth shows scaling position.

+###,##0.00;(###,##0.00)

##0.0#E0

000V00

PPP0000

The 'V' symbol is used to indicate the location of an implied decimal point for fixed point number
representations. (This is an extension to the ICU pattern language.)

The 'P' symbol is used to indicate that a decimal scaling factor needs to be applied. (This is an
extension to the ICU pattern language.)

The actual grouping separator, decimal separator and exponent characters are defined
independently of the pattern.

The actual positive sign and negative sign are defined within the pattern itself.

Many characters in a pattern are taken literally; they are matched during parsing and output
unchanged during unparsing. Special characters, on the other hand, stand for other characters,
strings, or classes of characters. For example, the '#' character is replaced by a digit.

To insert a special character in a pattern as a literal, that is, without any special meaning, the
character must be quoted. There are some exceptions to this which are noted below.

Symbol Location Meaning

0 Number Digit

1-9 Number '1' through '9' indicates rounding.

Number Digit, zero shows as absent

. Number Decimal separator or monetary decimal separator

- Number Minus sign

, Number Grouping separator

E Number Separates mantissa and exponent in scientific notation. Need not be
quoted in prefix or suffix.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 128 of 235

+ Exponent Prefix positive exponents with plus sign. Need not be quoted in
prefix or suffix.

; Subpattern
boundary

Separates positive and negative subpatterns

' Prefix or suffix Used to quote special characters in a prefix or suffix, for example,
"'#'#" formats 123 to "#123". To create a single quote itself, use two
in a row: "# o''clock".

* Prefix or suffix
boundary

Pad escape, precedes pad character

V Number Virtual decimal point marker. Only used with decimal, float and
double simple types.

P Number Decimal scaling position. Only used with decimal, float and double
simple types.

@ Number Significant digits specifier. Only used with decimal simple type.
Controls number of significant digits when used alone or in
conjunction with the # character.

Table 16 dfdl:textNumberPattern special characters

A pattern contains a positive and negative subpattern, for example, "#,##0.00;(#,##0.00)". Each
subpattern has a prefix, a numeric part, and a suffix. If there is no explicit negative subpattern, the
negative subpattern is the minus sign prefixed to the positive subpattern. That is, "0.00" alone is
equivalent to "0.00;-0.00". If there is an explicit negative subpattern, it serves only to specify the
negative prefix and suffix; the number of digits, minimal digits, and other characteristics are
ignored in the negative subpattern. That means that "#,##0.0#;(#)" has precisely the same result
as "#,##0.0#;(#,##0.0#)".

The prefixes, suffixes, and various symbols used for infinity, digits, grouping separators, decimal
separators, etc. may be set to arbitrary values, and they will appear properly during unparsing.
However, care must be taken that the symbols and strings do not conflict, or parsing will be
unreliable. For example, either the positive and negative prefixes or the suffixes must be distinct
for parse to be able to distinguish positive from negative values.

The grouping separator is a character that separates clusters of integer digits to make large
numbers more legible. It commonly used for thousands, but in some locales it separates ten-
thousands. The grouping size is the number of digits between the grouping separators, such as 3
for "100,000,000" or 4 for "1 0000 0000". There are actually two different grouping sizes: One
used for the least significant integer digits, the primary grouping size, and one used for all others,
the secondary grouping size. In most locales these are the same, but sometimes they are
different. For example, if the primary grouping interval is 3, and the secondary is 2, then this
corresponds to the pattern "#,##,##0", and the number 123456789 is formatted as
"12,34,56,789". If a pattern contains multiple grouping separators, the interval between the last
one and the end of the integer defines the primary grouping size, and the interval between the
last two defines the secondary grouping size. All others are ignored, so "#,##,###,####" ==
"###,###,####" == "##,#,###,####".

The P symbol is used to derive the location of an assumed decimal point when the point is not
within the number that appears in the data. It acts as a decimal scaling factor.

The symbol P can be specified only as a continuous string of Ps in the leftmost or rightmost digit
positions in the vpinteger region of the pattern.

It is a schema definition error if any symbols other than "0", "1" through "9" or # are used in the
vpinteger region of the pattern.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 129 of 235

Examples

Data representation Pattern Value

123 PP000 0.00123

123 000PP 12300

 pattern := subpattern (';' subpattern)?

 subpattern := prefix? ((number exponent?)| vpinteger) suffix?

 number := (integer ('.' fraction)?) | sigdigits

 vpinteger := pinteger | (vinteger exponent?)

 pinteger := ('P'* integer) | (integer 'P'*)

 vinteger := ('V'? integer) |

 ('#'* 'V'? integer)|

 ('#'* '0'* 'V'? '0'* '0')|

 (integer 'V'?)

 prefix := '\u0000'..'\uFFFD' - specialCharacters

 suffix := '\u0000'..'\uFFFD' - specialCharacters

 integer := '#'* '0'* '0'

 fraction := '0'* '#'*

 sigDigits := '#'* '@' '@'* '#'*

 exponent := 'E'? '+'? '0'* '0'

 padSpec := '*' padChar

 padChar := '\u0000'..'\uFFFD' - quote

 Notation:

 X* 0 or more instances of X

 X? 0 or 1 instances of X

 X|Y either X or Y

 C..D any character from C up to D, inclusive

 S-T characters in S, except those in T

 Figure 4 dfdl:textNumberPattern BNF syntax

The first subpattern is for positive numbers. The second (optional) subpattern is for negative
numbers.

Not indicated in the BNF syntax above:

• The grouping separator ',' can occur inside the integer region, between any two pattern
characters of that region, as long as the number region is not followed by an exponent
region.

• Two grouping intervals are recognized: That between the decimal point and the first
grouping symbol, and that between the first and second grouping symbols. These
intervals are identical in most locales, but in some locales they differ. For example, the
pattern "#,##,###" formats the number 123456789 as "12,34,56,789".

• The pad specifier padSpec may appear before the prefix, after the prefix, before the
suffix, after the suffix, or not at all.

• In place of '0', the digits '1' through '9' in the number or vpinteger region may be used to
indicate a rounding increment.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 130 of 235

• The term maximum fraction digits is the total number of '0' and '#' characters in the
fraction sub-pattern above.

• The term minimum fraction digits is the total number of '0' characters (only) in the fraction
sub-pattern above.

• The term maximum integer digits is a limit that is implementation dependent, but must be
at least 20 (which is the number of digits in a base 10 unsigned long).

24
.

• The term minimum integer digits is the total number of '0' characters (only) in the integer
sub-pattern above.

• A pattern with a V symbol must not have # symbols to the right of the V symbol.

• A pattern with P symbols at the left end must not have # symbols .

• A pattern with P symbols at the right end can have # symbols.

• A pattern with a V symbol must not have @ or * symbols.

• A pattern with P symbols must not have @ or E or * symbols.

Parsing

During parsing, grouping separators are removed from the data.

Unparsing

Unparsing is guided by several parameters all of which can be specified using a pattern. The
following description applies to formats that do not use scientific notation.

• If the number of actual integer digits exceeds the maximum integer digits, then only the
least significant digits are shown. For example, 1997 is formatted as "97" if the maximum
integer digits is 2.

• If the number of actual integer digits is less than the minimum integer digits, then leading
zeros are added. For example, 1997 is formatted as "01997" if the minimum integer digits
is 5.

• If the number of actual fraction digits exceeds the maximum fraction digits, then half-even
rounding it performed to the maximum fraction digits. For example, 0.125 is formatted as
"0.12" if the maximum fraction digits is 2. This behavior can be changed by specifying a
rounding increment and a rounding mode.

• If the number of actual fraction digits is less than the minimum fraction digits, then trailing
zeros are added. For example, 0.125 is formatted as "0.1250" if the minimum fraction
digits is 4.

• Trailing fractional zeros are not displayed if they occur j positions after the decimal, where
j is less than the maximum fraction digits. For example, 0.10004 is formatted as "0.1" if
the maximum fraction digits is four or less.

Special Values

24
 Implementations which use current versions of the popular ICU library will allow 309 digits as

maximum integer digits.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 131 of 235

NaN is represented as a string determined by the dfdl:textStandardNaNRep property. This is the
only value for which the prefixes and suffixes are not used.

Infinity is represented as a string with the positive or negative prefixes and suffixes applied. The
infinity string is determined by the dfdl:textStandardInfinityRep property.

Scientific Notation

Numbers in scientific notation are expressed as the product of a mantissa and a power of ten, for
example, 1234 can be expressed as 1.234 x 10

3
. The mantissa is typically in the half-open

interval [1.0, 10.0) or sometimes [0.0, 1.0), but it need not be. In a pattern, the exponent character
immediately followed by one or more digit characters indicates scientific notation. Example:
"0.###E0" formats the number 1234 as "1.234E3".

• The number of digit characters after the exponent character gives the minimum exponent
digit count. There is no maximum. Negative exponents are formatted using the minus
sign, not the prefix and suffix from the pattern. This allows patterns such as "0.###E0
m/s". To prefix positive exponents with a plus sign, specify '+' between the exponent and
the digits: "0.###E+0" will produce formats "1E+1", "1E+0", "1E-1", etc.

• The minimum number of integer digits is achieved by adjusting the exponent. Example:
0.00123 formatted with "00.###E0" yields "12.3E-4". This only happens if there is no
maximum number of integer digits. If there is a maximum, then the minimum number of
integer digits is fixed at one.

• The maximum number of integer digits, if present, specifies the exponent grouping. The
most common use of this is to generate engineering notation, in which the exponent is a
multiple of three, e.g., "##0.###E0". The number 12345 is formatted using "##0.####E0"
as "12.345E3".

• When using scientific notation, the formatter controls the digit counts using significant
digits logic. The maximum number of significant digits limits the total number of integer
and fraction digits that will be shown in the mantissa; it does not affect parsing. For
example, 12345 formatted with "##0.##E0" is "12.3E3". .

• Exponential patterns may not contain grouping separators.

Significant Digits

The '@' pattern character can be used with the '#' to control how many integer and fraction digits
are needed to display the specified number of significant digits. The '@' only affects unparsing
behavior. Examples:

Pattern Minimum significant
digits

Maximum significant
digits

Number Formatted Output

@@@ 3 3 12345 12300

@@@ 3 3 0.12345 0.123

@@## 2 4 3.14159 3.142

@@## 2 4 1.23004 1.23

• Significant digit counts may be expressed using patterns that specify a minimum and
maximum number of significant digits. These are indicated by the '@' and '#' characters.
The minimum number of significant digits is the number of '@' characters. The maximum
number of significant digits is the number of '@' characters plus the number of '#'
characters following on the right. For example, the pattern "@@@" indicates exactly 3
significant digits. The pattern "@##" indicates from 1 to 3 significant digits. Trailing zero
digits to the right of the decimal separator are suppressed after the minimum number of

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 132 of 235

significant digits have been shown. For example, the pattern "@##" formats the number
0.1203 as "0.12".

• If a pattern uses significant digits, it may not contain a decimal separator, nor the '0'
pattern character. Patterns such as "@00" or "@.###" are disallowed.

• Any number of '#' characters may be prepended to the left of the leftmost '@' character.
These have no effect on the minimum and maximum significant digits counts, but may be
used to position grouping separators. For example, "#,#@#" indicates a minimum of one
significant digits, a maximum of two significant digits, and a grouping size of three.

• The number of significant digits has no effect on parsing.

• Significant digits may be used together with exponential notation. For example, the
pattern "@@###E0" is equivalent to "0.0###E0".

• The '@' pattern character can be used only in 'standard' textNumberRep (not 'zoned'),
and excludes the 'P' and 'V' pattern characters. It is a schema definition error if the '@'
pattern character appears in 'zoned' textNumberRep, or in conjunction with the 'P' or 'V'
pattern characters.

Padding

Padding may be specified through the pattern syntax. In a pattern the pad escape character,
followed by a single pad character, causes padding to be parsed and formatted. The pad escape
character is '*'. For example, "*x#,##0.00" formats 123 to "xx123.00", and 1234 to "1,234.00".

• When padding is in effect, the width of the positive subpattern, including prefix and suffix,
determines the format width. For example, in the pattern "* #0 o''clock", the format width
is 10.

• The width is counted in 16-bit code units.

• Some parameters which usually do not matter have meaning when padding is used,
because the pattern width is significant with padding. In the pattern "* ##,##,#,##0.##",
the format width is 14. The initial characters "##,##," do not affect the grouping size or
maximum integer digits, but they do affect the format width.

• Padding may be inserted at one of four locations: before the prefix, after the prefix, before
the suffix, or after the suffix. If there is no prefix, before the prefix and after the prefix are
equivalent, likewise for the suffix.

• When specified in a pattern, the 32-bit codepoint immediately following the pad escape is
the pad character. This may be any character, including a special pattern character. That
is, the pad escape escapes the following character. If there is no character after the pad
escape, then the pattern is illegal.

Note: Padding specified through the pattern syntax is distinct from, and in addition to, padding
specified using dfdl:textPadKind.

Rounding

How rounding is controlled is given by dfdl:textNumberRounding. The rounding increment may
be specified in the dfdl:textNumberPattern itself using digits '1' through '9' or using an explicit
increment in dfdl:textNumberRoundingIncrement. For example, 1230 rounded to the nearest 50 is
1250. 1.234 rounded to the nearest 0.65 is 1.3.

• Rounding only affects the string produced by unparsing. It does not affect parsing or
change any numerical values.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 133 of 235

• In a pattern, digits '1' through '9' specify rounding, but otherwise behave identically to digit
'0'. For example, "#,#50" specifies a rounding increment of 50.

• Using digits in a pattern, rounding is always 'half even', meaning rounds towards the
nearest integer, or towards the nearest even integer if equidistant.

Using an explicit rounding increment, dfdl:textNumberRoundingMode determines how values are
rounded.

 dfdl:textNumberPattern for dfdl:textNumberRep 'zoned' 13.6.1.2

When dfdl:textNumberRep is 'zoned' a subset of the number pattern language described in
Section 13.6.1.1 dfdl:textNumberPattern for dfdl:textNumberRep 'standard' is used.

Only the pattern for positive numbers is used. It is a schema definition error if the negative pattern
is specified.

In addition, only the following pattern characters may be used:

• '+' MUST BE present at the beginning or end of the pattern to indicate whether the
leading or trailing digit carries the overpunched sign, if the logical type is signed

• '+' MAY BE present at the beginning or end of the pattern to indicate whether the leading
or trailing digit carries the overpunched sign, if the logical type is unsigned. If logical type
is unsigned and dfdl:textNumberPolicy = 'lax' specified it is a schema definition error if no
'+' is present.

• 'V' MAY BE used to indicate the location of an implied decimal point

• 'P' MAY BE used to indicate the decimal scaling

• '0-9' indicates the number of needed digits (including overpunched).

• '#' indicates the number of optional digits.

Rounding occurs as described under Rounding in 13.6.1.1 dfdl:textNumberPattern for
dfdl:textNumberRep 'standard'

 Converting logical numbers to/from text representation 13.6.2

• Signed numbers with dfdl:textNumberRep 'standard' and dfdl:textStandardBase 10 are
mapped using the dfdl:textNumberPattern.

• Signed numbers with dfdl:textNumberRep 'standard' and dfdl:textStandardBase not 10
are mapped to an unsigned representation. On unparsing the minimum number of
characters to represent the digits is output and it is a processing error if the value is
negative.

• Signed numbers with dfdl:textNumberRep 'zoned' are mapped using the
dfdl:textNumberPattern to indicate the position of the sign and virtual decimal point. On
parsing if the sign is not overpunched, that is it does not have a sign, it is treated as
positive. On unparsing the sign is always overpunched.

• Unsigned numbers with dfdl:textNumberRep 'standard' and dfdl:textStandardBase 10
are mapped using the dfdl:textNumberPattern. On parsing it is a processing error if the
data are negative.

• Unsigned numbers with dfdl:textNumberRep 'standard' and dfdl:textStandardBase not 10
are mapped to an unsigned representation. On unparsing the minimum number of
characters to represent the digits is output. .

• Unsigned numbers with dfdl:textNumberRep 'zoned' are mapped using the
dfdl:textNumberPattern to indicate the position of the sign and virtual decimal point. On

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 134 of 235

parsing it is a processing error if the data are negative. On unparsing the data are not
overpunched with a sign.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 135 of 235

13.7 Properties Specific to Numbers with Binary Representation

These properties are applicable to simple type xs:decimal and its derived types which include all
the signed and unsigned integer types. These properties are not applicable to types xs:float and
xs: double. See section 1.1. Note that simple types derived from xs:decimal do not imply base-10
representations in the data stream.

 Property Name Description

binaryNumberRep Enum

Valid values are 'packed', 'bcd', 'binary', 'ibm4690Packed'

Allowable values for each number type are:

Logical Type Permitted Value

Decimal, Integer,
NonNegativeInteger

packed, bcd, binary,
ibm4690Packed

Long, Int, Short, Byte, packed, binary,
ibm4690Packed (but not bcd)

UnsignedLong, Unsignedint,
UnsignedShort, UnsignedByte

packed, bcd, binary,
ibm4690Packed

'packed' means represented as an IBM 390 packed decimal. Each
byte contains two decimal digits, except for the least significant
byte, which contains a sign in the least significant nibble.

'bcd' means represented as a binary coded decimal with two digits
per byte.

'binary' means represented as twos complement for signed types
and unsigned base-2 binary for unsigned types.

Note that the maximum allowed value for twos-complement and
unsigned base-2 binary integers is implementation dependent, but
must be at least that of a xs:long type, which is the equivalent of an
8 byte/64-bit signed integer.

'ibm4690Packed' is a variant of a packed decimal having the
following characteristics:

• Nibbles represent digits 0 - 9 in the usual BCD manner.

• A positive value is simply indicated by digits.

• A negative number is indicated by digits with the leftmost nibble
being xD.

• If a positive or negative value packs to an odd number of
nibbles, an extra xF nibble is added on the left.

For all values, the dfdl:byteOrder property is used to determine the
numeric significance of the bytes making up the representation.

Annotation: dfdl:element, dfdl:simpleType

binaryDecimalVirtualPoint Integer.

Used when base simpleType is xs:decimal.

An integer that represents the position of an implied decimal point
within a number, or specify 0.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 136 of 235

If you specify 0 then there is no virtual decimal point

If you specify a positive integer, the position of the decimal point is
moved left from the right side of the number. For example, if you
specify 3, the integer value 1234 represents 1.234

If you specify a negative integer, the position of the decimal point is
moved right from the right side of the number. For example, if you
specify -3, the integer value 1234 represents 1 234 000

Annotation: dfdl:element, dfdl:simpleType

binaryPackedSignCodes List of Character

Used only when dfdl:binaryNumberRep or dfdl:binaryCalendarRep
is 'packed'

A space separated string giving the hex sign nibbles to use for a
positive value, a negative value, an unsigned value, and zero.

Valid values for positive nibble: A, C, E, F

Valid values for negative nibble: B, D

Valid values for unsigned nibble: F

Valid values for zero sign: A C E F 0

Example: 'C D F C' – typical S/390 usage

Example: 'C D F 0' – handle special case for zero

On parsing, whether to accept all valid values for a positive,
negative or unsigned number, and for zero, is governed by the
dfdl:binaryNumberCheckPolicy property. On unparsing, the
specified values are always used.

Annotation: dfdl:element, dfdl:simpleType

binaryNumberCheckPolicy Enum

Values are 'strict' and 'lax'.

Indicates how lenient to be when parsing binary numbers.

If 'lax' then the parser tolerates all valid alternatives where such
alternatives exist. Specifically, for dfdl:binaryNumberRep = 'packed'
the sign nibble for positive, negative, unsigned and zero is allowed
to be any of the valid respective values.

On unparsing, the specified value is always used

Annotation: dfdl:element, dfdl:simpleType

 Converting Logical Numbers to/from Binary Representation 13.7.1

When unparsing a binary number (packed decimal or twos-complement) and excess precision is
supplied in the Infoset no rounding occurs. It is a processing error.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 137 of 235

 Converting Base-2 Binary Numbers 13.7.1.1

For both parsing and unparsing, the bit string that represents the content region for a base-2
binary number is converted to/from an Infoset value by a calculation that involves the length and
the dfdl:byteOrder property.

For unparsing, the dfdl:fillByte property can also be involved.

When parsing, DFDL specifies how an unsigned integer of unbounded magnitude is computed
from a bit string based on its length, and the dfdl:byteOrder property. For signed types, this
unbounded integer is converted into a signed value by way of the well-known twos-complement
scheme, and for the xs:decimal type, the dfdl:binaryDecimalVirtualPoint property can be used to
convert this integer into a decimal value with an integer and a fractional component, and for both
xs:decimal and the integer types the dfdl:binaryVirtualDecimalPoint or to scale up the integer by
some scale factor.

A DFDL implementation can use any conversion technique consistent with this description.

 Bit strings, Alignment, and dfdl:fillByte 13.7.1.2

The dfdl:alignmentUnits of 'bits', and dfdl:alignment of '1' can be used to position a bit string
anywhere in the data stream without regard for any other grouping of bits into bytes.

The numeric value of the unsigned integer represented by a bit string is unaffected by alignment.

When unparsing a bit string, alignment may cause the bits within the bit string to occupy only
some of the bits within a byte of the data stream. The bits of data in the alignment fill region are
unspecified by the elements of the DFDL schema, and when parsing, neither they, nor any data
computed from them are put into the DFDL infoset. During unparsing, such unspecified bits are
filled in using the value of the dfdl:fillByte property. Corresponding bits from the dfdl:fillByte value
are used to fill in unspecified bits of the data stream. That is, if bit K (K will be 1 or greater, but
less than or equal to 8) of a data stream byte is unspecified, its value will be taken from bit K of
the dfdl:fillByte property value.

Since the value of any bit string element is unaffected by alignment, the logical unsigned integer
value for a bit-string is always computed as if the first bit were at position 1 of the bit stream. If the
dfdl:length for the bit-string evaluates to M, then the bit-string conceptually occupies bits 1 to M of
a data stream for purposes of computing its value.

 Bits within Bit Strings of Length <= 8 13.7.1.3

Any time the length in bits is < 8, then when set, the bit at position Z supplies value 2^(M-Z), and
the value of the bit string as an integer is the sum of these values for each of its bits.

 Bits within Bit Strings of Length > 8 13.7.1.4

Call M the length of the bit string element in bits. In general, when M > 8 the contribution of a bit
in position i to the numeric value of a bit string is given by a formula specific to the dfdl:byteOrder.

For dfdl:byteOrder of 'bigEndian' the value of bit i is given by 2^(M - i).

For dfdl:byteOrder of 'littleEndian' the value of bit i is given by a more complex formula. The
following pseudo code computes the value of a bit in a littleEndian bit string. It is just a very big
expression, but is spread out over many local variables to illustrate the various sub-calculations
clearly. DFDL implementations may use any way of converting bit strings to the corresponding
integer values that is consistent with this:

In the pseudo code below:

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 138 of 235

• '%' is modular division (division where remainder is returned)

• '/' is regular division (quotient is returned)

• the expression 'a ? b : c' means 'if a is true, then the value is b, otherwise the value is c'

 littleEndianBitValue(bitPosition, bitStringLength)

 assert bitPosition >= 1;

 assert bitStringLength >= 1;

 assert bitStringLength >= bitPosition;

 numBitsInFinalPartialByte = bitStringLength % 8;

 numBitsInWholeBytes = bitStringLength -

 numBitsInFinalPartialByte;

 bitPosInByte = ((bitPosition - 1) % 8) + 1;

 widthOfActiveBitsInByte = (bitPosition <= numBitsInWholeBytes)

 ? 8 : numBitsInFinalPartialByte;

 placeValueExponentOfBitInByte = widthOfActiveBitsInByte –

 bitPosInByte;

 bitValueInByte = 2^placeValueExponentOfBitInByte;

 byteNumZeroBased = (bitPosition - 1)/8;

 scaleFactorForBytePosition = 2^(8 * byteNumZeroBased);

 bitValue = bitValueInByte * scaleFactorForBytePosition;

 return bitValue;

Figure 5 Little Endian bit position and value

13.7.1.4.1 Examples of Unsigned Integer Conversion

Consider the first three bytes of the data stream. Imagine their numeric values as 0x5A 0x92
0x00.

Positions:

00000000 01111111 11122222

12345678 90123456 78901234

Bits:

01011010 10010010 00000000

Hex values

 5 A 9 2 0 0

Beginning at bit position 1, (the very first bit) if we consider the first two bytes as a bigEndian
short, the value will be 0x5A92.

 <xs:element name="num" type="unsignedShort"

 dfdl:alignment="1"

 dfdl:alignmentUnits="bytes"

 dfdl:byteOrder="bigEndian"

 dfdl:representation="binary"

 dfdl:binaryNumberRep="binary"/>

As a littleEndian short, the value will be 0x925A.

 <xs:element name="num" type="unsignedShort"

 dfdl:alignment="1"

 dfdl:alignmentUnits="bytes"

 dfdl:byteOrder="littleEndian"

 dfdl:representation="binary"

 dfdl:binaryNumberRep="binary"/>

Now let us examine a bit string of length 13, beginning at position 2.

<xs:sequence>

 <xs:element name="ignored" type="unsignedByte"

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 139 of 235

 dfdl:alignment="1"

 dfdl:alignmentUnits="bits"

 dfdl:lengthUnits="bits"

 dfdl:length="1"

 dfdl:representation="binary"

 dfdl:binaryNumberRep="binary"/>

 <xs:element name="x" type="unsignedShort"

 dfdl:alignment="1"

 dfdl:alignmentUnits="bits"

 dfdl:byteOrder="bigEndian"

 dfdl:lengthUnits="bits"

 dfdl:length="13"

 dfdl:representation="binary"

 dfdl:binaryNumberRep="binary"/>

 ...

< /xs:sequence>

Let's examine the same data stream and consider the bit positions that make up element 'x',
which are the bits at positions 2 through 14 inclusive.

Positions:

00000000 01111111 11122222

12345678 90123456 78901234

Bits:

 1011010 100100

Since alignment does not affect logical value, we will obtain the same logical value as if we
realigned the bits. That is, the value is the same as if we began the bits of the element's
representation with bit position 1.

Realigned Positions:

00000000 01111111 11122222

12345678 90123456 78901234

Bits:

10110101 00100

The DFDL schema fragment above gives element 'x' the dfdl:byteOrder 'bigEndian' property. In
this case the place value of each position is given by 2^(M – i)

PlaceValue positions 2^(M - i)

...11110 00000000

...21098 76543210

Bit values

...10110 10100100

Hex values

 1 6 A 4

The value of element 'x' is 0x16A4. Notice how it is the most-significant byte -- which is the first
byte when big endian -- that becomes the partial byte (having fewer than 8 bits) in the case where
the length of the bit string is not a multiple of 8 bits.

For dfdl:byteOrder of 'littleEndian'. The place values of the individual bits are not as easily
visualized. However there is still a basic formula (given in the pseudo code in Figure 4 Little
Endian bit position and value.

Looking again at our realigned positions:

Realigned Positions:

00000000 01111111 11122222

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 140 of 235

12345678 90123456 78901234

Bits:

10110101 00100

The place values of each of these bits, for little endian byte order can be seen to be:

PlaceValue positions

00000000 ...11100

76543210 ...21098

Bit values

10110101 ...00100

Hex values

 B 5 0 4

We must reorder the bytes for little endian byte order. The value of element 'x' is 0x04B5. In little
endian form, the first 8 bits make up the first byte, and that contains the least-significant byte of
the logical numeric unsignedShort value. The additional bits of the partial byte are once again the
most significant byte; however, for little endian form, this is the second byte. The second byte
contains only 5 bits, those make up the least significant 5 bits of that byte, but that logical 5-bit
value makes up the most-significant byte of the unsignedShort integer.

 Converting Packed Decimal Numbers 13.7.1.5

Signed numbers with dfdl:binaryNumberRep 'packed' are parsed using a nibble to indicate the
sign. The unsigned nibble is treated as positive. On unparsing the sign nibble is written according
to dfdl:binaryPackedSignCodes. The unsigned nibble is never written.

Signed numbers with dfdl:binaryNumberRep 'bcd' are always positive. On unparsing it is a
processing error if the Infoset data is negative.

Signed numbers with dfdl:binaryNumberRep 'ibm4690Packed' are parsed using the sign nibble to
identify negative values. There is no sign nibble for positive values. On unparsing the nibble 0xD
is written for negative values.

Unsigned numbers with dfdl:binaryNumberRep 'packed' are parsed if the nibble is positive or
unsigned. It is a processing error if the data is negative. On unparsing the unsigned nibble is
used.

Unsigned numbers with dfdl:binaryNumberRep 'bcd' are readily parsed as BCD data is always
positive.

Unsigned numbers with dfdl:binaryNumberRep 'ibm4690Packed' are parsed if there is no sign
nibble of 0xD to identify a negative value. It is a processing error if the data is negative. On
unparsing no sign nibble is written.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 141 of 235

13.8 Properties Specific to Float/Double with Binary Representation

Property
Name

Description

binaryFloatRep Enum or DFDL Expression

This specifies the encoding method for the float and double.

Valid values are 'ieee', 'ibm390Hex',This property can be computed by way of
an expression which returns a string of 'ieee' or ' ibm390Hex' . The expression
must not contain forward references to elements which have not yet been
processed.

The enumeration value 'ieee' refers to the IEEE 754-1985 specification.

For both 'ieee' and 'ibm390hex', an xs:float must have a physical length of 4
bytes. It is a schema definition error if there is a specified length not equivalent
to 4 bytes.

Similarly, for both 'ieee' and 'ibm390hex', an xs:double must have a physical
length of 8 bytes. It is a schema definition error if there is a specified length
not equivalent to 8 bytes.

The byteOrder property is used to construct a value from the bytes in the
binary representation.

Keep in mind that the DFDL Infoset float and double data types match the
precision of the IEEE specification. There may be precision/rounding issues
when converting IBM float/double to/from the DFDL infoset float/double types.

Half-precision IEEE and quad-precision IEEE/IBM are not supported.
25

Annotation: dfdl:element, dfdl:simpleType

13.9 Properties Specific to Boolean with Text Representation

Property Name Description

textBooleanTrueRep List of DFDL String Literals or DFDL Expression

A whitespace separated list of representations to be used for 'true'.
These are compared after trimming when parsing, and before
padding when unparsing.

If lengthKind is 'explicit' or 'implicit' and either textPadKind or
textTrimKind is 'none' then both textBooleanTrueRep and
textBooleanFalseRep must have the same length else it is a schema
definition error.

25
 Note that XSDL 1.1 moved to IEEE 754-2008 only because of new decimal support, and not for

enhanced float support. That's why in XSDL 1.1 there are still just the xs:float and xs:double built-
in types. Any future support for half-precision and quad-precision in XSDL would very likely be
implemented by adding new built-in types that derive from xs:anySimpleType. It is likely therefore
that future DFDL support for half-precision and quad-precision will build on XSDL.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 142 of 235

This property can be computed by way of an expression which
returns a string of whitespace separated list of values. The
expression must not contain forward references to elements which
have not yet been processed.

On unparsing the first value is used

If dfdl:ignoreCase is 'yes' then the case of the string is ignored by the
parser.

Text Boolean Character Restrictions: The string literal is restricted to
allow only certain kinds of syntax:

• DFDL character entities are allowed

• The DFDL byte value entity (%#r) is not allowed.

• DFDL Character classes NL, WSP, WSP+, WSP*, and ES are
not allowed

It is a schema definition error if the string literal contains any of the
disallowed constructs.

Annotation: dfdl:element, dfdl:simpleType

textBooleanFalseRep List of DFDL String Literals or DFDL Expression

A whitespace separated list of representations to be used for 'false'
These are compared after trimming when parsing, and before
padding when unparsing.

If lengthKind is 'explicit' or 'implicit' and either textPadKind or
textTrimKind is 'none' then both textBooleanTrueRep and
textBooleanFalseRep must have the same length else it is a schema
definition error.

This property can be computed by way of an expression which
returns a string of whitespace separated list of values. The
expression must not contain forward references to elements which
have not yet been processed.

On unparsing the first value is used

If dfdl:ignoreCase is 'yes' then the case of the string is ignored by the
parser.

The string literal value is restricted in the same way as described in
"Text Boolean Character Restrictions" in the description of the
textBooleanTrueRep property.

Annotation: dfdl:element, dfdl:simpleType

textBooleanJustification Enum

Valid values 'left', 'right', 'center'

Controls how the data is padded or trimmed on parsing and
unparsing.

Behavior as for dfdl:textStringJustification.

Annotation: dfdl:element, dfdl:simpleType

textBooleanPadCharacter DFDL String Literal

The value that is used when padding or trimming boolean elements.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 143 of 235

The value can be a single character or a single byte.

If a character, then it can be specified using a literal character or
using DFDL entities.

If a byte, then it must be specified using a single byte value entity

If a pad character is specified when lengthUnits is 'bytes' then the
pad character must be a single-byte character.

If a pad byte is specified when lengthUnits is 'characters' then

• the encoding must be a fixed-width encoding

• padding and trimming must be applied using a sequence of
N pad bytes, where N is the width of a character in the fixed-
width encoding.

The string literal value is restricted in the same way as described in
"Pad Character Restrictions" in the description of the
textStringPadCharacter property.

Annotation: dfdl:element, dfdl:simpleType

13.10 Properties Specific to Boolean with Binary Representation

Property Name Description

binaryBooleanTrueRep Non-negative Integer

This value, treated as a binary xs:unsignedInt (See Section 13.7.1
Converting logical Logical numbers Numbers to/from binary Binary
representationRepresentation), gives the representation to be used
for 'true'

The empty string means dfdl:binaryBooleanTrueRep is any value
other than dfdl:binaryBooleanFalseRep.

If a boolean element has specified length expression or a prefix
length, then is is a processing error if the length is not between 1 bit
and 32 bits (4 bytes). It is a schema definition error if the value is a
string literal, and is not in the same range. It is a schema definition
error if the value (when provided) of the binaryBooleanTrueRep
cannot fit as an unsigned binary integer in the specified length.

Annotation: dfdl:element, dfdl:simpleType

binaryBooleanFalseRep Non-negative Integer

This value, treated as a binary xs:unsignedInt (See Section 13.7.1
Converting logical Logical numbers Numbers to/from binary Binary
representationRepresentation), gives the representation to be used
for 'false'

If a boolean element has specified length, then is is a processing
error if the length is not between 1 bit and 32 bits (4 bytes). DFDL
implementations may issue a schema definition error if this error can
be determined statically. It is a schema definition error if the value of
the binaryBooleanFalseRep cannot fit as an unsigned binary integer
in the specified length.

Annotation: dfdl:element, dfdl:simpleType

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 144 of 235

13.11 Properties specific to Calendar with Text or Binary Representation

The properties describe how a calendar is to be interpreted including a unparsing pattern property
plus properties that qualify the pattern.

These properties can be used when a calendar has dfdl:representation 'text' or
dfdl:representation 'binary' and a packed decimal representation.

Property Name Description

calendarPattern String

Defines the ICU pattern that describes the format of the calendar.
The pattern defines where the year, month, day, hour, minute,
second, fractional second and time zone components appear. See
calendarPattern property section below.

When the dfdl:representation is 'binary' and the representation is a
packed decimal then the pattern can contain only characters and
symbols that always result in the presentation of digits.

Annotation: dfdl:element, dfdl:simpleType

calendarPatternKind Enum

Valid values 'explicit', 'implicit'

'explicit' means the pattern is given by dfdl:calendarPattern,

'implicit' means the pattern is derived from the XML schema
date/time type.

Logical Type Default Pattern

xs:date yyyy-MM-dd

xs:dateTime yyyy-MM-dd'T'HH:mm:ss

xs:time HH:mm:ssZ

Annotation: dfdl:element, dfdl:simpleType

calendarCheckPolicy Enum

Valid values are 'strict', 'lax'

Indicates how lenient to be when parsing against the pattern.

See Section 13.11.2 The dfdl:calendarCheckPolicy Property below
for details of the specific behaviors for 'strict' and 'lax'.

Annotation: dfdl:element, dfdl:simpleType

calendarTimeZone String

This property provides the time zone that will be assumed if no time
zone explicitly occurs in the data.

Valid values specify a UTC time zone offset by matching the regular
expression:

(UTC)([+\-]([01]\d|\d)((([:][0-5]\d){1,2})?))?)

In addition, empty string can be specified to indicate "no time zone",
or the IANA time zone format (also known as the Olson time zone
format) may be used. (e.g, America/New_York)) See [OLSON].

Note that this property is used when parsing only.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 145 of 235

Annotation: dfdl:element, dfdl:simpleType

calendarObserveDST Enum

Valid values are 'yes', 'no'

Whether the time zone given in dfdl:calendarTimeZone observes
daylight savings time.

Ignored if calendarTimeZone is specified in UTC format, or if
calendarTimeZone is empty string. That is, this property is used only
if the calendarTimeZone is in IANA (aka Olson) format.

This property applies to parsing only.

Annotation: dfdl:element, dfdl:simpleType

calendarFirstDayOfWeek Enum

Valid values 'Monday' … 'Sunday'

The day of the week upon which a new week is considered to start.

Annotation: dfdl:element, dfdl:simpleType

calendarDaysInFirstWeek Non-negative Integer

Valid values 1 to 7

Specify the number of days of the new year that must fall within the
first week.

The start of a year usually falls in the middle of a week. If the
number of days in that week is less than the value specified here,
the week is considered to be the last week of the previous year;
hence week 1 starts some days into the new year. Otherwise it is
considered to be the first week of the new year; hence week 1 starts
some days before the new year.

Annotation: dfdl:element, dfdl:simpleType

calendarCenturyStart Non-negative Integer

Valid values 0 to 99.

This property determines on parsing how two-digit years are
interpreted. Specify the two digits that start a 100-year window that
contains the current year. For example, if you specify 89, and the
current year is 2006, all two-digit dates are interpreted as being in
the range 1989 to 2088. A two-digit year less than 89 will be
interpreted as 20nn and a two-digit year more than or equal to 89 will
be treated as 19nn.

Annotation: dfdl:element, dfdl:simpleType

calendarLanguage String or DFDL Expression

The language that is used when the pattern produces a presentation
in text.

The value must match the regular expression:

([A-Za-z]{1,8}([\-_][A-Za-z0-9]{1,8})*)

It is a schema definition error otherwise.

All DFDL Implementations must support dfdl:calendarLanguage

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 146 of 235

value "en".

DFDL implementations may support additional values, however, the
value of the dfdl:calendarLanguage property is always interpreted as
a Unicode Language Indentifier as defined by [UnicodeLDML], and
[UnicodeCLDR].

Annotation: dfdl:element, dfdl:simpleType

 The dfdl:calendarPattern property 13.11.1

The dfdl:calendarPattern describes how to parse and unparse text and binary representations of
dateTime, date and time logical types. The pattern is primarily used on unparsing to define the
format but is also used to aid parsing.

The pattern is derived from the ICU SimpleDatetimeFormat class described here: [ICUCalForm]

An extension is the formatting symbol I which means accept a subset of ISO 8601 compliant
calendars

Symbol Meaning Presenta
tion

Example

G era designator Text G AD

y year Number y, yyyy

yy

1996

96

u year (allows negative years) Number u 1900, 0, -500

Y year (of the week of year) Number Y 1997

M month in year Text &
Number

M, MM

MMM

MMMM

MMMMM

 09

Sept

September

S

d day in month Number d

dd

2

02

h hour in am/pm (1~12) Number h

hh

7

07

H hour in day (0~23) Number H

HH

0

00

m minute in hour Number m

mm

4

04

s second in minute Number s

ss

5

05

S fractional second (see note 1) Number S

SS

SSS

2

24

235

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 147 of 235

E day of week Text E, EE,EEE

EEEE

EEEEE

EEEEEE

Tues

Tuesday

T

Tu

e day of week (local) Text &
Number

e, ee

eee

eeee

eeeee

eeeeee

2

Tues

Tuesday

T

Tu

D day in year Number D 189

F day of week in month Number F 2 (2nd Wed in July)

w week in year Number w, ww 27

W week in month Number W 2

a am/pm marker Text A pm

k hour in day (0~24) Number k

kk

2, 24

02, 24

K hour in am/pm (0~11) Number K

KK

0

00

z

time zone: specific non-location Text z, zz, zzz

zzzz

PDT

Pacific Daylight Time

Z

time zone: ISO8601 basic
format

time zone: long localized GMT

Text Z, ZZ, ZZZ

ZZZZ

-0800, +0000

GMT-08:00, GMT+00:00

O time zone: localized GMT Text O

OOOO

GMT-8

GMT-08:00

v time zone: generic non-location Text v

vvvv

PT

Pacific Time

V time zone: short time zone ID

time zone: long time zone ID

time zone: exemplar city

time zone: generic location.

Text V

VV

VVV

VVVV

uslax

America/Los_Angeles

Los Angeles

Los Angeles Time

x time zone: ISO8601 basic or
extended format

Text x

xx

xxx

-08, +0530, +0000

-0800, +0000

-08:00, +00:00

X Time Zone: ISO8601 basic or
extended format .The UTC
indicator "Z" is used when local

Text X

XX

-08, +0530, Z

-0800, Z

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 148 of 235

time offset is 0. XXX -08:00, Z

I ISO8601 date/time Text I 2006-10-
07T12:06:56.568+01:00

' escape for text Delimiter ' 'Date='

'' single quote Literal '' 'o''clock'

Any number of fractional seconds "S" may by specified in the pattern and accepted by
implementations, but an implementation is free to represent a limited number of fractional
seconds internally. Excess fractional seconds are truncated, not rounded up. At least millisecond
accuracy must be implemented. Unlike other fields, fractional seconds are padded on the right
with zero.

The count of pattern letters determines the format as indicated in the table.

If dfdl:representation is text, any characters in the pattern that are not in the ranges of ['a'..'z'] and
['A'..'Z'] will be treated as quoted text. For instance, characters like ':', '.', ' ', '#' and '@' will appear
in the formatted output even if they are not embraced within single quotes. The single quote is
used to 'escape' letters. If dfdl:representation is binary, any characters in the pattern that are not
digits must be quoted.

Two single quotes in a row, whether inside or outside a quoted sequence, represent a 'real' single
quote.

The symbols 'z', 'zz', and 'zzz' have identical meaning, as do 'Z', 'ZZ', and 'ZZZ'.

The 'I' symbol must not be used with any other symbol with the exception of 'escape for text'. It
represents calendar formats that match those defined in the restricted profile of the ISO 8601
standard proposed by the W3C at http://www.w3.org/TR/NOTE-datetime. The formats are
referred to as 'granularities'.

• xs:dateTime. When parsing, the data must match one of the granularities. When
unparsing, the fullest granularity is used.

• xs:date. When parsing, the data must match one of the date-only granularities. When
unparsing, the fullest date-only granularity is used.

• xs:time. When parsing, the data must match only the time components of one of the
granularities that contains time components. When unparsing, the time components of
the fullest granularity are used. The literal 'T' character is not expected in the data when
parsing and is not output when unparsing.

• The number of fractional second digits supported is implementation dependent but must
be at least one.

• The omission of time zone from the input data when the type is xs:dateTime or xs:time is
not a processing error. If that occurs then the time zone is obtained from the
calendarTimeZone property.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 149 of 235

When parsing, for any pattern that omits components the values for the omitted components are
supplied from the Unix epoch 1970-01-01T00:00:00.000.

27

When unparsing, and the pattern contains a formatting symbol that requires a component of the
date/time and the infoset value does not contain that component, it is a processing error.

When parsing a calendar element with a packed decimal representation then the nibbles from the
data are converted to text digits without any trimming of leading or trailing zeros, and the result is
then matched against the pattern according to the usual rules.

 The dfdl:calendarCheckPolicy Property 13.11.2

The differences in behavior between 'strict' and 'lax' for this property can be subtle. Both are quite
lenient in enforcement of many variations in format, with the 'lax' value adding additional
tolerance of more format variations to those already allowed by the 'strict' value.

1. Lenient parsing behaviour when in 'strict' mode:

a. Case insensitive matching for text fields

b. MMM, MMMM, and MMMMM all accept either short or long form of Month

c. E, EE, EEE, EEEE, EEEEE , and EEEEEE all accept either abbreviated, full,
narrow and short forms of Day of Week

d. Accepts truncated leftmost numeric field (eg, pattern "HHmmss" allows "123456"
(12:34:56) and "23456" (2:34:56) but not "3456")

2. Additional lenient parsing behaviour when in 'lax' mode:

a. Values outside valid ranges are normalized (eg, "March 32 1996" is treated as
"April 1 1996")

b. Ignoring a trailing dot after a non-numeric field

c. Leading and trailing whitespace in the data but not in the pattern is accepted

d. Whitespace in the pattern can be missing in the data

e. Partial matching on literal strings. E.g., data "20130621d" allowed for pattern
"yyyyMMdd'date' "

13.12 Properties Specific to Calendar with Text Representation

Property Name Description

textCalendarJustification Enum

Valid values 'left', 'right', 'center'

Controls how the data is padded or trimmed on parsing and
unparsing.

Behavior as for dfdl:textStringJustification.

Annotation: dfdl:element, dfdl:simpleType

textCalendarPadCharacter DFDL String Literal

27
 Note that DFDL does not support a pure month or day or year, as it does not support the XSD

simple types xs:gMonth, xs:gDay, and xs:gYear.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 150 of 235

The value that is used when padding or trimming calendar
elements. The value can be a single character or a single byte.

If a character, then it can be specified using a literal character or
using DFDL entities.

If a byte, then it must be specified using a single byte value entity

If a pad character is specified when dfdl:lengthUnits is 'bytes' then
the pad character must be a single-byte character.

If a pad byte is specified when dfdl:lengthUnits is 'characters' then
- the encoding must be a fixed-width encoding
- padding and trimming must be applied using a sequence of N pad
bytes, where N is the width of a character in the fixed-width
encoding.

The string literal value is restricted in the same way as described in
"Pad Character Restrictions" in the description of the
textStringPadCharacter property.

 Annotation: dfdl:element, dfdl:simpleType

13.13 Properties Specific to Calendar with Binary Representation

Property Name Description

binaryCalendarRep Enum

Valid values are 'packed', 'bcd', 'ibm4690Packed',
'binarySeconds', 'binaryMilliseconds'

For all values, the dfdl:byteOrder property is used to determine
the numeric significance of the bytes making up the
representation.

'packed' means represented as an IBM 390 packed decimal.
Each byte contains two decimal digits, except for the rightmost
byte, which contains a sign to the right of a decimal digit.

'bcd' means represented as a binary coded decimal with two
digits per byte.

'ibm4690Packed' means represented as a variant of packed
format as described in property dfdl:binaryNumberRep.

For packed decimals the following properties are also applicable

• dfdl:binaryPackedSignCodes ('packed' only)

• dfdl:binaryNumberCheckPolicy

For packed decimals the property dfdl:calendarPatternKind must
be 'explicit' because the default patterns for 'implicit' use non-
numeric characters. It is a schema definition error otherwise.
Similarly, dfdl:calendarPattern can contain only characters and
symbols that always result in the presentation of digits.

See Properties specific to numbers with binary representation
section : 13.7 Properties Specific to Numbers with Binary
Rrepresentation.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 151 of 235

Note also that a virtual decimal point for the boundary between
seconds and fractional seconds is implied from the pattern at the
boundary of 's' and 'S', i.e., where the substring 'sS' appears in
the pattern.

'binarySeconds' means represented as binary xs:int, that is, as a
4 byte signed integer that is the number of seconds from the
epoch (positive or negative). It is a schema definition error if
there is a specified length not equivalent to 4 bytes.

'binaryMilliseconds' means represented as binary xs:long, that is,
as an 8 byte signed integer that is the number of milliseconds
from the epoch (positive or negative). It is a schema definition
error if there is a specified length not equivalent to 8 bytes.

binarySeconds and binaryMilliseconds may only be used when
the type is xs:dateTime. (It is a schema definition error otherwise.)

Annotation: dfdl:element, dfdl:simpleType

binaryCalendarEpoch DateTime

Used when dfdl:binaryCalendarRep is 'binarySeconds' or
'binaryMilliseconds'

The epoch from which to calculate dates and times.

If the time zone is omitted from the value, then UTC is used.

Annotation: dfdl:element, dfdl:simpleType

Examples of packed decimal format calendars for December 14, 1923 and calendarPattern of
'MMddyy' would be:

 packed: (hexadecimal) 01 21 42 3C,

 bcd: (hexadecimal) 12 14 23

 ibm4690Packed: (hexadecimal) 12 14 23

The 'C' nibble at the end of the 'packed' representation is a sign nibble, and the leading 0 nibble is
just to align to a byte boundary..

13.14 Properties Specific to Opaque Types (xs:hexBinary)

There are no properties specific to opaque types

13.15 Nil Value Processing

Sometimes it is desirable to represent an unused element, place-holder for unknown information,
or inapplicable information explicitly with an element, rather than by the lack of an element.

For example, it may be desirable to represent a sparsely populated array of data using a
distinguished nil element to fill the locations where data is absent, thereby preserving the position
for the elements that are present.

As another example, it may be desirable to represent an unused simple element by a value which
is not conformant to the logical type of the element.

Such cases can be represented using the DFDL nil mechanism which is based on the XML
Schema nil mechanism. DFDL provides what are commonly called "in-band" nil values by way of
dfdl:nilKind 'logicalValue', and also provides for two kinds of literal indicators of nil through

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 152 of 235

dfdl:nilKind 'literalValue' and dfdl:nilKind 'literalCharacter'. Nil processing is used when the XSDL
'nillable' property of an element is true.

DFDL allows elements of complex type to be nillable. However, to avoid the concept of a complex
element having a value, which does not exist in DFDL, the only permissible nil value is the empty
string, represented by the DFDL %ES; entity and using dfdl:nilKind 'literalValue'.

On parsing, an element occurrence is nil if the element has XSDL nillable 'true' and the data is a
nil representation as defined in section 9.2.1. Specifically:

1. When dfdl:nilKind is 'literalValue', the NilLiteralValue region of the data stream matches
any of the dfdl:nilValue values.

2. When dfdl:nilKind is 'literalCharacter', all characters in the NilLiteralCharacters region of
the data stream match the dfdl:nilValue character.

3. When dfdl:nilKind is 'logicalValue', the data contains a normal representation, and the
NilLogicalValue region of the data stream, converted to the element's logical type,
matches any of the dfdl:nilValue values.

For dfdl:nilKind 'literalValue' or 'literalCharacter':

• Determination of whether the data is a nil representation for a literal nil happens first
before any consideration of whether the representation is the empty, normal, or absent
representations.

• Property dfdl:nilValueDelimiterPolicy controls whether matching one of the nil values also
involves matching the initiator or terminator specified by the element. This gives control
over whether a nil indicator may or may not also require the delimiters that a normal data
element requires.

On unparsing, an element is nil if XSDL nillable is 'true' AND the element value is the
distinguished value nil in the augmented infoset, in which case what is output to the data stream
is one of the following:

1. When dfdl:nilKind is 'logicalValue' then the first value of dfdl:nilValue converted to the
physical representation is output as the NilLogicalValue region.

2. When dfdl:nilKind is 'literalValue' then the first value of dfdl:nilValue is output as the
NilLiteralValue region.

3. When dfdl:nilKind is 'literalCharacter' then the character from dfdl:nilValue, repeated to
the needed length, is output as the NilLiteralCharacters region.

For dfdl:nilKind 'literalValue' or 'literalCharacter' then dfdl:nilValueDelimiterPolicy determines
whether any initiator or terminator also appear surrounding the literal nil in the output data.

13.16 Properties for Nillable Elements

These properties are used when the XSDL 'nillable' property of an element is 'true', and they
control when and how the representation data are interpreted as having the logical meaning 'nil'.

Property Name Description

nilKind Enum

Valid values 'literalValue', 'logicalValue', 'literalCharacter',

Used when XSDL nillable is 'true'
Specifies how dfdl:nilValue is interpreted to represent the nil value
in the data stream.

If 'literalCharacter' then dfdl:nilValue specifies a single character or

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 153 of 235

a single byte that, when repeated to the length of the element, is
the nil value. 'literalCharacter' may only be specified for fixed length
elements, that is dfdl:lengthKind 'implicit' and 'explicit' when
dfdl:length is not a DFDL expression, otherwise it is a schema
definition error.

If 'literalValue' then dfdl:nilValue specifies a list of DFDL literal
strings that are the possible representations for nil.

If 'logicalValue' then dfdl:nilValue specifies a list of logical values
that are the possible logical values for nil.

Complex elements can be nillable, but nilKind can only be
'literalValue' and nilValue must be "%ES;". It is a schema definition
error otherwise.

Annotation: dfdl:element(simpleType)

nilValue List of DFDL String Literals, List of Logical Values, DFDL String
Literal

Specifies the text strings that are the possible literal or logical nil
values of the element.

If dfdl:nilKind is 'literalValue' then nilValue specifies a white space
separated list of DFDL literal strings that are the possible
representations for nil. On parsing the element value is nil if the
trimmed data matches one of the literal strings in the list. On
unparsing if the element value is nil the first nilValue from the list is
output.

If dfdl:nilKind is 'logicalValue' then nilValue specifies a white space
separated list of logical values that are the possible logical values
for nil. On parsing the element value is nil if the data, converted to
its logical type, matches any of the logical values in the list. On
unparsing if the element value is nil, the first nilValue from the list is
converted to its physical representation and output.

If dfdl:nilKind is 'literalCharacter' then nilValue specifies a single
character or byte that, when repeated to the length of the element,
is the nil representation. If a character, then it can be specified
using a literal character or using DFDL entities. If a character is
specified when dfdl:lengthUnits is 'bytes' then the nilValue must be
a single-byte character. To specify a byte, it must be specified using
a single "%#r;" entity. If a byte is specified when dfdl:lengthUnits is
'characters' then the encoding must be a fixed-width encoding.

On parsing, the element value is nil if all characters in the
untrimmed data content match the nilValue character . On
unparsing, if the element value is nil the nilValue character is output
to the needed length.

There are restrictions on the string literal syntax of nilValue.

When nilKind is literalValue and representation is text:

o DFDL character entities are allowed

o The DFDL byte value entity (%#r) is allowed

o DFDL Character classes NL, WSP, WSP+, WSP*, and ES
are allowed.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 154 of 235

When nilKind is literal value and representation is binary:

o DFDL character entities are allowed
o The DFDL byte value entity (%#r) is allowed
o DFDL Character class ES is allowed.

o Other DFDL Character classes NL, WSP, WSP+, and
WSP*, are not allowed.

When nilKind is literalCharacter and representation is text:

o DFDL character entities are allowed

o The DFDL byte value entity (%#r) is allowed.

o DFDL Character classes NL, WSP, WSP+, WSP*, and ES
are not allowed.

When nilKind is literalCharacter and representation is binary:

o DFDL character entities are allowed
o The DFDL byte value entity (%#r) is allowed

o DFDL Character classes NL, WSP, WSP+, WSP*, and ES
are not allowed.

nilValue is sensitive to ignoreCase when nilKind is 'literalValue' or
'logicalValue', but not when nilKind is 'literalCharacter'

Complex elements can be nillable, but nilKind can only be
'literalValue' and nilValue must be "%ES;". It is a schema definition
error otherwise.

Annotation: dfdl:element(simpleType)

nilValueDelimiterPolicy Enum

Valid values are 'none', 'initiator', 'terminator' or 'both'.

Indicates that when the value nil is represented, an initiator (if one
is defined), a terminator (if one is defined), both an initiator and a
terminator (if defined) or neither must be present.

Ignored if both dfdl:initiator and dfdl:terminator are "" (empty string).

Ignored if nilKind is set to 'logicalValue' In this case the DFDL
processor treats a nil representation like any other representation of
the element in that it expects delimiters when parsing, outputs them
when unparsing.

'initiator' indicates that, on parsing, the dfdl:initiator followed by one
of the dfdl:nilValue is the necessary syntax to indicate that a nil
representation is present. It also indicates that on unparsing when
the logical value is nil that the dfdl:initiator will be output followed by
the first of the dfdl:nilValue.

'terminator' indicates that, on parsing, one of the dfdl:nilValue
followed by the dfdl:terminator is the necessary syntax to indicate
that a nil representation is present. It also indicates that on
unparsing when the logical value is nil the first of the dfdl:nilValue
followed by the dfdl:terminator will be output.

'both' indicates that, on parsing, both the dfdl:initiator and
dfdl:terminator must be present with one of the dfdl:nilValue to
indicate that a nil representation is present. On unparsing the
dfdl:initiator followed by the first dfdl:nilValue, followed by the

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 155 of 235

dfdl:terminator will be output.

'none' indicates that one of the dfdl:nilValue without any dfdl:initiator
or dfdl:terminator triggers creation of a nil value. On unparsing the
first of the dfdl:nilValue is output without the dfdl:initiator or
dfdl:terminator.

It is a schema definition error if dfdl:nilValueDelimiterPolicy is set to
'none' or 'terminator' when the parent xs:sequence has
dfdl:initiatedContent 'yes'.

Annotation: dfdl:element(simpleType)

13.17 Properties for Element Defaults Control

The DFDL element defaults processing uses XSDL default, XSDL fixed or dfdl:useNilForDefault
to provide a default value. See section 9.4 Element Defaults for a full description.

Property Name Description

useNilForDefault Enum

Valid values are 'yes', 'no'

When the conditions for applying a simple element default are
satisfied, this property controls whether to use the special value nil
or to use the XSDL default or fixed properties.

This property has precedence over the XSDL default and XSDL
fixed properties. It is only used, and must be defined, if the

XSDL:nillable property is 'true'.

Defaulting occurs as described in section 9.4 Element Defaults with
nil as the default value. The dfdl:nilValue property must specify at
least one nil value otherwise it is a schema definition error. The
dfdl:nilKind property may be any of its values.

Annotation: dfdl:element (simpleType)

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 156 of 235

14. Sequence Groups

The following properties are specific to sequences.

Property
Name

Description

sequenceKind Enum

Valid values are 'ordered', 'unordered'

When 'ordered', this property means that the contained items of the sequence
will be encountered in the same order that they appear in the schema, which is
called schema-definition-order.

When 'unordered', this property means that the items of the sequence will be
encountered in any order. Repeating occurences of the same element do not
need to be contiguous. The children of an unordered sequence MUST be
xs:element otherwise it is a schema definition error.

Annotation: dfdl:sequence, dfdl:group (sequence)

initiatedContent Enum

Valid values are 'yes', 'no'

When 'yes' indicates that all the children of the sequence are initiated. It is a
schema definition error if any children have their dfdl:initiator property set to the
empty string.

If the child is optional then it is deemed to have been found when its initiator
has been found. Any subsequent error parsing the child will not cause the
parser to backtrack to try other alternatives.

When 'no', the children of the sequence may have their dfdl:initiator property
set to the empty string.

Annotation: dfdl:sequence, dfdl:choice, dfdl:group

A sequence can have an initiator and/or a terminator as described earlier.

14.1 Empty Sequences

A sequence having no children is syntactically legal in DFDL. In the data stream, such a
sequence can have non-zero length LeftFraming and RightFraming regions, but the
SequenceContent region in between must be empty. It is a processing error if the
SequenceContent region of an empty sequence has non-zero length when parsing.

XML schema does not define an empty sequence that is the content model of a complex type
definition as effective content so any DFDL annotations on such a construct would be ignored. It
is a schema definition error if the empty sequence is the content model of a complex type, or if a
complex type has nothing in its content model at all.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 157 of 235

14.2 Sequence Groups with Separators

Additional properties apply to sequence groups that use text delimiters to separate one
occurrence of a member of the group from the next. Such a delimiter is called a separator. DFDL
provides several properties that control the parsing and writing of separators, and satisfy the
requirement to model sequences where:

1. A separator has alternative potential representations in the data.
2. A separator is placed before, after, or between occurrences in the data.
3. Separators are used to indicate the position of occurrences in the data

These requirements are addressed by the properties dfdl:separator, dfdl:separatorPosition and
dfdl:separatorSuppressionPolicy, as described below.

These properties combine to define the syntax for a sequence group with dfdl:sequenceKind
'ordered'. Not all combinations of the properties will give rise to consistent syntax, so some
combinations are disallowed and will give rise to a schema definition error.

In some sequences, the presence of separators alone is enough to establish occurrences within
the sequence. Such a sequence is called a positional sequence.

Positional sequence - Each occurrence in the sequence can be identified by its position in the
data. Typically the components of such a sequence do not have an initiator. In some such
sequences, the separators for optional zero-length occurrences may or must be omitted when at
the end of the group. A positional sequence can be modelled by setting
dfdl:separatorSuppressionPolicy to 'never', 'trailingEmptyStrict' or 'trailingEmpty'.

Non-positional sequence - Occurrences in the sequence cannot be identified by their position in
the data alone. Typically the components of such a sequence have an initiator. Such sequences
allow the separator to be omitted for optional zero-length occurrences anywhere in the sequence.
Speculative parsing is employed by the parser to identify each occurrence. A non-positional
sequence can be modelled by setting dfdl:separatorSuppressionPolicy to 'anyEmpty'.

Property Name Description

separator List of DFDL String Literals or DFDL Expression

Specifies a whitespace separated list of alternative literal
strings that are the possible separators for the sequence.
Separators occur in the data either before, between or after
all occurrences of the elements or groups that are the
children of the sequence.

This property can be computed by way of an expression
which returns a string of whitespace separated values. The
expression must not contain forward references to elements which
have not yet been processed. It is a Schema Definition Error if the
expression returns an empty string.

Each string literal in the list, whether apparent in the
schema, or returned as the value of an expression, is
restricted to allow only certain kinds of syntax:

• DFDL character entities are allowed.

• DFDL Byte Value entities (%#r) are allowed.

• DFDL Character Class ES is not allowed.

• DFDL Character Classes NL, WSP, WSP+, and WSP*
are allowed. However, the WSP* entity cannot appear
alone. It must be used in combination with other text

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 158 of 235

characters or entities so as to describe a representation
that cannot ever be an empty string.

The Separator, PrefixSeparator and PostfixSeparator
regions contain one of the strings specified by the
dfdl:separator property. When this property has "" (empty
string) as its value then the separator region is of length
zero..

When parsing, the list of values is processed in a greedy
manner, meaning it takes all the separators, that is, each of
the string literals in the white space separated list, and
matches them each against the data. In each case the
longest possible match is found. The separator with the
longest match is the one that is selected as having been
'found', with length-ties being resolved so that the matching
separator is selected that is first in the order written in the
schema. Once a matching separator is found, no other
matches will be subsequently attempted (ie, there is no
backtracking).

On unparsing the first separator in the list is used as the
separator.

If a child element uses an escape scheme, then the escape
scheme also applies to any separator; hence, if the
separator appears within the element value, it will be
escaped.

If dfdl:ignoreCase is 'yes' then the case of the string is
ignored by the parser.

Annotation: dfdl:sequence, dfdl:group (sequence)

separatorPosition Enum

Valid values 'infix', 'prefix', 'postfix'

'infix' means the separator occurs between the elements in
the Separator grammar region.

'prefix' means the separator occurs before each element in
the Separator grammar region and the PrefixSeparator
grammar region.

'postfix' means the separator occurs after each element in
the Separator grammar region and the PostfixSeparator
grammar region.

Annotation: dfdl:sequence, dfdl:group (sequence).

separatorSuppressionPolicy Enum

Valid values 'never', 'anyEmpty', 'trailingEmpty',
'trailingEmptyStrict'

Only applicable if separator is not "" (empty string) and
dfdl:sequenceKind is 'ordered'.

Controls the circumstances when separators are expected
in the data when parsing, or generated when unparsing, if
an optional element occurrence or a group has a zero-
length representation.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 159 of 235

See section 14.2.1 Separators and Suppression.

When dfdl:sequenceKind is 'unordered' then 'anyEmpty' is
implied.

Annotation: dfdl:sequence, dfdl:group (sequence)

 Separators and Suppression 14.2.1

When parsing a sequence group that specifies a separator, the number of occurrences and
separators that are expected in the data stream for a child element depends on several factors:

• Whether occurrences are optional or required

• Whether the occurrences have a zero-length representation

• Whether occurrences are trailing

• Whether the sequence is positional

• The dfdl:occursCountKind of the element

Where to expect a separator for optional content of zero-length is controlled by property
dfdl:separatorSuppressionPolicy.

separatorSuppressionPolicy Implications

never Positional sequence where all occurrences MUST be found in
the data, along with their associated separator.

trailingEmptyStrict
Positional sequence where trailing occurrences that have zero
length representation MUST be omitted from the data, along
with their associated separator.

trailingEmpty
Positional sequence where trailing occurrences that have zero
length representation MAY be omitted from the data, along with
their associated separator.

anyEmpty

Non-positional sequence where any occurrences that have
zero length representation MAY be omitted from the data, along
with their associated separator. It must be possible for
speculative parsing to identify which elements are present.

Table 17 Sequence groups and separator suppression

The following are definitions for terminology used in this section:

Potentially trailing element – An array or optional element describes an occurrence that is said
to be potentially trailing if the element is capable of having a zero length representation and is
followed in its enclosing group definition by only additional potentially trailing elements or
potentially trailing groups. Intuitively, the array or optional element occurrence could be last.

Potentially trailing group – A group is said to be potentially trailing if the group has no framing
and contains only potentially trailing element declarations/references, or recursively similar
sequence or choice groups, and is followed in its enclosing group definition by only additional
potentially trailing elements or potentially trailing groups.

Trailing or Actually Trailing – An element occurrence or group occurrence in the data is said to
be actually trailing if it is potentially trailing and has zero-length representation and is not followed
in the data by any other non-zero length element occurrence or group occurrence.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 160 of 235

In the sections that follow, it is important to remember that the dfdl:separatorSuppressionPolicy
property is carried on the sequence, while the XSDL minOccurs, XSDL maxOccurs and
dfdl:occursCountKind properties are is carried on an element in that sequence.

 Parsing Sequence Groups with Separators 14.2.2

When an element is required and is not an array then one occurrence is always expected along
with its separator. The dfdl:separatorSuppressionPolicy is not applicable and the implied behavior
is 'never'.

Otherwise the behaviour is dependent on dfdl:occursCountKind.

When dfdl:occursCountKind is 'fixed' then XSDL minOccurs must equal maxOccurs and that
many occurrences are always expected along with their separators. The
dfdl:separatorSuppressionPolicy is not applicable and the implied behaviour is 'never'.

When dfdl:occursCountKind is 'expression' the number of occurrences is given by
dfdl:occursCount and exactly that many occurrences are always expected along with their
separators. The dfdl:separatorSuppressionPolicy is not applicable and the implied behaviour is
'never'.

When dfdl:occursCountKind is 'parsed' any number of occurrences and their separators are
expected. The dfdl:separatorSuppressionPolicy is not applicable and the implied behaviour is
'anyEmpty'.

When dfdl:occursCountKind is 'stopValue', any number of occurrences and their separators are
expected followed by the stop value and its separator. The dfdl:separatorSuppressionPolicy is not
applicable and the implied behaviour is 'anyEmpty'.

When dfdl:occursCountKind is 'implicit', between XSDL minOccurs and maxOccurs (inclusive)
occurrences and their separators are expected. The dfdl:separatorSuppressionPolicy is
applicable and determines when separators are expected for optional zero-length occurrences.

The behaviour for 'implicit' is more fully expressed in matrix form. The cells in the matrix give the
number of occurrences of element values that are expected in the data stream when parsing, for
the different values of dfdl:separatorSuppressionPolicy. The number of occurrences also depends
whether XSDL maxOccurs is unbounded or not, and the position of the element in the sequence.
The number of separators can be inferred from this, taking into account dfdl:separatorPosition.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 161 of 235

dfdl:

separatorSuppressionPolicy

dfdl:occursCountKind 'implicit'

Potentially Trailing Not Potentially Trailing

maxOccurs unbounded maxOccurs bounded

maxOccurs
unbounded

maxOccurs
bounded

Element
not

declared
last

Element
declared last

Element
declared last
or occurrence

followed by
end-of-group

Element
not

declared
last and

occurrence
not

followed by
end-of-
group

never Schema definition error

Schema
definition

error

RepDef(min)
~ Rep(max -

min)
trailingEmptyStrict

RepDef(min) [
~ Rep(M < INF)

~
RepNonZero(1)

]

RepDef(min) [
~ Rep(M < max

- min) ~
RepNonZero(1)

]

RepDef(min)
~ Rep(max -

min)

trailingEmpty

RepDef(min) ~
Rep(M < INF)

RepDef(min) ~
Rep(M <= max

- min) anyEmpty
RepDef(min)
~ Rep(M <

INF)

RepDef(min)
~ Rep(M <=
max - min)

Table 18 Separator Suppression for dfdl:occursCountKind 'implicit' when Parsing

The notation in each cell uses the "~" symbol to mean "followed by" in the data stream. Square
brackets surround things that are optional, as in they may or may not appear in the data stream.

The descriptions found in the cells of the matrix do not provide a parsing algorithm, but rather
state declaratively a pattern that the data must match in order to be correctly parsed.

RepDef(min) is short for "representation" and "defaultable". It means XSDL minOccurs
occurrences of nil, empty or normal representation

28
. These are required occurrences so default

rules apply for empty representations. XSDL minOccurs may be 0, in which case there are no
required occurrences.

Rep(M) means M occurrences of nil, empty, normal or absent representation. These are optional
occurrences so default rules do not apply for empty representations.

RepNonZero(1) means an occurrence of a nil, empty or normal representation where such a
representation does not have zero-length

29
. This is an optional occurrence so default rules do not

apply.

A notation like Rep(M <= max – min) means that there are M occurrences, where M is some
value between the values of the XSDL minOccurs and maxOccurs properties. When an
unbounded number of occurrences is possible this is shown explicitly by Rep(M < INF) , INF
meaning infinity or unbounded.

 Errors When the Sequence is Positional 14.2.2.1

In the matrix above we see that there are some cells where the combination of properties doesn't
make sense, and a schema definition error is raised. These occur when an element has

28

 Absent representation implies processing error for ‘implicit’ when less than or equal to minOccurs.

29
 Absent representation always implies zero-length. Nil, empty, and normal representations can also be

zero-length with the right combinations of properties. See Section 9.2.5 Zero-length RRepresentation.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 162 of 235

dfdl:occursCountKind 'implicit' and XSDL maxOccurs 'unbounded', and
dfdl:separatorSuppressionPolicy implies that the sequence is positional, specifically:

• If a sequence has dfdl:separatorSuppressionPolicy 'never';

• If a sequence has dfdl:separatorSuppressionPolicy 'trailingEmptyStrict' or 'trailingEmpty'
and the element is not the last declaration in the sequence. (This avoids ambiguity about
which element is being suppressed.)

 Example Parsing Scenarios 14.2.2.2

Consider the cell of the matrix above for the element in this DFDL schema fragment:

<xs:sequence dfdl:separator='|' dfdl:separatorPosition='infix'

 dfdl:separatorSuppressionPolicy='trailingEmptyStrict'>

 <xs:element name='a' type='xs:int' default='0'

 maxOccurs='5' minOccurs='0'

 dfdl:representation='text' dfdl:textNumberPattern='#0'

 dfdl:occursCountKind='implicit'

 dfdl:initiator='[' dfdl:terminator=']'

 dfdl:emptyValueDelimiterPolicy='both' />

</xs:sequence>

Within the sequence this element 'a' is clearly potentially trailing as it is declared last. The
corresponding cell in the matrix above contains this description:

RepDef(min) [~ Rep(M < max – min) ~ RepNonZero(1)]

Since XSDL minOccurs='0', the first term, RepDef(min) vanishes. So we have left

Rep(M < max - min) ~ RepNonZero(1)

Note Rep(M) permits absent representations, and if encountered they will simply be omitted from
the infoset.

So this data

[1]|[2]|[3]|[4]|[5]

parses and 5 items appear in the infoset.

This data

|||[4]

also parses because absent representations are accepted, but only one item appears in the
infoset.(The fact that the occurrence was fourth in the array is not preserved into the infoset).
However this data

|||[4]|

causes a processing error because there is a final trailing separator and
dfdl:separatorSuppressionPolicy is 'trailingEmptyStrict'.

Now consider the same scenario but minOccurs of '2'. The first term reappears as RepDef(2).
The data

|||[4]

which previously parsed successfully would now cause a processing error because the first two
occurrences are required, so they have to be either a normal representation, that is, matching
xs:int syntax with surrounding initiator and terminator, or the empty representation which is [].
An example which will parse correctly with minOccurs of '2' is:

[1]|[]||[4]

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 163 of 235

In this case the Infoset will contain 3 items with values 1, 0, 4. The 0 value arises because the
occurrence has the empty representation, the occurs index is 2 so it is required, and there is a
default value 0.

If the scenario is changed so that dfdl:separatorSuppressionPolicy is 'trailingEmpty' then a
different cell of the matrix above applies.

RepDef(min) [~ Rep(M < max – min)]

This has a more lax behavior so that this data is also acceptable:

[1]|[]||[4]|

In this case the final trailing separator is tolerated, though when unparsing this final trailing
separator would not be created. This is a case where what is parsed will not be exactly recreated
on unparsing from the resulting infoset, but all the information content is preserved.

Now consider the same scenario but maxOccurs of 'unbounded'. In that case this data is
acceptable:

[1]|[]||||||||||||||||||||||||[4]|||||||||||||||||||||

The infoset values are again 1, 0, 4. But all the excess separators are tolerated.

 Unparsing Sequence Groups with Separators 14.2.3

When an element is required and is not an array then one occurrence is always output along with
its separator. The dfdl:separatorSuppressionPolicy is not applicable and the implied behaviour is
'never'.

Otherwise the behaviour is dependent on dfdl:occursCountKind.

When dfdl:occursCountKind is 'fixed' or 'expression' the occurrences in the augmented Infoset
are always output along with their separators. The dfdl:separatorSuppressionPolicy is not
applicable and the implied behaviour is 'never'.

When dfdl:occursCountKind is 'parsed' non zero-length occurrences in the augmented Infoset are
output along with their separators. The dfdl:separatorSuppressionPolicy is not applicable and the
implied behaviour is 'anyEmpty'.

When dfdl:occursCountKind is 'stopValue' non zero-length occurrences in the augmented Infoset
are output along with their separators followed by the stop value and its separator. The
dfdl:separatorSuppressionPolicy is not applicable and the implied behaviour is 'anyEmpty'.

When dfdl:occursCountKind is 'implicit' the occurrences in the augmented Infoset are output
along with their separators. The dfdl:separatorSuppressionPolicy is applicable and helps
determine whether optional zero length occurrences and their separators are output.

The behaviour for 'implicit' is more fully expressed in matrix form. The cells in the matrix give the
number of occurrences of element values that are output to the data stream when unparsing, for
the different values of dfdl:separatorSuppressionPolicy. The number of occurrences also depends
whether XSDL maxOccurs is unbounded or not, and the position of the element in the sequence.
The number of separators output can be inferred from this, taking into account
dfdl:separatorPosition.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 164 of 235

dfdl:

separatorSuppressionPolicy

dfdl:occursCountKind 'implicit'

Potentially Trailing Not Potentially Trailing

maxOccurs
unbounded

maxOccurs bounded

maxOccurs
unbounded

maxOccurs
bounded

Element
not

declared
last

Element
declared

last

Element
declared
last or

occurrence
followed by

end-of-
group

Element not
declared
last and

occurrence
not followed
by end-of-

group

never
Schema definition

error

Unparse N occurrences ~
unparse (maxOccurs -- N)

trailing zero-length
occurrences

Schema
definition

error

Unparse N
occurrences
~ unparse

(maxOccurs -
- N) trailing
zero-length
occurrences

trailingEmptyStrict

Unparse N occurrences
(suppressing trailing zero-

length occurrences)

trailingEmpty

anyEmpty Unparse N occurrences (suppressing any optional zero-length occurrences)

Table 19 Separator Suppressions for dfdl:occursCountKind 'implicit'

The notation in each cell uses the "~" symbol to mean "followed by" in the output data stream.

N stands for the number of elements in the augmented Infoset, which includes any defaults.

unparse N occurrences means output N unparsed infoset items and associated separators.

unparse(M) trailing zero length occurrences means output M adjacent separators (according
to dfdl:separatorPosition) as if separating M element occurrences.

(suppressing trailing zero-length reps) implies the unparser must look ahead into the infoset
and determine when the representations will be zero-length, and then identify those in trailing
position. No separators are output corresponding to the trailing zero-length representations.

 Example Unparsing Scenarios 14.2.3.1

Consider the cell of the matrix above for the element in this DFDL schema fragment:

<xs:sequence dfdl:separator='|' dfdl:separatorPosition='infix'

 dfdl:separatorSuppressionPolicy='trailingEmpty'>

 <xs:element name='a' type='xs:int'

 maxOccurs='5' minOccurs='0'

 nillable='true'

 dfdl:representation='text' dfdl:textNumberPattern='#0'

 dfdl:occursCountKind='implicit'

 dfdl:initiator='[' dfdl:terminator=']'

 dfdl:emptyValueDelimiterPolicy='none'

 dfdl:nilKind='literalValue' dfdl:nilValue='%ES;'

 dfdl:nilValueDelimiterPolicy='none' />

</xs:sequence>

This example is similar to the one used above in the discussion of parsing with separator
suppression. However, the element has no default value, the dfdl:emptyValueDelimterPolicy has
been removed, and the element is nillable. Element 'a' is clearly potentially trailing as it is
declared last. The corresponding cell in the matrix above contains this description:

unparse N occurrences (suppressing trailing zero length reps)

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 165 of 235

Assume we are unparsing an infoset containing five values: 1, 0, nil, 4, nil. We will unparse the
five occurrences; however, the last value is nil, which has a representation of '%ES;' meaning
empty-string, and dfdl:nilvalueDelimiterPolicy is 'none' meaning no initiator or terminator is to
appear in the data. Since we are suppressing trailing zero-length reps the unparse results in this
output:

[1]|[0]||[4]

We see here an example where if we reparsed the data we would not get back the same infoset
that we started from because the trailing empty value which is the representation of the nil value,
is not represented in the output, and so will not cause a nil to be created in the Infoset when this
data is parsed. To preserve the nil we would have to change the dfdl:nilValueDelimiterPolicy to
'both', and in that case the output would be:

[1]|[0]|[]|[4]|[]

The nils now have explicit representation in the data, and will be recreated in the Infoset when
parsing.

14.3 Unordered Sequence Groups

The occurrences of members of a sequence group with dfdl:sequenceKind of 'unordered'
(hereafter referred to as an 'unordered group') may appear in the data in any order. Occurrences
of the same member do not have to be contiguous. In the infoset, sequence groups are always in
schema order, so a DFDL processor must sort the members of an unordered group into schema
order when parsing. When unparsing, the infoset must already be in schema order, and the
members of the sequence will be output in schema order.

 Restrictions for Unordered Groups 14.3.1

It is a schema definition error if any member of the unordered group is not an element declaration
or an element reference.

It is a schema definition error if a member of an unordered group is an optional element or an
array element and its dfdl:occursCountKind property is not 'parsed'

It is a schema definition error if two or more members of the unordered group have the same
name and the same namespace (see post-processing transformation below)

 Parsing an Unordered Group 14.3.2

When parsing, the semantics of an unordered group are expressed by way of:

1. a source-to-source transformation of the sequence group definition, and

2. a post-processing transformation of the infoset .

An implementation may use any technique consistent with this semantic.

 Source-to-source Transformation 14.3.2.1

The source-to-source transformation turns the declaration of an unordered group into an ordered
sequence group that contains a repeating choice. To ensure that the resulting schema is a valid
DFDL schema, the choice group is wrapped in an array element.

The unordered group is transformed as follows:

• the dfdl:sequenceKind property of the unordered group is changed to "ordered"

• the content of the unordered group is replaced by a complex element (the 'choice
element') with the following properties:

o XSDL minOccurs="0"

o XSDL maxOccurs="unbounded"

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 166 of 235

o dfd:lengthKind="implicit"

o dfd:occursCountKind="parsed"

• the content of the choice element's complex type is a choice group with the following
properties:

o dfdl:choiceLengthKind="implicit"

• The members of the unordered group become the members of the choice group, with
their declaration order preserved.

• The XSDL minOccurs and maxOccurs properties on each member of the choice group
are both set to 1.

Using the following example as an illustration:

<xs:sequence dfdl:sequenceKind="unordered" dfdl:separator=",">

 <xs:element name="a" type="xs:string" dfdl:initiator="A:" />

 <xs:element name="b" type="xs:int" minOccurs="0" dfdl:initiator="B:" />

 <xs:element name="c" type="xs:string" minOccurs="0" maxOccurs="10"

 dfdl:initiator="C:" />

</xs:sequence>

The above unordered sequence group is conceptually rewritten into the following ordered
sequence group:

<xs:sequence dfdl:sequenceKind="ordered" dfdl:separator=",">

 <xs:element name="choiceElement" minOccurs="0" maxOccurs="unbounded"

 dfdl:occursCountKind="parsed">

 <xs:complexType>

 <xs:choice dfdl:choiceLengthKind="implicit">

 <xs:element name="a" type="xs:string" dfdl:initiator="A:" />

 <xs:element name="b" type="xs:int" dfdl:initiator="B:" />

 <xs:element name="c" type="xs:string" dfdl:initiator="C:" />

 </xs:choice>

 </xs:complexType>

 </xs:element>

</xs:sequence>

Processing then constructs a temporary info set for this ordered sequence group by parsing the
data.

If a member element is found to have the empty representation then the parsing of that element
must use the original value of XSDL minOccurs. In this example, element "b" has minOccurs="0"
and if it is found with the empty representation then it must not be defaulted.

 Post-processing Transformation 14.3.2.2

Post-processing consists of the following steps:

1. Sort the temporary infoset to produce the real infoset

2. Check scalar elements and validate

Sort the Temporary Infoset

The temporary infoset is transformed into the infoset conforming to the original unordered group.
All members of the temporary infoset having the same name and namespace as the first child of
the unordered group are placed first, in the order in which they were parsed. This algorithm
repeats for the second child of the unordered group and so on until all members of the temporary
infoset have been sorted into the schema declaration order of the original unordered group.

For the example above, the temporary infoset is transformed into the infoset corresponding to:

<xs:sequence>

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 167 of 235

 <xs:element name="a" type="xs:string" />

 <xs:element name="b" type="xs:int" minOccurs="0" />

 <xs:element name="c" type="xs:string" minOccurs="0" maxOccurs="10" />

</xs:sequence>

Check Scalar Elements and Validate

For each element in the unordered group having XSDL minOccurs="1" and maxOccurs="1", the
number of occurrences is checked. Each such element must occur exactly once in the infoset,
else it is a processing error.

If validation is enabled, the DFDL processor validates the number of occurrences of each
member of the unordered group against XSDL minOccurs and maxOccurs.

These checks are the same as those performed for an ordered sequence group. However, in an
unordered group the checking of XSDL minOccurs and maxOccurs must be performed after the
entire group has been parsed.

 Unparsing an Unordered Group 14.3.3

When unparsing, the behavior is exactly as if dfdl:sequenceKind is 'ordered'. The infoset must be
presented to the unparser in schema declaration order, and the members of the unordered
sequence group are output in schema declaration order.

14.4 Floating Elements

Elements within an ordered sequence can be designated as floating which means that they can
appear in any position within the sequence.

30

Property
Name

Description

floating Enum

Valid values are 'yes', 'no'

Whether the occurrences of an element in an ordered sequence can appear out-of-
order in the representation.

When parsing, and dfdl:floating is 'yes', occurences of the element may be
encountered in the representation in many positions within its containing sequence.
If present they are placed into the infoset in schema declaration order. If the element
repeats, occurences do not need to be contiguous in the representation.

When parsing, and dfdl:floating is 'no', occurences of the element must be in
schema declaration order, and, if present, they are placed into the infoset in schema
declaration order. It is a processing error if instances of the element are not
encountered in schema declaration order.

When unparsing, occurrences of the element are expected in the infoset in schema
declaration order, and are output in the representation in schema declaration order.
It is a processing error if occurrences of the element are not encountered in schema
declaration order,

It is a schema definition error if an unordered sequence or a choice contains any

30
 . The NTE segment in the X12 EDI standard is an example of a floating element.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 168 of 235

element with dfdl:floating 'yes'.

It is a schema definition error if an ordered sequence contains any element with
dfdl:floating 'yes' and also contains non-element component (such as a choice or
sequence model group).

It is a schema definition error if an element with dfdl:floating 'yes' is an optional
element or an array element and its dfdl:occursCountKind property is not 'parsed'

It is a schema definition error if two or more elements with dfdl:floating 'yes' in the
same group have the same name and the same namespace.

Annotation: dfdl:element

An ordered sequence with floating components is similar to an unordered sequence except only
the floating elements may be out of order.

Within an ordered sequence with floating components a non-floating array element must have its
occurrences appearing contiguously, so any floating elements cannot appear in between
occurrences of the array element.(In other words, property dfdl:floating 'yes' only makes a
statement about the floating element, not about any other elements in the sequence.)

An ordered sequence of n element children with dfdl:floating 'yes' is equivalent to an unordered
sequence with the same n element children with dfdl:floating 'no'.

A complex element with dfdl:floating 'yes' can have as its content model a sequence with
elements that also have dfdl:floating 'yes'.

Every element in a sequence containing one or more floating elements is a point of uncertainty,
similar to the way every element in an unordered sequence is a point of uncertainty.

In resolving this point of uncertainty, a parser MUST look for the element defined at that position
in the schema first and only if unsuccessful with parsing that element, the parser should
subsequently attempt to parse the floating elements in the order they are defined in the schema.
As soon as any such parse is successful this resolves the point of uncertainty.

14.5 Hidden Groups

Some fields in the physical stream provide information about other fields in the stream and are
not really part of the data. For example, a field could give the number of repeats in a following
array. These fields may not be of interest to an application after the data has been parsed, and so
may be removed from the Infoset on parsing by containing the element declarations for them
within a hidden group. A hidden group allows elements to be defined that will not be added to the
Infoset on parsing and will not be expected in the Infoset on unparsing.

<xs:element name="root">

 <xs:complexType>

 <xs:sequence>

 <xs:sequence>

 <xs:annotation><xs:appinfo source="http://www.ogf.org/dfdl/">

 <dfdl:sequence hiddenGroupRef="tns:hiddenRepeatCount">

 </xs:appinfo></xs:annotation>

 </xs:sequence>

 <xs:element name="arrayElement" type="xs:int"

 minOccurs="0" maxOccurs="unbounded"

 dfdl:occursCountKind="expression"

 dfdl:occurCount= "{../repeatCount}"

 dfdl:representation="binary" dfdl:lengthKind="implicit" />

 </xs:sequence>

 </xs:complexType>

</xs:element>

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 169 of 235

<xs:group name="hiddenRepeatCount" >

 <xs:sequence>

 <xs:element name="repeatCount" type="xs:int"

 dfdl:outputValueCalc="{count(../arrayElement)}"

 dfdl:representation="binary" dfdl:lengthKind="implicit" />

 </xs:sequence>

</xs:group>

An element contained within the extent of a hidden group is commonly called a hidden element.

Hidden elements are referenced via path expressions using the same DFDL expression that
would be used if they were not hidden.

Hidden elements can (typically will) contain the regular DFDL annotations to define their physical
properties and on unparsing to set their value. They are processed using the same behavior as
non-hidden elements.

When the dfdl:hiddenGroupRef property is specified on an xs:sequence schema component, the
appearance of any other DFDL properties on that component is a schema definition error. It is
also a schema definition error if the sequence is not empty.

It is a schema definition error if the sequence is the only thing in the content model of a complex
type definition.

It is a schema definition error if dfdl:hiddenGroupRef appears on a xs:group reference, that is,
unlike most format properties that apply to sequences, dfdl:hiddenGroupRef cannot be combined
from a xs:group reference.

A hidden group may appear within another hidden group.

Property Name Description

hiddenGroupRef QName

Reference to a global model group definition. Elements within this model
group will not be added to the Infoset, and are called hidden elements.

The model group within the model group definition may be a xs:sequence or
xs:choice

It is a schema definition error if the value is the empty string.

It is not possible to place this property in scope on a dfdl:format annotation.

Annotation: dfdl:sequence

When unparsing a hidden group, the behaviour is the same as when elements are missing from
the infoset; that is, the default-values algorithm applies. The only difference is that if a required
element does not have a default value or a dfdl:outputValueCalc then it is a schema definition
error instead of a processing error. Note that this can be checked statically.

When unparsing a hidden group, it is a processing error if an element information item is provided
in the infoset for a hidden element.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 170 of 235

15. Choice Groups

The following properties are specific to xs:choice.

Property Name Description

choiceLengthKind Enum

Valid values are 'implicit', 'explicit'

'implicit' means the branches of the choice are not filled, so the
ChoiceContent region is variable length depending on which branch appears.

'explicit' means that the branches of the choice are always filled to the fixed
length specified by dfdl:choiceLength, so the ChoiceContent region is fixed
length regardless of which branch appears.

Annotation: dfdl:choice, dfdl:group (choice)

choiceLength Integer

Only used when dfdl:choiceLengthKind is 'explicit'.

Specifies the length of the choice in bytes, so the ChoiceContent region is
fixed length regardless of which branch appears. A ChoiceUnused region is
therefore possible which when unparsing is filled with dfdl:fillByte.

Annotation: dfdl:choice, dfdl:group (choice)

initiatedContent Enum

Valid values are 'yes', 'no'

When 'yes' indicates that all the branches of the choice are initiated. It is a
schema definition error if any children have their dfdl:initiator property set to
the empty string. The branch is deemed to have been found when its initiator
has been found. Any subsequent error parsing the branch will not cause the
parser to backtrack.

When 'no', the branches of the choice may have their dfdl:initiator property set
to the empty string.

Annotation: dfdl:sequence, dfdl:choice, dfdl:group

choiceDispatchKey DFDL Expression

The expression must evaluate to an xs:string which must not be the empty
string.

This property is used only when parsing.

The resultant string must match the dfdl:choiceBranchKey property value of
one of the element branches of the choice. This match is case insensitive. If
so, it discriminates to that branch. The parser then goes straight to that
branch, ignoring consideration of any other choice branches. No backtracking
of this decision occurs if there is a subsequent processing error.

It is a processing error if the value of the expression does not match one of
the dfdl:choiceBranchKey properties for the branches.

When dfdl:choiceDispatchKey is present, all choice branches must be local
elements or element references. It is a schema definition error otherwise.

It is not possible to place this property in scope on a dfdl:format annotation.

Annotation: dfdl:choice

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 171 of 235

choiceBranchKey DFDL String Literal

This literal provides an alternate way to discriminate a choice to an element.
When the dfdl:choiceDispatchKey expression evaluates to a string matching
this property's value, the choice is discriminated to this element. The match is
case insensitive.

It is a schema definition error if individual dfdl:choiceBranchKey values are
not unique across all elements that are branches of a choice that carries
dfdl:choiceDispatchKey.

Byte value entities are not allowed.

Character classes are not allowed.

This property is only used when parsing.

It is not possible to place this property in scope on a dfdl:format annotation.

Annotation: dfdl:element

A choice can have an initiator and/or a terminator as described earlier.

We will use this terminology:

Branch A branch is one of the available alternatives within a choice. A branch can be an
element of simple type or complex type, or it can be an embedded sequence,
choice or group reference.

Root of the
Branch

Each branch conceptually has a single schema component at its root which is an
element, sequence, choice or group reference. This component is known as the
Root of the Branch.

Table 20 Choice group terminology

The Root of the Branch MUST NOT be optional. That is XSDL minOccurs MUST BE greater than
0.

A choice that declares no branches in the DFDL schema is a schema definition error.

When processing a choice group the parser validates any contained path expressions. If a path
expression contained inside a choice branch refers to any other branch of the choice, then it is a
schema definition error. Note that this rule handles nested choices also. A path that navigates
outward from an inner choice to another alternative of an outer choice is violating this rule with
respect to the outer choice.

15.1 Resolving Choices

A choice corresponds to concepts called variant records, multi-format records, discriminated
unions, or tagged unions in various programming languages. In some contexts choices are
referred to generally as 'unions'. However, this should not be confused with XML schema unions.

When processing a choice, there are two ways to resolve the intended branch. In one,
speculative parsing is used. In the other, a constant-time direct dispatch to a branch is performed.

 Resolving Choices via Speculation 15.1.1

Speculative resolution works as follows:

1. Attempt to parse the first branch of the choice.

2. If this fails with a processing error

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 172 of 235

a. If a dfdl:discriminator evaluated to true earlier on this branch
then the parser is 'bound' to this choice and parsing of the entire choice construct
fails with a processing error.

b. If a dfdl:discriminator has not evaluated to true then we repeat from step 1 for the
next branch of the choice.

3. It is a processing error if the branches of the choice are exhausted.

4. If a branch is successfully parsed without error, then that branch's infoset becomes the
infoset for the parse of the choice construct.

It is not possible for variable settings to be communicated from the speculative attempt to parse a
branch to any other parsing situation. The speculative effort is completely isolated. Whether it
succeeds or fails, neither the parse position in the source data, nor anything in the variable
memory, nor the infoset is affected.

Nested choices can require unbounded look ahead into the data.

 Resolving Choices via Direct Dispatch 15.1.2

Direct dispatch provides a constant-time dispatch to a choice branch independent of how many
choice branches there are.

Direct dispatch is indicated by the dfdl:choiceDispatchKey property. This expression is evaluated
to compute the string matching the dfdl:choiceBranchKey property of one of the choice branches,
all of which must be local element declarations or element references.

When a match is found, it is as if a discriminator had evaluated to true on that branch. It is
selected as resolution of the choice, and there is no backtracking to try other alternative
selections.

The dfdl:choiceBranchKey property can be placed on element references, or local element
declarations. It must be unique within one choice when placed on element references or local
element declarations.

Note that it is a schema definition error if both dfdl:initiatedContent and dfdl:choiceDispatchKey
are provided on the same choice. However, it is not an error if a discriminator exists on a choice
branch along with a dfdl:choiceBranchKey.

 Unparsing Choices 15.1.3

On unparsing there is the question of how one identifies the appropriate schema choice branch
corresponding to the data in the infoset. This is complicated by the fact that the children may not
be elements. They may themselves be sequences or choices.The selection of the choice branch
is as follows: The element in the infoset is used to search the choice branches in the schema, in
schema definition order, but without looking inside any complex elements. If the element occurs
in a branch, then that branch is selected and if subsequently a processing error occurs, this
selection is not revisited (that is, there is no backtracking).

To avoid any unintended behavior, all the children of a choice can be modeled as elements.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 173 of 235

16. Properties for Array Elements and Optional Elements

These properties are for array elements (XSDL maxOccurs >1 or unbounded) or optional
elements (XSDL minOccurs = 0 and maxOccurs = 1). The properties handle a logical one-
dimensional array of any simple or complex type.

Property Name Description

occursCountKind Enum

Specifies how the actual number of occurrences is to be
established.

Valid values 'fixed', 'expression', 'parsed', 'implicit' ,'stopValue'.

'fixed' means use the XSDL maxOccurs property.

'expression' means use the dfdl:occursCount property.

'parsed' means that the number of occurrences is determined
solely by speculative parsing.

'implicit' means that the number of occurrences is determined by
speculative parsing in conjunction with the XSDL minOccurs and
maxOccurs properties.

'stopValue' means look for a mandatory logical stop value which
signifies the end of the occurrences.

These values are described in detail in section 16.1.

Annotation: dfdl:element

occursCount DFDL Expression

Specifies the number of occurrences of the element.

Required only when dfdl:occursCountKind is 'expression'.

This property is computed by way of an expression which returns
a non-negative integer. The expression must not contain forward
references to elements which have not yet been processed.

Annotation: dfdl:element,

occursStopValue List of DFDL Logical Values

A space separated list of logical values that specify the
alternative logical stop values for the element.

Required only when dfdl:occursCountKind is 'stopValue'.

When parsing then if an occurrence of the element has a logical
value that matches one of the values in this list then the parser
must not expect any more occurrences of the element.

On unparsing the first value will be inserted as an additional final
occurrence in the array after all of the occurrences in the infoset
have been output.

Annotation: dfdl:element

When XSDL minOccurs = 1 and maxOccurs = 1, the above properties are not used, and the
behavior is as if dfdl:occursCountKind was 'fixed' as described in section 16.1.1.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 174 of 235

16.1 The dfdl:occursCountKind property

 dfdl:occursCountKind 'fixed' 16.1.1

The enum 'fixed' should be used when the number of occurrences is always the same. The
number is provided by the XSDL maxOccurs property.

When parsing, maxOccurs occurrences are expected in the data. It is a processing error if less
than maxOccurs occurrences are found or defaulted. The parser stops looking for occurrences
when maxOccurs have been found or defaulted.

When unparsing, maxOccurs occurrences are expected in the infoset. It is a processing error if
less than maxOccurs occurrences are found or defaulted, or if more than maxOccurs occurrences
are found.

It is a schema definition error if minOccurs is not equal to maxOccurs.

 dfdl:occursCountKind 'implicit' 16.1.2

The enum 'implicit' should be used when the number of occurrences is to be established using
speculative parsing, and there are lower and upper bounds to control the speculation. The
bounds are provided by the XSDL minOccurs and XSDL maxOccurs properties.

When parsing, up to maxOccurs occurrences are expected in the data. It is a processing error if
less than minOccurs occurrences are found or defaulted. The parser stops looking for
occurrences when either minOccurs have been found or defaulted and speculative parsing does
not find another occurrence, or maxOccurs have been found or defaulted.

When unparsing, up to maxOccurs occurrences are expected in the infoset. It is a processing
error if less than minOccurs occurrences are found or defaulted, or if more than maxOccurs
occurrences are found.

 dfdl:occursCountKind 'parsed' 16.1.3

The enum 'parsed' should be used when the number of occurrences is to be established solely
using speculative parsing.

When parsing, any number of occurrences is expected in the data. The parser stops looking for
occurrences when speculative parsing does not find another occurrence. If validation is enabled,
it is a validation error if less than XSDL minOccurs occurrences are found or defaulted, or greater
than XSDL maxOccurs occurrences are found.

When unparsing, any number of occurrences is expected in the infoset. If validation is enabled, it
is a validation error if less than minOccurs occurrences are found or defaulted, or if more than
maxOccurs occurrences are found.

 dfdl:occursCountKind 'expression' 16.1.4

The enum 'expression' should be used when the number of occurrences is calculated by
evaluating a DFDL expression.

When parsing, the dfdl:occursCount expression is evaluated and provides the number of
occurrences expected in the data. It is a processing error if less than dfdl:occursCount
occurrences are found or defaulted. The parser stops looking for occurrences when
dfdl:occursCount occurrences have been found. If validation is enabled, it is a validation error if
less than XSDL minOccurs occurrences are found or defaulted, or more than XSDL maxOccurs
occurrences are found.

When unparsing, the behavior is the same as for 'parsed'.

It is a schema definition error if dfdl:occursCount is not provided or in scope.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 175 of 235

 dfdl:occursCountKind 'stopValue' 16.1.5

The enum 'stopValue' should be used when the the end of the array is signaled by an occurrence
having a logical value that is equal to one of the specified 'stop values'.

When parsing, any number of occurrences is expected in the data, followed by an occurrence
which is a stop value as specified by dfdl:occursStopValue. It is a processing error if a stop value
occurrence is not found in the data (including when there are zero other occurrences). The parser
stops looking for occurrences once a stop value has been found. If validation is enabled, it is a
validation error if less than XSDL minOccurs occurrences are found or defaulted, or more than
XSDL maxOccurs occurrences are found, not including the stop value.

When unparsing, the behavior is the same as for 'parsed', with the addition that a stop value
occurrence is output after the last infoset occurrence. If dfdl:occursStopValue provides multiple
stop values then the first is used.

The stop value itself is not added to the infoset when parsing. It is a processing error if a stop
value is found in the infoset when unparsing. (This insures that the array can be reparsed, as the
stop value will be placed automatically and only at the end.)

It is a schema definition error if dfdl:occursStopValue is not provided or in scope.

It is a schema definition error if the type of the element is complex.

It is a schema definition error if any of the stop values provided by dfdl:occursStopValue do not
conform to the simple type of the element.

16.2 Default Values for Arrays

When parsing, required occurrences that have empty representation may trigger the application
of a default value, as described in Section 9.4.2 Element Defaults When Parsing.

When unparsing, required occurrences that are missing from the infoset may trigger the
application of a default value, as described in Section 9.4.3 Element Missing and Defaults Values
Wwhen Unparsing.

The application of default values is not dependent on dfdl:occursCountKind, only on whether the
occurrence is required or optional, whether there is a default value specified, and whether the
data contains the empty representation (parsing) or is missing (unparsing). Section 9.4 Element
Defaults contains the details.

16.3 Arrays with DFDL Expressions

If the value of a DFDL property of an array element (other than dfdl:occursCount) is given by a
DFDL Expression, then the expression must be re-evaluated for each occurrence of the element
in case the value changes.

16.4 Points of Uncertainty

Arrays can have points of uncertainty depending on the value of dfdl:occursCountKind. See
Section 9.3.3 Points of Uncertaintyfor details.

16.5 Arrays and Sequences

In some situations arrays of elements and sequence groups of elements seem to be similar;
however, there is no notion of the array itself independent of its contained elements. Arrays are
distinctly different from sequence groups in this way.

A sequence can have its own initiator, and a complex element having that sequence as its
content can also have its own initiator, so you could express two different initiators.

Unlike a sequence group, an array does not have its own initiator, terminator, or alignment. Those
properties apply to each element occurrence of the array. To give an alignment, initiator,
separator or terminator to an entire array you must enclose the element declaration for the array

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 176 of 235

in a sequence group and specify the alignment, separator, initiator and terminator on the
sequence group.

16.6 Forward Progress Requirement

It is a processing error when an array is potentially unbounded and the position in the data does
not move during the parsing of an occurrence of the element including any associated separator.
This is to prevent an infinite loop. An array is potentially unbounded if any of the following are
true:

• dfdl:occursCountKind is 'parsed' or 'stopValue'

• dfdl:occursCountKind is 'implicit' and XSDL maxOccurs is 'unbounded'

16.7 Parsing Occurrences with Non-Normal Representation

When parsing a single array, it is possible to extract occurrences that have different
representations (nil, empty, normal, absent) although with some values of dfdl:lengthKind certain
combinations of representations are not possible.

Occurrences with nil representation are added to the infoset with value 'nil'.

Occurrences with empty representation may or may not be added to the infoset, as described in
Section 9.4. If a required occurrence is not added to the infoset, it may be a processing error,
dependent on dfdl:occursCountKind as described in section 16.1.

Occurrences with absent representation are not added to the infoset. For a required occurrence it
may be a processing error, dependent on dfdl:occursCountKind as described in section 16.1.

16.8 Sparse Arrays

Consider parsing an array where optional occurrences with empty representation are present in
the data, but there are also later optional occurrences present with normal representation. Such
an array is called a 'sparse array'.

• If the indices of the occurrences are significant and need to be preserved, then the array may
be modelled using an element with XSDL nillable 'true', dfdl:nilKind 'literalValue', dfdl:nilValue
'%ES;' and dfdl:nilValueDelimiterPolicy the same as dfdl:emptyValueDelimiterPolicy. The
occurrences with empty representation now become occurrences with nil representation, and
will produce nil values in the infoset, so the absolute positions of all occurrences are
preserved.

If the indices of the occurrences are not significant, then the array should be modelled using an
element with XSDL nillable 'false'. Optional occurrences with empty representation will not create
items in the infoset, so the absolute position of any optional occurrences with normal
representation is not preserved. Optional occurrences with empty representation are therefore
skipped.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 177 of 235

17. Calculated Value Properties.

This section describes properties which allow the creation of calculated elements. When parsing,
the value of a calculated element is derived using a DFDL Expression, and not by processing
bytes from the data stream. When unparsing, the value of a calculated element is derived using a
DFDL Expression, and is not obtained from the infoset in the usual way.

Calculated elements allow a technique that is commonly called layering. In this technique, some
elements are said to be in the physical layer, and some in the logical layer. When parsing, the
logical layer values are computed from physical layer values. When unparsing the opposite
occurs, that is the physical layer values are computed from the logical layer values.

Calculated elements are commonly used with hidden elements so as to hide the physical layer
elements so that they do not become part of the infoset.

When a DFDL Schema is used to both parse and unparse data, then a calculated element on
parsing will normally have one or more calculated elements on unparsing.

These properties apply to elements of simple type.

Property Name Description

inputValueCalc DFDL Expression

An expression that calculates the value of the element when parsing.

It is a schema definition error if the result type of the expression does not
conform to the base type of the element.

The element value created using dfdl:inputValueCalc is validated like any
other element value (when validation is enabled).

An element that specifies a dfdl:inputValueCalc expression has no
representation of its own in the data stream. All other DFDL representation
properties are ignored.

When an element which carries this property appears in a sequence that has
a separator, no separator is associated with the element. When parsing, no
separator is expected in the input data. When unparsing, no separator is
written to the output data.

The element must not be optional nor an array nor be global.

The DFDL Expression must not refer to this element nor cause a circular
reference to this element. The expression must not contain forward references
to elements which have not yet been processed.

It is a schema definition error if this property is specified on an element which
has an XSDL fixed or default property.

It is a schema definition error if dfdl:inputValueCalc and dfdl:outputValueCalc
are specified on the same element.

It is not possible to place this property in scope on a dfdl:format annotation.

This property is not allowed to appear on a local element or element reference
that is the root of a choice branch.

If this property appears on an element declaration or element reference
schema component, the appearance of any other DFDL properties on that
component is a schema definition error.

If this property appears on an element reference, then DFDL properties

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 178 of 235

expressed on the referenced global element declaration or its type are
ignored.

If this property appears on an element declaration, then DFDL properties
expressed on its type are ignored.

Annotation: dfdl:element

outputValueCalc DFDL Expression

An expression that calculates the value of the current element when
unparsing.

The element must not be optional nor an array nor be global.

It is a schema definition error if the result type of the expression does not
conform to the base type of the element.

The value created using dfdl:outputValueCalc is validated like any other
element value (when validation is enabled).

The value for the element, if any, in the infoset is ignored.

The DFDL expression must not refer to this element nor cause a circular
reference to this element. The expression may contain forward references to
elements which have not yet been processed.

It is a schema definition error if dfdl:outputValueCalc is specified on an
element which has an XSDL fixed or default property.

It is a schema definition error if dfdl:inputValueCalc and dfdl:outputValueCalc
are specified on the same element.

It is not possible to place this property in scope on a dfdl:format annotation.

Annotation: dfdl:element

17.1 Example: 2d Nested Array

Consider this simple example. The data stream contains two elements giving the number of rows
and number of columns of an array of numbers. The representation of the array is stored after
these two elements.

<xs:complexType name="array">

 <xs:sequence dfdl:initiator="" >

 <xs:sequence dfdl:hiddenGroupRef="tns:hiddenArrayCounts"/>

 <xs:element name="rows" maxOccurs="unbounded"

 dfdl:occursCountKind="expression"

 dfdl:occursCount="{ ../nrows }">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="cols" type="xs:float" maxOccurs="unbounded"

 dfdl:occursCountKind="expression"

 dfdl:occursCount=" { ../../ncols } " />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

</xs:complexType>

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 179 of 235

<xs:group name="hiddenArrayCounts" >

 <xs:sequence>

 <xs:element name="nrows" type="xs:unsignedInt"

 dfdl:representation="binary"

 dfdl:lengthKind="implicit"

 dfdl:outputValueCalc="{ count(../rows) }"/>

 <xs:element name="ncols" type="xs:unsignedInt"

 dfdl:representation="binary"

 dfdl:lengthKind="implicit"

 dfdl:outputValueCalc=

 "{ if (count(../rows) ge 1)

 then

 count(../rows[1]/cols)

 else

 0

 }"/>

 </xs:sequence>

</xs:group>

In the example above we see that there are two hidden elements named 'nrows' and 'ncols'.
These hidden elements' values are computed when unparsing from the number of occurrences in
the 'rows' and 'cols' repeating elements. The 'rows' and 'cols' repeating elements number of
occurrences are computed when parsing from the hidden elements 'nrows' and 'ncols'.

17.2 Example: Three-Byte Date

Logically, the data is a date.

<xs:element name="d" type="date"/>

Physically, it is stored as 3 single byte integers.

The format of this data is expressed as this schema:

<xs:sequence dfdl:representation="binary">

 <xs:element name="mm" type="byte" />

 <xs:element name="dd" type="byte" />

 <xs:element name="yy" type="byte"/>

</xs:sequence>

This physical representation can be hidden so that it does not become part of the infoset:

<xs:sequence>

 <xs:sequence dfdl:hiddenGroupRef="tns:hiddenpDate"/>

 <xs:element name="d" type="date">

 …

 </xs:element>

</xs:sequence>

<xs:group name="hiddenpDate" >

 <xs:sequence>

 <xs:element name="pdate">

 <xs:complexType>

 <xs:sequence dfdl:representation="binary">

 <xs:element name="mm" type="byte" />

 <xs:element name="dd" type="byte" />

 <xs:element name="yy" type="byte"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 180 of 235

 </xs:sequence>

</xs:group>

A calculation can be used to compute the logical date element 'd' from the physical 'pdate' when
parsing:

<xs:sequence>

 ... hidden pdate here ...

 <xs:element name="d" type="date">

 <xs:annotation><xs:appinfo source="http://www.ogf.org/dfdl/">

 <dfdl:element>

 <dfdl:property name="inputValueCalc">

 {

 fn:date(fn:concat(if(../pdate/yy gt 50)then "19" else "20",

 if (../pdate/yy gt 9)

 then fn:string(../pdate/yy)

 else fn:concat("0",

 fn:string(../pdate/yy)),

 "-",

 fn:string(../pdate/mm),

 "-",

 fn:string(../pdate/dd)))

 }

 </dfdl:property>

 </dfdl:element>

 </xs:appinfo></xs:annotation>

 </xs:element>

 ...

</xs:sequence>

The expression above assembles a string resembling, for example, "2005-12-17" or "1957-3-9"
which is the string representation of a date that is acceptable to the fn:date constructor function.
The hidden element 'pdate' is referenced by relative paths. The expression '../pdate/yy' accesses
an element of type 'int', and the fn:string constructor function turns it into an integer.

Finally, we must handle the unparse case where the physical layer is computed from the logical
layer:

<xs:sequence dfdl:representation="binary"

 <xs:element name="mm" type="byte"

 dfdl:outputValueCalc="{ fn:month-from-date(../d) }" />

 <xs:element name="dd" type="byte"

 dfdl:outputValueCalc="{ fn:day-from-date(../d) }" />

 <xs:element name="yy" type="byte"

 dfdl:outputValueCalc="{ fn:year-from-date(../d) idivmod 100 }"/>

</xs:sequence>

The entire example in one place:

<xs:sequence>

 <xs:sequence dfdl:hiddenGroupRef="tns:hiddenpDate"/>

 <xs:element name="d" type="date">

 <xs:annotation><xs:appinfo source="http://www.ogf.org/dfdl/">

 <dfdl:element>

 <dfdl:property name="inputValueCalc">

 {

 fn:date(fn:concat(if(../pdate/yy gt 50) then "19" else "20",

 if (../pdate/yy gt 9)

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 181 of 235

 then fn:string(../pdate/yy)

 else fn:concat("0",

 fn:string(../pdate/yy)),

 "-",

 fn:string(../pdate/mm),

 "-",

 fn:string(../pdate/dd)))

 }

 </dfdl:property>

 </dfdl:element>

 </xs:appinfo></xs:annotation>

 </xs:element>

 ...

</xs:sequence>

<xs:group name="hiddenpDate" >

 <xs:sequence>

 <xs:element name="pdate">

 <xs:complexType>

 <xs:sequence dfdl:representation="binary">

 <xs:element name="mm" type="byte"

 dfdl:outputValueCalc="{ fn:month-from-date(../d) }" />

 <xs:element name="dd" type="byte"

 dfdl:outputValueCalc="{ fn:day-from-date(../d) }" />

 <xs:element name="yy" type="byte"

 dfdl:outputValueCalc="{ fn:year-from-date(../d)

idivmod 100 }" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

</xs:group>

The above sequence contains logically only a single date element.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 182 of 235

18. External Control of the DFDL Processor

In addition to providing the DFDL schema and data to be parsed or serialized, DFDL Schemas
can also be parameterized by external variables.

DFDL processors can provide means to specify:

1. The data to be processed: a data stream when parsing or an infoset when unparsing.

2. The DFDL schema to be used

3. The distinguished root node element declaration to be used (specifying both name of element
and namespace of that name)

4. Values for external variables

Notice also that like any XML schema a DFDL schema can have multiple top-level element
declarations, so the distinguished root node is necessary to indicate which of these top-level
element declarations is to be the starting point for processing data. The distinguished root node
may be omitted if the DFDL schema contains only one top-level element declaration.

The mechanism by which a DFDL processor is controlled is not specified by this standard. For
example, command line DFDL processors may use command line options, but DFDL processors
embedded in other kinds of software systems may need other mechanisms.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 183 of 235

19. Built-in Specifications

For convenience, a standard set of named DFDL format definitions may be provided with DFDL
processors. These built-in format definitions may be imported by DFDL schema authors.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 184 of 235

20. Conformance

DFDL conformance can be claimed for schema documents and for processors

A schema document conforms to this specification if it conforms to the subset of XML Schema
1.0 defined in section 5.1 DFDL Subset of XML Schema and consists of components which
individually and collectively satisfy all the relevant constraints specified in this document.

Conformance may be claimed separately for a DFDL parser, a DFDL unparser or a DFDL
processor that parses and unparses.

1. A DFDL processor claiming conformance MUST identify the level of conformance and
version specification claimed.

2. A minimal conforming DFDL processor conforms to this specification when it implements
all the non-optional features defined in this document.

3. An extended conforming DFDL processor conforms to the specification when it
implements all the non-optional features and some of the optional features defined in this
document.

4. A fully conforming DFDL processor conforms to the specification when it implements all
the features defined in this document.

See Section 21 Optional DFDL Features for the list of optional feature

It is the intention of the DFDL Work Group to provide a conformance test suit to help verify
conformance with this specification.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 185 of 235

21. Optional DFDL Features

The following table lists the features of the DFDL language that are considered optional for DFDL
processor implementations. This list admits very small subsets of the full DFDL specification. For
example, a binary-only subset without any expressions or variables is specifically allowed.

Feature Detection

Validation External switch

Named Formats dfdl:defineFormat or dfdl:ref

Choices xs:choice in xsd

Arrays where size not known in
advance

dfdl:occursCountKind 'implicit', 'parsed', 'stopValue'

Expressions Use of a DFDL expression in any property value

End of parent dfdl:lengthKind = "endOfParent"

Simple type restrictions xs:simpleType in xsd

Text representation for types other
than String

dfdl:representation="text" for Number, Calendar or Boolean
types

Delimiters dfdl:separator <> "" or dfdl:initiator <> "" or dfdl:terminator
<> "" or dfdl:lengthKind="delimited"

Nils XSDL nillable='true' in xsd

Defaults XSDL default or fixed in xsd

Bi-Directional text. dfdl:textBiDi='yes'

Lengths in Bits dfdl:alignmentUnits='bits' or dfdl:lengthUnits='bits'

Delimited lengths and
representation binary element

dfdl:representation='binary' (or implied binary) and
dfdl:lengthKind='delimited'

Regular expressions dfdl:lengthKind='pattern',

dfdl:assert with dfdl:testkind 'pattern' ,

dfdl:discriminator with dfdl:testkind 'pattern'

Zoned numbers dfdl:textNumberRep='zoned'

IBM 390 packed numbers dfdl:binaryNumberRep='packed'

IBM 390 packed calendars dfdl:binaryCalendarRep='packed'

IBM 390 floats dfdl:binaryFloatRep='ibm390Hex'

Unordered sequences dfdl:sequenceKind='unordered'

Floating elements dfdl:floating='yes'

dfdl functions in expression
language

dfdl:functions in expression

Hidden groups dfdl:hiddenGroupRef <> ''

Calculated values dfdl:inputValueCalc <> '' or dfdl:outputValueCalc <> ''

Escape schemes dfd:defineEscapeScheme in xsd

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 186 of 235

Extended encodings Any dfdl:encoding value beyond the core list

Asserts dfdl:assert in xsd

Discriminators dfdl:discriminator in xsd

Prefixed lengths dfdl:lengthKind='prefixed'

Variables

dfdl:defineVariable,

dfdl:newVariableInstances,

dfdl:setVariable

Variables in DFDL expression language

Note that variables as a feature is dependent on the
Expressions feature.

BCD calendars dfdl:binaryCalendarRep="bcd"

BCD numbers dfdl:binaryNumberRep="bcd"

Multiple schemas xs:include or xs:import in xsd

IBM 4690 packed numbers dfdl:binaryNumberRep="ibm4690Packed"

IBM 4690 packed calendars dfdl:binaryCalendarRep="ibm4690Packed"

DFDL Byte Value Entities Use of %#r syntax in a DFDL String Literal.

Table 21 Optional DFDL features

In order to provide portability of a DFDL schema, a minimal or extended conforming processor
must issue warnings about any DFDL properties it does not implement. This warning can simply
state that the property was not recognized.

(This allows the implementation to simply have no knowledge of properties it does not need for
the subset of features it implements.)

For example if the bi-directional text feature is not implemented, then the implementation will
most likely not recognize the dfdl:textBiDi property at all. Such an implementation must issue a
warning that the 'dfdl:textBiDi' property was not recognized.

It is a schema definition error if a DFDL schema uses an optional feature that is not supported by
a minimal or extended conforming processor.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 187 of 235

22. Property Precedence

22.1 Parsing

The following list gives the order in which DFDL properties are examined when the DFDL parser
is positioned at a particular component in the DFDL schema, and about to parse the bitstream
modeled by that component.

 dfdl:element (simple) and dfdl:simpleType 22.1.1

• Parsing: calculated value (does not apply to dfdl:simpleType or to global elements)

o dfdl:inputValueCalc

• Parsing: common

o dfdl:encoding

� 'UTF-16' 'UTF-16BE' 'UTF-16LE'

� dfdl:utf16Width

o dfdl:encodingErrorPolicy

o dfdl:ignoreCase

• Parsing: nillable

o XSDL nillable (does not apply to dfdl:simpleType)

� dfdl:nilKind

� "literalValue", "logicalValue", "literalCharacter"

� dfdl:nilValue

• Parsing: occurrences (does not apply to dfdl:simpleType)

o dfdl:floating

o (maxOccurs > 1 or unbounded) or (minOccurs = 0 and maxOccurs = 1)

� dfdl:occursCountKind

� "expression"

� dfdl:occursCount

� "fixed", "implicit"

� minOccurs

� maxOccurs

� "parsed"

� "stopValue"

� dfdl:occursStopValue

• Parsing: identification, framing & extraction

o dfdl:leadingSkip

� dfdl:alignmentUnits

o dfdl:alignment

� dfdl:alignmentUnits

o dfdl:initiator

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 188 of 235

� dfdl:nilValueDelimiterPolicy (does not apply to dfdl:simpleType)

� dfdl:emptyValueDelimiterPolicy

o dfdl:representation "text" or xs:simpleType is 'string'

� dfdl:lengthKind

� "implicit"

� XSD maxLength or
dfdl:textBooleanTrueRep/dfdl:textBooleanFalseRep

� dfdl:lengthUnits

� "explicit"

� dfdl:length

� dfdl:lengthUnits

� "prefixed"

� dfdl:prefixLengthType

� dfdl:prefixIncludesPrefixLength

� dfdl:lengthUnits

� "pattern"

� dfdl:lengthPattern

� "delimited", "endOfParent"

� None

� dfdl:textTrimKind

� dfdl:textStringPadCharacter, dfdl:textNumberPadCharacter,
dfdl:textBooleanPadCharacter or dfdl:textCalendarPadCharacter

� dfdl:textStringJustification, dfdl:textNumberJustification,
dfdl:textBooleanJustification or dfdl:textCalendarJustification

� dfdl:escapeSchemeRef

� dfdl:textBidi

� dfdl:textBidiOrdering

� dfdl:textBidiOrientation

o dfdl:representation "binary" or xs:simpleType is 'hexBinary'

� dfdl:lengthKind

� "implicit"

� XSD maxLength or xs:simpleType

� dfdl:lengthUnits

� "explicit"

� dfdl:length

� dfdl:lengthUnits

� "prefixed"

� dfdl:prefixLengthType

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 189 of 235

� dfdl:prefixIncludesPrefixLength

� dfdl:lengthUnits

� "delimited", "endOfParent"

� None

o dfdl:terminator

� dfdl:nilValueDelimiterPolicy (does not apply to dfdl:simpleType)

� dfdl:emptyValueDelimiterPolicy

� dfdl:documentFinalTerminatorCanBeMissing

o dfdl:trailingSkip

� dfdl:alignmentUnits

• Parsing: conversion

o XSD type property

� "Number"

� dfdl: decimalSigned

� dfdl:representation

� "text"

� dfdl:textNumberRep

� "standard"

� dfdl:textNumberPattern

� dfdl:textStandardDecimalSepara
tor

� dfdl:textStandardGroupingSepar
ator

� dfdl:textStandardExponentRep

� dfdl:textNumberCheckPolicy

� dfdl:textStandardInfinityRep

� dfdl:textStandardNaNRep

� dfdl:textNumberRounding

• "explicit"

• dfdl:textNumberRoundin
gMode

• dfdl:textNumberRoundin
gIncrement

� dfdl:textStandardZeroRep

� dfdl:textStandardBase

� "zoned"

� dfdl:textNumberPattern

� dfdl:textNumberCheckPolicy

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 190 of 235

� dfdl:textNumberRounding

• "explicit"

• dfdl:textNumberRoundin
gMode

• dfdl:textNumberRoundin
gIncrement

� dfdl:textZonedSignStyle

� "binary"

� dfdl:byteOrder

� xs:decimal and restrictions

� dfdl:binaryNumberRep

� "packed"

• dfdl:binaryPackedSignC
odes

• dfdl:binaryDecimalVirtu
alPoint

• dfdl:binaryNumberChec
kPolicy

� "bcd", "ibm4690Packed"

• dfdl:binaryDecimalVirtu
alPoint

• dfdl:binaryNumberChec
kPolicy

� "binary"

• dfdl:binaryDecimalVirtu
alPoint

� xs:float, xs:double

� dfdl:binaryFloatRep

� "String"

� "Calendar"

� dfdl:representation

� "text"

� dfdl:calendarPatternKind

� "explicit"

� dfdl:calendarPattern

� dfdl:calendarCheckPolicy

� dfdl:calendarTimeZone

� dfdl:calendarObserveDST

� dfdl:calendarFirstDayOfWeek

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 191 of 235

� dfdl:calendarDaysInFirstWeek

� dfdl:calendarCenturyStart

� dfdl:calendarLanguage

� "binary"

� dfdl:byteOrder

� dfdl:binaryCalendarRep

� "packed"

� dfdl:packedDecimalSignCodes

� dfdl:binaryNumberCheckPolicy

� dfdl:calendarPatternKind

• "explicit"

• dfdl:calendarPattern

� dfdl:calendarCheckPolicy

� dfdl:calendarTimeZone

� dfdl:calendarObserveDST

� dfdl:calendarFirstDayOfWeek

� dfdl:calendarDaysInFirstWeek

� dfdl:calendarCenturyStart

� "bcd", "ibm4690Packed"

� dfdl:binaryNumberCheckPolicy

� dfdl:calendarPatternKind

• "explicit"

• dfdl:calendarPattern

� dfdl:calendarCheckPolicy

� dfdl:calendarTimeZone

� dfdl:calendarObserveDST

� dfdl:calendarFirstDayOfWeek

� dfdl:calendarDaysInFirstWeek

� dfdl:calendarCenturyStart

� "binarySeconds", "binaryMilliseconds"

� dfdl:binaryCalendarEpoch

� "Opaque"

� "Boolean"

� dfdl:representation

� "text"

� dfdl:textBooleanTrueRep

� dfdl:textBooleanFalseRep

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 192 of 235

� "binary"

� dfdl:byteOrder

� dfdl:binaryBooleanTrueRep

� dfdl:binaryBooleanFalseRep

o dfdl:useNilForDefault (does not apply to dfdl:simpleType)

� "true"

� None

� "false"

� XSDL default or:fixed

 dfdl:element (complex) 22.1.2

• Parsing: common

o dfdl:encoding

� 'UTF-16' 'UTF-16BE' 'UTF-16LE'

� dfdl:utf16Width

o dfdl:encodingErrorPolicy

o dfdl:ignoreCase

• Parsing: nillable

o XSDL nillable

� dfdl:nilKind

� "literalValue"

� dfdl:nilValue (must be "%ES;")

• Parsing: occurrences

o dfdl:floating

o (maxOccurs > 1 or unbounded) or (minOccurs = 0 and maxOccurs = 1)

� dfdl:occursCountKind

� "expression"

� dfdl:occursCount

� "fixed" , "implicit"

� minOccurs

� maxOccurs

� "parsed"

• Parsing: identification, framing & extraction

o dfdl:leadingSkip

� dfdl:alignmentUnits

o dfdl:alignment

� not "implicit"

� dfdl:alignmentUnits

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 193 of 235

o dfdl:initiator

� dfdl:nilValueDelimiterPolicy

� dfdl:emptyValueDelimiterPolicy

o dfdl:lengthKind

� "explicit"

� dfdl:length

� dfdl:lengthUnits

� "prefixed"

� dfdl:prefixLengthType

� dfdl:prefixIncludesPrefixLength

� dfdl:lengthUnits

� "pattern"

� dfdl:lengthPattern

� "implicit", "delimited", "endOfParent"

� None

o dfdl:terminator

� dfdl:nilValueDelimiterPolicy

� dfdl:emptyValueDelimiterPolicy

� dfdl:documentFinalTerminatorCanBeMissing

o dfdl:trailingSkip

� dfdl:alignmentUnits

 dfdl:sequence and dfdl:group (when reference is to a sequence) 22.1.3

• Parsing: hidden (xs:sequence only)

o dfdl:hiddenGroupRef

• Parsing: common

o dfdl:encoding

� 'UTF-16' 'UTF-16BE' 'UTF-16LE'

� dfdl:utf16Width

o dfdl:encodingErrorPolicy

o dfdl:ignoreCase

• Parsing: identification, framing & extraction

o dfdl:leadingSkip

� dfdl:alignmentUnits

o dfdl:alignment

� not "implicit"

� dfdl:alignmentUnits

o dfdl:initiator

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 194 of 235

o dfdl:sequenceKind

o dfdl:initiatedContent

o dfdl:separator

� dfdl:separatorPosition

� dfdl:separatorSuppressionPolicy

o dfdl:terminator

� dfdl:documentFinalTerminatorCanBeMissing

o dfdl:trailingSkip

� dfdl:alignmentUnits

 dfdl:choice and dfdl:group (when reference is to a choice) 22.1.4

• Parsing: common

o dfdl:encoding

� 'UTF-16' 'UTF-16BE' 'UTF-16LE'

� dfdl:utf16Width

o dfdl:encodingErrorPolicy

o dfdl:ignoreCase

• Parsing: identification, framing & extraction

o dfdl:leadingSkip

� dfdl:alignmentUnits

o dfdl:alignment

� not "implicit"

� dfdl:alignmentUnits

o dfdl:initiator

o dfdl:choiceLengthKind

� "explicit"

� dfdl:choiceLength

o dfdl:initiatedContent

o dfdl:choiceDispatchKey

o dfdl:choiceBranchKey (on elements)

o dfdl:terminator

� dfdl:documentFinalTerminatorCanBeMissing

o dfdl:trailingSkip

� dfdl:alignmentUnits

22.2 Unparsing

The following list gives the order in which DFDL properties are examined when the DFDL
unparser is positioned at a particular component in the DFDL Infoset, and about to unparsed and
thereby create the bitstream which is the representation of that component.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 195 of 235

 dfdl:element (simple) and dfdl:simpleType 22.2.1

• Unparsing: calculated value (does not apply to dfdl:simpleType or to global elements)

o dfdl:inputValueCalc (if set then element is ignored)

o dfdl:outputValueCalc

• Unparsing: common

o dfdl:outputNewLine

o dfdl:encoding

� 'UTF-16' 'UTF-16BE' 'UTF-16LE'

� dfdl:utf16Width

o dfdl:encodingErrorPolicy

o dfdl:fillByte

• Unparsing: occurrences (does not apply to dfdl:simpleType)

o (maxOccurs > 1 or unbounded) or (minOccurs = 0 and maxOccurs = 1)

� dfdl:occursCountKind

� "expression"

� dfdl:occursCount

� "fixed", "implicit"

� minOccurs

� maxOccurs

� "parsed"

� "stopValue"

� dfdl:occursStopValue

• Unparsing: conversion

o dfdl:useNilForDefault (does not apply to dfdl:simpleType)

• "true"

� None

• "false"

� XSDL default or fixed

o XSDL nillable (does not apply to dfdl:simpleType)

• dfdl:nilKind

� "literalValue", "logicalValue", "literalCharacter"

� dfdl:nilValue

o XSD type property

• "Number"

� dfdl:decimalSigned

� dfdl:representation

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 196 of 235

� "text"

• dfdl:textNumberRep

� "standard"

� dfdl:textNumberPattern

� dfdl:textStandardBase

� dfdl:textStandardDecimalSepara
tor

� dfdl:textStandardGroupingSepar
ator

� dfdl:textStandardExponentRep

� dfdl:textNumberCheckPolicy

� dfdl:textStandardInfinityRep

� dfdl:textStandardNaNRep

� dfdl:textNumberRounding

� "explicit"

� dfdl:textNumberRoundin
gMode

� dfdl:textNumberRoundin
gIncrement

� dfdl:textStandardZeroRep

� "zoned"

� dfdl:textNumberPattern

� dfdl:textNumberCheckPolicy

� dfdl:textNumberRounding

� "explicit"

� dfdl:textNumberRoundin
gMode

� dfdl:textNumberRoundin
gIncrement

� dfdl:textZonedSignStyle

• dfdl:textBidi

� dfdl:textBidiOrdering

� dfdl:textBiDiOrientation

� dfdl:textBidiNumeralShapes

� "binary"

• dfdl:byteOrder

• xs:decimal and restrictions

� dfdl:binaryNumberRep

� "packed"

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 197 of 235

� dfdl:binaryPackedSignC
odes

� dfdl:binaryDecimalVirtu
alPoint

� "bcd", "ibm4690Packed"

� dfdl:binaryDecimalVirtu
alPoint

� "binary"

� dfdl:binaryDecimalVirtu
alPoint

• xs:float, xs:double

� dfdl:binaryFloatRep

• "String"

� dfdl:textBidi

� dfdl:textBidiOrdering

� dfdl:textBiDiOrientation

� dfdl:textBidiSymmetric

� dfdl:textBidiShaped

• "Calendar"

� dfdl:representation

� "text"

• dfdl:calendarPatternKind

� "explicit"

� dfdl:calendarPattern

• dfdl:calendarCheckPolicy

• dfdl:calendarTimeZone

• dfdl:calendarObserveDST

• dfdl:calendarFirstDayOfWeek

• dfdl:calendarDaysInFirstWeek

• dfdl:calendarLanguage

• dfdl:textBidi

� dfdl:textBidiOrdering

� dfdl:textBiDiOrientation

� dfdl:textBidiSymmetric

� dfdl:textBidiShaped

� "binary"

• dfdl:byteOrder

• dfdl:binaryCalendarRep

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 198 of 235

� "packed"

� dfdl:packedDecimalSignCodes

� dfdl:decimalVirtualPoint

� dfdl:calendarPatternKind

� "explicit"

� dfdl:calendarPattern

� dfdl:calendarCheckPolicy

� dfdl:calendarTimeZone

� dfdl:calendarObserveDST

� dfdl:calendarFirstDayOfWeek

� dfdl:calendarDaysInFirstWeek

� dfdl:calendarCenturyStart

� "bcd", "ibm4690Packed"

� dfdl:decimalVirtualPoint

� dfdl:calendarPatternKind

� "explicit"

� dfdl:calendarPattern

� dfdl:calendarCheckPolicy

� dfdl:calendarTimeZone

� dfdl:calendarObserveDST

� dfdl:calendarFirstDayOfWeek

� dfdl:calendarDaysInFirstWeek

� dfdl:calendarCenturyStart

� "binarySeconds", "binaryMilliseconds"

� dfdl:binaryCalendarEpoch

• "Opaque"

• "Boolean"

� dfdl:representation

� "text"

• dfdl:textBooleanTrueRep

• dfdl:textBooleanFalseRep

• dfdl:textBidi

� dfdl:textBidiOrdering

� dfdl:textBiDiOrientation

� dfdl:textBidiSymmetric

� dfdl:textBidiTextShaped

� "binary"

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 199 of 235

• dfdl:byteOrder

• dfdl:binaryBooleanTrueRep

• dfdl:binaryBooleanFalseRep

• Unparsing: insertion & framing

o dfdl:leadingSkip

• dfdl:alignmentUnits

o dfdl:alignment

• not "implicit"

� dfdl:alignmentUnits

o dfdl:representation "text" or xs:simpleType 'string'

• dfdl:escapeSchemeRef

• dfdl:lengthKind

� "implicit"

� XSD maxLength or
dfdl:textBooleanTrueRep/dfdl:textBooleanFalseRep

� dfdl:lengthUnits

� dfdl:textPadKind

• dfdl:textStringPadCharacter,
dfdl:textNumberPadCharacter,
dfdl:textBooleanPadCharacter or
dfdl:textCalendarPadCharacter

• dfdl:textStringJustification,
dfdl:textNumberJustification,
dfdl:textBooleanJustification or
dfdl:textCalendarJustification

� dfdl:truncateSpecifiedLengthString

� "explicit"

� not expression

• dfdl:length

• dfdl:truncateSpecifiedLengthString

� expression

• XSD minLength or dfdl:textOutputMinLength

� dfdl:lengthUnits

� dfdl:textPadKind

• dfdl:textStringPadCharacter,
dfdl:textNumberPadCharacter,
dfdl:textBooleanPadCharacter or
dfdl:textCalendarPadCharacter

• dfdl:textStringJustification,
dfdl:textNumberJustification,

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 200 of 235

dfdl:textBooleanJustification or
dfdl:textCalendarJustification

� "prefixed"

� dfdl:prefixLengthType

� dfdl:prefixIncludesPrefixLength

� dfdl:lengthUnits

� dfdl:textPadKind

• dfdl:textStringPadCharacter,
dfdl:textNumberPadCharacter,
dfdl:textBooleanPadCharacter or
dfdl:textCalendarPadCharacter

• dfdl:textStringJustification,
dfdl:textNumberJustification,
dfdl:textBooleanJustification or
dfdl:textCalendarJustification

• XSD minLength or dfdl:textOutputMinLength

� "pattern", "delimited", "endOfParent"

� dfdl:textPadKind

• dfdl:textStringPadCharacter,
dfdl:textNumberPadCharacter,
dfdl:textBooleanPadCharacter or
dfdl:textCalendarPadCharacter

• dfdl:textStringJustification,
dfdl:textNumberJustification,
dfdl:textBooleanJustification or
dfdl:textCalendarJustification

• XSD minLength or dfdl:textOutputMinLength

o dfdl:representation "binary" or xs:simpleType 'hexBinary'

• dfdl:lengthKind

� "implicit"

� XSD maxLength or xs:simpleType

� dfdl:lengthUnits

� "explicit"

� dfdl:length

� dfdl:lengthUnits

� "prefixed"

� dfdl:prefixLengthType

� dfdl:prefixIncludesPrefixLength

� dfdl:lengthUnits

� "delimited", "endOfParent"

� None

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 201 of 235

o dfdl:initiator

• dfdl:nilValueDelimiterPolicy (does not apply to dfdl:simpleType)

• dfdl:emptyValueDelimiterPolicy

o dfdl:terminator

• dfdl:nilValueDelimiterPolicy (does not apply to dfdl:simpleType)

• dfdl:emptyValueDelimiterPolicy

o dfdl:trailingSkip

• dfdl:alignmentUnits

 dfdl:element (complex) 22.2.2

• Unparsing: common

o dfdl:outputNewLine

o dfdl:encoding

• 'UTF-16' 'UTF-16BE' 'UTF-16LE'

• dfdl:utf16Width

o dfdl:encodingErrorPolicy

o dfdl:fillByte

• Unparsing: nillable

o XSDL nillable (does not apply to dfdl:simpleType)

• dfdl:nilKind

• "literalValue"

• dfdl:nilValue (must be "%ES;")

• Unparsing: occurrences

o (maxOccurs > 1 or unbounded) or (minOccurs = 0 and maxOccurs = 1)

• dfdl:occursCountKind

• "expression"

• dfdl:occursCount

• "fixed", "implicit"

• minOccurs

• maxOccurs

• "parsed"

• Unparsing: insertion & framing

o dfdl:leadingSkip

• dfdl:alignmentUnits

o dfdl:alignment

• not "implicit"

• dfdl:alignmentUnits

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 202 of 235

o dfdl:initiator

• dfdl:nilValueDelimiterPolicy

• dfdl:emptyValueDelimiterPolicy

o dfdl:lengthKind

• "explicit"

• dfdl:length

• dfdl:lengthUnits

• "prefixed"

• dfdl:prefixLengthType

• dfdl:prefixIncludesPrefixLength

• dfdl:lengthUnits

• "implicit", "pattern", "delimited", "endOfParent"

• None

o dfdl:terminator

• dfdl:nilValueDelimiterPolicy

• dfdl:emptyValueDelimiterPolicy

o dfdl:trailingSkip

• dfdl:alignmentUnits

 dfdl:sequence and dfdl:group (when reference is a sequence) 22.2.3

• Unparsing: hidden (xs:sequence only)

o dfdl:hiddenGroupRef

• Unparsing: common

o dfdl:outputNewLine

o dfdl:encoding

• 'UTF-16' 'UTF-16BE' 'UTF-16LE'

• dfdl:utf16Width

o dfdl:encodingErrorPolicy

o dfdl:fillByte

• Unparsing: insertion & framing

o dfdl:leadingSkip

• dfdl:alignmentUnits

o dfdl:alignment

• not "implicit"

• dfdl:alignmentUnits

o dfdl:initiator

o dfdl:separator

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 203 of 235

• dfdl:separatorPosition

• dfdl:separatorSuppressionPolicy

o dfdl:terminator

o dfdl:trailingSkip

• dfdl:alignmentUnits

 dfdl:choice and dfdl:group (when reference is a choice) 22.2.4

• Unparsing: common

o dfdl:outputNewLine

o dfdl:encoding

• 'UTF-16' 'UTF-16BE' 'UTF-16LE'

• dfdl:utf16Width

o dfdl:encodingErrorPolicy

o dfdl:fillByte

• Unparsing: insertion & framing

o dfdl:leadingSkip

• dfdl:alignmentUnits

o dfdl:alignment

• not "implicit"

• dfdl:alignmentUnits

o dfdl:initiator

o dfdl:choiceLengthKind

• "explicit"

• dfdl:choiceLength

o dfdl:terminator

o dfdl:trailingSkip

• dfdl:alignmentUnits

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 204 of 235

23. Expression language

The DFDL expression language allows the processing of values conforming to the data model
defined in the DFDL Infoset. It allows properties in the DFDL schema to be dependent on the
value of an occurrence of an element or the value of a DFDL variable. For example the length of
the content of an element can be made dependent on the value of another element in the
document.

The main uses of the expression language are as follows:

1. When a DFDL property needs to be set dynamically at parse time from the value of one
or more elements of the data. Properties such as initiator, terminator, length,
occursCount and separator accept an expression.

2. In a dfdl:assert annotation

3. In a dfdl:discriminator annotation to resolve uncertainty when parsing

4. In a dfdl:inputValueCalc property to derive the value of an element in the logical model
that doesn't exist in the physical data.

5. In a dfdl:outputValueCalc property to compute the value of an element on unparsing.

6. As the value in a dfdl:setVariable annotation or the dfdl:defaultValue in a
dfdl:defineVariable or dfdl:newVariableInstance.

The DFDL expression language is a subset of XPath 2.0 [XPath2]. DFDL uses a subset of XML
schema and has a simpler information model, so only a subset of XPath 2.0 expressions is
meaningful in DFDL Schemas. For example there are no attributes in DFDL so the attribute axis
is not needed.

In addition, DFDL expressions never return node-sequences having more than one node. DFDL
expressions either return a simple value, a node sequence containing exactly one node/value, or
an empty node sequence. Node sequences of length greater than one can be used within the
expression, just not as the final result. Alternatively, one can state this as there are no constructs
in DFDL which can accept a node sequence of more than one node; hence, DFDL expressions
can never return a node sequence of more than one node as their final result.

DFDL implementations MUST comply with the error code behaviour in Appendix G of the XPath
2.0 spec and map these to the correct DFDL failure type. All but one of XPath's errors map to a
schema definition error. The exception is XPTY0004, which is used both for static and dynamic
cases of type mismatch. A static type mismatch maps to a schema definition error, whereas a
dynamic type mismatch maps to a processing error. A DFDL implementation should distinguish
the two kinds of XPTY0004 error if it is able to do so, but if unable it should map all XPTY0004
errors to a schema definition error

Implementation Note: DFDL implementations may use off-the-shelf XPath 2.0 processors, but will
need to pre-process DFDL expressions to ensure that the behaviour matches the DFDL
specification:

• Ensure that what is returned as the result is not a sequence with length > 1 by
appropriate use of fn:exactly-one().

• Check for the disallowed use of those XPath 2.0 functions that are not in the DFDL
subset

23.1 Expression Language Data Model

The DFDL expression language operates on the DFDL infoset with the addition of the hidden
elements. That is, it operates on the augmented infoset.

In general, a DFDL expression can reference any element that precedes the position in the
schema where the expression is declared, with the following exceptions:

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 205 of 235

• An assert or discriminator on a component may reference an element that is a
descendent of the component.

• A dfdl:outputValueCalc property may reference an element that follows the position in the
schema where the property is specified.

• It is a schema definition error if a component in a choice branch references an element in
another branch of the same choice or a descendent of such an element

• It is a schema definition error if an element in an unordered sequence group references
an element in the same sequence group or a descendent of such an element.

• It is a schema definition error if an element in an ordered sequence group references a
floating element in the same sequence group or a descendent of such an element.

Implementations may have specific limitations on the use of forward or backward reference, or
may provide controls for bounding the reach of such references. These mechanisms are beyond
the scope of this specification.

23.2 Variables

A variable is a binding between a (qualified) name and a (typed) value. Variables are defined
using the dfdl:defineVariable annotation (see 7.7); defining a variable causes an initial instance
also to be created. Further instances of variables are created using the dfdl:newVariableInstance
annotation. Instances of variables are assigned a value using the dfdl:setVariable annotation.
Variables are referenced in expressions by preceding the QName with '$'.

This section describes the semantics of variables. Any implementation consistent with the
behavior described here is acceptable.

The memory where the information about a variable is stored during DFDL processing is called
the variable memory. A variable is a name that is associated with a storage tuple in the variable
memory.

Specifically, the variable memory contains:

• a counter used to generate locations for new tuples. Initial value is 1.

• an ordered list of locations. Each location contains a tuple of values:

o has-been-set flag. This Boolean is originally false. dfdl:setVariable changes this
flag to true.

o has-been-referenced flag. This Boolean is originally false. Evaluation of an
expression that uses the variable value changes the value to true.

o has-value flag. This Boolean is originally true if the dfdl:defineVariable or
dfdl:newVariableInstance annotation has a default value specified, or if a default
value has been supplied externally. Otherwise it is false, but is set to true if a
dfdl:setVariable annotation is processed.

o typeID. This string is a type identifier taken from the type specified in the
dfdl:defineVariable annotation.

o value. This is a typed value, or the distinguished value "unknown". The type of
the value must correspond to the typeID. The value is optionally specified in
dfdl:defineVariable or dfdl:newVariableInstance annotations in which case we
refer to it as the default value for the variable. A default value may also be
provided by the DFDL processor when the variable is defined with
external="true".

The variable memory is initialized when a dfdl:defineVariable annotation is encountered.

Each time a dfdl:newVariableInstance annotation is encountered, the parser captures the current
value of the counter from the variable memory. It then creates a new variable memory where the

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 206 of 235

location counter's value is one greater, and where the list of locations has been augmented with a
new tuple at the location given by the prior value of the location counter. The tuple is initialized
based on the specifics of the dfdl:defineVariable annotation.

 Rewinding of Variable Memory State 23.2.1

Upon exit of the scope where the new variable instance was created, the newly created variable
memory is discarded and the prior variable memory is restored.

Note that the above algorithm insures that each time a dfdl:newVariableInstance is encountered,
a fresh location is initialized for it, and once the scope containing that variable goes out of scope,
the instance tuple for the variable can no longer be reached. A different variable instance tuple
may now be visible if there is one still in an enclosing scope.

 Variable Memory State Transitions 23.2.2

The flags in the variable memory tuples are interpreted and modified as follows:

DFDL annotation before annotation processed after annotation processed

has-
been-
set

has-been-
referenced

has-
value

has-
been-
set

has-been-
referenced

has-value

defineVariable
(without default or
external value)

tuple doesn't exist false false false

defineVariable (with
default value)

tuple doesn't exist false false true

defineVariable (with
external value)

tuple doesn't exist false false true

newVariableInstance
(without default value)

tuple doesn't exist false false false

newVariableInstance
(with default value)

tuple doesn't exist false false true

setVariable tuple doesn't exist schema definition error

false false false true false true

false false true true false true (also
value
changed to
new value)

false true true schema definition error – set after
reference not allowed.

true any true schema definition error - double set
not allowed.

reference variable
(from DFDL
expression)

tuple doesn't exist schema definition error

false false false schema definition error – undefined
variable

any any true false true (value is
returned)

true

Table 22 Variable memory states.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 207 of 235

The above table describes a set of rules which might be abbreviated as:

• write once, read many

• no write after the value has been read

An exception to this behavior occurs whenever the DFDL processor backtracks because it is
processing multiple arms of a choice or as a result of speculative parsing. In this case the
variable state is also rewound.

It is a schema definition error if a dfdl:setVariable or a variable reference occurs and there is no
corresponding variable name defined by a dfdl:defineVariable annotation.

It is a schema definition error if a dfdl:setVariable provides a value of incorrect type which does
not correspond to the type specified by the dfdl:defineVariable.

It is a schema definition error if a variable reference in an expression is able to return a value of
incorrect type for the evaluation of that expression. That is, DFDL - including the expressions
contained in it - is a statically type-checkable language. DFDL implementations may issue these
schema definition errors prior to processing time.

Even if the errors are detected at processing time, the errors associated with write-after-read, and
double-write are schema definition errors because they indicate the schema is not properly
designed to use variables consistent with their single-assignment behavior.

23.3 General Syntax

DFDL expressions follow the XPath 2.0 syntax rules but are always enclosed in curly braces "{"
and "}".

When a property accepts either a DFDL string literal or a DFDL expression, and the value is a
string literal starting with a "{" character, then "{{"must be used to escape the "{" character.

The syntax "{}" is a schema definition error as it results in an empty XPath 2.0 expression which
is not legal. It is not the equivalent of setting the property to empty string.

Examples

{ /book/title }

{ $x+2 }

{ if (fn:exists(../field1)) then 1 else 0 }

The result of evaluating the expression must be a single atomic value of the type expected by the
context, and it is a schema definition error otherwise. Some XPath expressions naturally return a
sequence of values, and in this case it is also schema definition error if an expression returns a
sequence containing more than one item.

Additionally:

• Every property that accepts an expression states exactly what the expression is expected
to return. To ensure the returned value is of the correct type, an expression must use
XPath constructors or the correct literal values.

• What appears lexically as the syntax of an expression follows XPath 2.0 rules. Note
specifically that this is not the same as XSDL default and fixed property lexical syntax.
Specifically, XSDL default and fixed properties do not accept expressions. They are
always interpreted as XML Schema string literals. See [XSDLV1] for details.

• No extra auto-casting is performed over and above that provided by XPath 2.0. XPath 2.0
has rules for when it promotes types and when it allows types to be substituted. These
are in Appendix B.1 of the XPath 2.0 spec.

• If the property is not expecting an expression to return a DFDL string literal, the returned
value is never treated as a DFDL string literal.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 208 of 235

• If expecting an expression to return a DFDL string literal, the returned value is always
treated as a DFDL string literal.

• Within an expression, a string is never interpreted as a DFDL string literal.

23.4 DFDL Expression Syntax

Refer to XML Path Language (XPath) 2.0 [XPath2 for a description of XPath expressions

DFDL Expression ::= "{" Expr "}"

Expr ::= ExprSingle

ExprSingle ::= IfExpr
| OrExpr

IfExpr ::= "if" "(" Expr ")" "then" ExprSingle "else"

ExprSingle

OrExpr ::= AndExpr ("or" AndExpr)*

AndExpr ::= ComparisonExpr ("and" ComparisonExpr)*

ComparisonExpr ::= AdditiveExpr ((ValueComp
) AdditiveExpr)?

AdditiveExpr ::= MultiplicativeExpr (("+" | "-")

MultiplicativeExpr)*

MultiplicativeExpr ::= UnaryExpr (("*" | "div" | "idiv" | "mod")

UnaryExpr)*

UnaryExpr ::= ("-" | "+")* ValueExpr

ValueExpr ::= PathExpr

ValueComp ::= "eq" | "ne" | "lt" | "le" | "gt" | "ge"

PathExpr ::= ("/" RelativePathExpr?)
| RelativePathExpr | FilterExpr

RelativePathExpr ::= StepExpr (("/") StepExpr)*

StepExpr ::= AxisStep

AxisStep ::= (ReverseStep | ForwardStep) Predicate?

ForwardStep ::= (ForwardAxis NodeTest) | AbbrevForwardStep

ForwardAxis ::= ("child" "::")
| ("self" "::")

AbbrevForwardStep ::= NodeTest | ContextItemExpr

ReverseStep ::= (ReverseAxis NodeTest) | AbbrevReverseStep

ReverseAxis ::= ("parent" "::")

AbbrevReverseStep ::= ".."

NodeTest ::= NameTest

NameTest ::= QName

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 209 of 235

FilterExpr ::= PrimaryExpr Predicate?

Predicate ::= "[" Expr "]"

PrimaryExpr ::= Literal | VarRef | ParenthesizedExpr |

ContextItemExpr | FunctionCall

Literal ::= NumericLiteral | StringLiteral

NumericLiteral ::= IntegerLiteral | DecimalLiteral |

DoubleLiteral

VarRef ::= "$" VarName

VarName ::= QName

ParenthesizedExpr ::= "(" Expr ")"

ContextItemExpr ::= "."

FunctionCall ::= QName "(" (ExprSingle ("," ExprSingle)*)? ")"

Table 23 DFDL Expression Language

Notes:

1. Only If and path expression types are supported

2. Only the child, parent, and self axes are supported

3. Predicates are only used to index arrays and so must be integer expressions otherwise a
schema definition error occurs

4. A subset of the XPath 2.0 operators are supported

23.5 Constructors, Functions and Operators

In the function signatures below a '?' following an argument name, argument type or result type
indicates that the argument/result can be a node or value of the expected type or it can have no
value.

 Constructor Functions for XML Schema Built-in Types 23.5.1

The arguments to the constructors are all of type xs:anyAtomicType. Since the expression
language can be statically type checked, it is a schema definition error if the type of the argument
is not one of the DFDL-supported subtypes of xs:anyAtomicType,

However, many statically type-correct values will still not be convertible to the result type.It is a
processing error if the supplied argument value is not convertible to the constructed type.

The following constructor functions for the built-in types are supported:

Function

xs:string($arg as xs:anyAtomicType) as xs:string

xs:boolean($arg as xs:anyAtomicType) as xs:boolean

xs:decimal($arg as xs:anyAtomicType) as xs:decimal

xs:float($arg as xs:anyAtomicType) as xs:float

xs:double($arg as xs:anyAtomicType) as xs:double

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 210 of 235

xs:dateTime($arg as xs:anyAtomicType) as xs:dateTime

xs:time($arg as xs:anyAtomicType) as xs:time

xs:date($arg as xs:anyAtomicType) as xs:date

xs:hexBinary($arg as xs:anyAtomicType) as xs:hexBinary

xs:integer($arg as xs:anyAtomicType) as xs:integer

xs:long($arg as xs:anyAtomicType) as xs:long

xs:int($arg as xs:anyAtomicType) as xs:int

xs:short($arg as xs:anyAtomicType) as xs:short

xs:byte($arg as xs:anyAtomicType) as xs:byte

xs:nonNegativeInteger($arg as xs:anyAtomicType) as xs:nonNegativeInteger

xs:unsignedLong($arg as xs:anyAtomicType) as xs:unsignedLong

xs:unsignedInt($arg as xs:anyAtomicType) as xs:unsignedInt

xs:unsignedShort($arg as xs:anyAtomicType) as xs:unsignedShort

xs:unsignedByte($arg as xs:anyAtomicType) as xs:unsignedByte

Table 24 Basic Constructors

A special constructor function is provided for constructing a xs:dateTime value from an

xs:date value and an xs:time value.

Function

fn:dateTime($arg1 as xs:date, $arg2 as xs:time) as xs:dateTime

Table 25 Special Constructor for xs:dateTime

 Standard XPath Functions 23.5.2

 Boolean functions 23.5.2.1

The following additional constructor functions are defined on the boolean type.

Function Meaning

fn:true() Constructs the xs:boolean value 'true'.

fn:false() Constructs the xs:boolean value 'false'.

Table 26 Boolean functions

The following functions are defined on boolean values. The return type of these functions is
xs:boolean.:

Function Meaning

fn:not($arg?) If $arg is the empty sequence or nil, fn:not returns true.

If $arg is a sequence containing a node, fn:not returns false.

If $arg is a value of type xs:boolean or a derived from xs:boolean, fn:not

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 211 of 235

returns the boolean inverse of $arg.

If $arg is a value of type xs:string or a type derived from xs:string,

fn:not returns true if the operand value has zero length; otherwise it returns

false.

If $arg is a value of any numeric type or a type derived from a numeric type,

fn:not returns true if the operand value is NaN or is numerically equal to zero;

otherwise it returns false.

In all other cases, fn:not raises a processing error.

Inverts the xs:boolean value of the argument.

Table 27 Boolean functions

 Numeric Functions 23.5.2.2

The following functions are defined on numeric types. Each function returns a value of the same
type as the type of its argument. The argument must be convertible to a number type.

Function Meaning

fn:abs($arg as numeric) Returns the absolute value of the argument.

fn:ceiling($arg as numeric) Returns the smallest number with no fractional part that is
greater than or equal to the argument.

fn:floor($arg as numeric) Returns the largest number with no fractional part that is
less than or equal to the argument.

fn:round($arg as numeric) Rounds to the nearest number with no fractional part.

fn:round-half-to-
even($arg as numeric)

fn:round-half-to-
even($arg as numeric, $precision as
xs:integer)

Takes a number and a precision and returns a number
rounded to the given precision. If the fractional part is
exactly half, the result is the number whose least
significant digit is even.

Table 28 Numeric Functions

 String Functions 23.5.2.3

The following functions are defined on values of type xs:string and types derived from it.

Function Meaning

fn:concat($arg1 as xs:anyAtomicType, $arg2
as xs:anyAtomicType, ...)

Concatenates two or more xs:anyAtomicType
arguments cast to xs:string.

fn:substring($sourceString as xs:string,
$startingLoc as xs:double)

fn:substring($sourceString as xs:string,
$startingLoc as xs:double, $length as
xs:double)

Returns the xs:string located at a specified
place within an argument xs:string.

fn:string-length($arg as xs:string) Returns the length of the argument as an
xs:integer

fn:upper-case($arg as xs:string) Returns the upper-cased value of the argument.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 212 of 235

fn:lower-case($arg as xs:string) Returns the lower-cased value of the argument.

fn:contains($arg1 as xs:string, $arg2 as
xs:string)

fn:contains($arg1 as xs:string, $arg2 as
xs:string, $collation as xs:string)

Returns xs:boolean indicating whether one
xs:string contains another xs:string. A collation
may be specified.

fn:starts-with($arg1 as xs:string, $arg2 as
xs:string)

fn:starts-with($arg1 as xs:string, $arg2 as
xs:string, $collation as xs:string)

Returns xs:boolean indicating whether the value
of one xs:string begins with the collation units of
another xs:string. A collation may be specified.

fn:ends-with($arg1 as xs:string, $arg2 as
xs:string)

fn:ends-with($arg1 as xs:string, $arg2 as
xs:string, $collation as xs:string)

Returns xs:boolean indicating whether the value
of one xs:string ends with the collation units of
another xs:string. A collation may be specified.

fn:substring-before($arg1 as xs:string, $arg2
as xs:string)

fn:substring-before($arg1 as xs:string, $arg2
as xs:string, $collation as xs:string)

Returns the collation units of one xs:string that
precede in that xs:string the collation units of
another xs:string. A collation may be specified.

fn:substring-after($arg1 as xs:string, $arg2 as
xs:string)

fn:substring-after($arg1 as xs:string, $arg2 as
xs:string, $collation as xs:string)

Returns the collation units of xs:string that
follow in that xs:string the collation units of
another xs:string. A collation may be specified.

Table 29 String Functions

 Date, Time functions 23.5.2.4

Function Meaning

fn:year-from-
dateTime($arg as xs:dateTime)

Returns the year from an xs:dateTime value as an
xs:integer.

fn:month-from-
dateTime($arg as xs:dateTime)

Returns the month from an xs:dateTime value as
an xs:integer.

fn:day-from-dateTime($arg as xs:dateTime) Returns the day from an xs:dateTime value as an
xs:integer.

fn:hours-from-
dateTime($arg as xs:dateTime)

Returns the hours from an xs:dateTime value as an
xs:integer.

fn:minutes-from-
dateTime($arg as xs:dateTime)

Returns the minutes from an xs:dateTime value as
an xs:integer.

fn:seconds-from-
dateTime($arg as xs:dateTime)

Returns the seconds from an xs:dateTime value as
an xs:decimal.

fn:year-from-date($arg as xs:date) Returns the year from an xs:date value as an
xs:integer.

fn:month-from-date($arg as xs:date) Returns the month from an xs:date value as an
xs:integer.

fn:day-from-date($arg as xs:date) Returns the day from an xs:date value as an

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 213 of 235

xs:integer.

fn:hours-from-time($arg as xs:time) Returns the hours from an xs:time value as an
xs:integer.

fn:minutes-from-time($arg as xs:time) Returns the minutes from an xs:time value as an
xs:integer.

fn:seconds-from-time($arg as xs:time) Returns the seconds from an xs:time value as an
xs:decimal.

Table 30 Date, Time functions

 Node Sequence Test Functions 23.5.2.5

The following functions are defined on sequences. (Note that DFDL v1.0 does not support
sequences of length > 1.)

Function Meaning

fn:empty($arg?) Indicates whether or not the provided sequence is empty.

fn:exists($arg?) Indicates whether or not the provided sequence is not empty.

fn:exactly-one($arg?) True if the provided sequence contains exactly one node/value.

fn:count($arg) Returns the number of items in the value of $arg as an xs:integer.

Returns 0 if $arg is the empty sequence.

Table 31 Sequences functions

 Node functions 23.5.2.6

This section discusses functions and operators on nodes.

Function Meaning

fn:name()

fn:name($arg?)

Returns the name of the context node (".") or the specified node as
an xs:string. Returns zero-length string if the arg is an empty
sequence. Returns an xs:string in the form of an xs:QName
otherwise.

fn:local-name()

fn:local-name($arg)

Returns the local name of the context node or the specified node as
an xs:string.

fn:namespace-uri()

fn:namespace-uri($arg)

Returns the namespace URI as an xs:string for the argument node
or the context node if the argument is omitted. Returns empty string
if the argument/context node is in no namespace.

Table 32 Node functions

 DFDL Functions 23.5.3

Function Meaning

dfdl:contentLength($node, $lengthUnits) Returns the length of the supplied node's
SimpleContent region for elements of simple
type, or ComplexContent region for elements
of complex type. These regions are defined in
Section 9.2 DDFDL Data Syntax Grammar.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 214 of 235

The value is returned as an xs:unsignedLong.

The second argument is of type xs:string and
must be 'bytes', 'characters', or 'bits' (schema
definition error otherwise) and determines the
units of length.

dfdl:valueLength($node, $lengthUnits) Returns the length of the supplied node's
SimpleValue or NilLogicalValue region for
elements of simple type, or ComplexContent
region for elements of complex type. These
regions are defined in Section 9.2 DDFDL
Data Syntax Grammar. The value is returned
as an xs:unsignedLong.

For simple types, the valueLength() function
returns a length which excludes any padding
or filling.

The second argument is is of type xs:string
and must be 'bytes', 'characters', or 'bits'
(schema definition error otherwise) and
determines the units of length.

dfdl:testBit($data, $bitPos) Returns Boolean true if the bit number given
by the xs:nonNegativeInteger $bitPos is set on
in the xs:unsignedByte given by $data,
otherwise returns Boolean false.

dfdl:setBits($bit1, $bit2, ... $bit8) Returns an unsigned byte being the value of
the bit positions provided by the Boolean
arguments, where true=1, false=0. The
number of arguments must be 8.

dfdl:occursIndex() Returns the position of the current item within
an array as an xs:long.

The first element is at position 1.

The function may be used on non-array
elements.

dfdl:checkConstraints($node) Returns boolean true if the specified node
value satisfies the XML schema facet
constraints that are associated with it. Returns
false if the specified node does not meet the
constraints or does not exist.

The facets that are checked are

• minLength, maxLength

• pattern

• enumeration

• maxInclusive, maxExclusive,
minExclusive, minInclusive

• totalDigits

• fractionDigits

See Section 5.2 for which facets are checked
for each simple type.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 215 of 235

Additionally the XSD fixed property is
checked.

It is a schema definition error if the argument
is a complex element.

dfdl:encodeDFDLEntities($arg) Returns a string containing a DFDL string
literal constructed from the $arg string
argument. If $arg contains any '%' and/or
space characters, then the return value
replaces each '%' with '%%' and each space
with '%SP;', otherwise $arg is returned
unchanged.

dfdl:decodeDFDLEntities ($arg) Returns a string constructed from the $arg
string argument. If $arg contains syntax
matching DFDL Character Entities syntax,
then the corresponding characters are used in
the result. Any characters in $arg not
matching the DFDL Character Entities syntax
remain unchanged in the result.

It is a schema definition error if $arg contains
syntax matching DFDL Byte Value Entities
syntax.

dfdl:containsDFDLEntities($arg) Returns a Boolean indicating whether the $arg
string argument contains one or more DFDL
entities.

dfdl:timeZoneFromDateTime($arg)

dfdl:timeZoneFromDate($arg)

dfdl:timeZoneFromTime ($arg)

Returns the timezone component of $arg if
any as an xs:string. The $arg is of type
xs:dateTime, xs:date and xs:time respectively.

If $arg has a timezone component, then the
result is a string in the format of an ISO Time
zone designator. Interpreted as an offset from
UTC, its value may range from +14:00 to -
14:00 hours, both inclusive. The UTC time
zone is represented as "+00:00". If the $arg
has no timezone component, then "" (empty
string) is returned.

Table 33 DFDL Functions

Notes:

dfdl:valueLength(path, lengthUnits) - returns the value length which excludes any padding or
filling which might be added for a specified length

If the element declaration in the DFDL schema corresponding to the infoset item is not potentially
represented, then the unpadded length is defined to be 0.

The value length includes the length contributions from introduced escape characters needed to
escape contained delimiters (if such are defined, and will appear in the output representation).

The value length is also a function of the dfdl:encoding property. Multi-byte and variable-width
character set encodings will commonly contribute more bytes to the value length than a single-
byte character set would.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 216 of 235

The value length is computed from the DFDL infoset value, ignoring the dfdl:length or
dfdl:textOutputMinLength property. Other DFDL properties which affect the length of a text or
binary representation are respected, it is only an explicit length which is ignored.

For a complex type, this means a bottom up totaling of the dfdl:contentLength() of all the contents
and framing of the complex type.

dfdl:contentLength(path, lengthUnits) – returns the length of the content of the infoset data item
as identified by the path argument. This includes padding or filling or truncation which might be
carried out for a specified length item.

If the element declaration in the DFDL schema corresponding to the infoset item is not potentially
represented (e.g., has an dfdl:inputValueCalc property), then the length is defined to be 0.

When unparsing with dfdl:lengthKind="explicit", the calculation of dfdl:contentLength() returns the
value of the dfdl:length property.

For both dfdl:contentLength() and dfdl:valueLength(), the content length excludes any alignment
filling as well as excluding any leading or trailing skip bytes. That is, the returned length is about
the length of the content, and not about the position of that content in the output data stream.

Use dfdl:encodeDFDLEntities() when the value of a DFDL property is obtained from the data
stream using an expression, and the type of the property is DFDL String Literal or List of DFDL
String Literals, and the values extracted from the data stream could contain '%' or space
characters. If the data already contains DFDL entities, this function should not be used.

Use dfdl:decodeDFDLEntities() when you need to create a value which contains characters for
which DFDL Character Entities are needed. An example is to create data containing the NUL
(character code 0) codepoint. This character code is not allowed in XML documents, including
DFDL Schemas; hence, it must be specified using a DFDL Character Entity. Within a DFDL
Expression, use this function to obtain a string containing this character.

 DFDL Constructor Functions 23.5.4

There is sometimes a need to create a number type from hex binary, and a hex binary type from
a number. Accordingly the following new DFDL specific functions are provided.

Function Meaning

dfdl:byte ($arg)

dfdl:unsignedByte ($arg)

dfdl:short ($arg)

dfdl:unsignedShort ($arg)

dfdl:int ($arg)

dfdl:unsignedInt ($arg)

dfdl:long ($arg)

dfdl:unsignedLong ($arg)

These constructor functions behave identically
to the XPath 2.0 constructor functions of the
same names, with one exception. The argument
can be a quoted string beginning with the letter
'x', in which case the remainder of the string is
hexadecimal digits that represent a big-endian
twos complement representation of a binary
number.

If the string begins with 'x', it is a schema
definition error if a character appears other 0-9,
a-f, A-F.

Each constructor function has a limit on the
number of hex digits, with no more digits than 2,
4, 8, or 16 for the byte, short, int and long
versions respectively. It is a schema definition
error if more digits are encountered than are
suitable for the type being created

dfdl:hexBinary ($arg) This constructor function behaves identically to
the XPath 2.0 constructor function of the same

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 217 of 235

 name, with one exception. The argument can
also be a long, unsignedLong, or any subtype
thereof, and in that case a xs:hexBinary value
containing a number of hex digits is produced.
The ordering and number of the digits
correspond to a binary big-endian twos-
complement implementation of the type of the
argument. Digits 0-9, A-F are used.

The number of digits produced depends on the
type of $arg, being 2, 4, 8 or 16. If $arg is a
literal number then the type is the smallest
signed type (long, int, short, byte) that can
contain the value.

If a literal number is not able to be represented
by a long, it is a schema definition error.

Table 34: DFDL Constructor Functions

Examples:

• dfdl:unsignedInt("xa1b2c3d4") is the unsigned int value 2712847316.

• dfdl:int("xFFFFFFFF") is the signed int value -1.

• dfdl:unsignedByte("xFF") is the unsigned byte value 255.

• dfdl:byte("xff") is the signed byte value -1.

• dfdl:byte("x7F") is the signed byte value 127.

• dfdl:byte("x80") is the signed byte value -128.

• dfdl:unsignedByte("x80") is the unsigned byte value 128.

• dfdl:byte("x0A3") is a schema definition error (too any digits for type).

• dfdl:byte("xG3") is a schema definition error (invalid digit).

• dfdl:hexBinary(xs:short(208)) is the hexBinary value "00D0".

• dfdl:hexBinary(208) is the hexBinary value "D0".

• dfdl:hexBinary(-2084) is the hexBinary value "F7FF".

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 218 of 235

24. DFDL Regular Expressions

A DFDL regular expression may be specified for the dfdl:lengthPattern format property and the
dfdl:testPattern property of the dfdl:assert and dfdl:discriminator annotations. DFDL regular
expressions do not interpret DFDL entities.

A DFDL regular expression is defined by a set of valid pattern characters. For portability,
a DFDL regular expression pattern is restricted to the inclusive subset of the ICU regular
expression [ICURE] and the Java(R) 7 regular expression [JAVARE] with the Unicode flags
UNICODE_CASE and UNICODE_CHARACTER_CLASS turned on. DFDL regular expressions
thereby conform to Unicode Technical Standard #18 , Unicode Regular Expressions, level 1
[UNICODERE]

The following regular expression constructs are not common to both ICU and Java(R) 7 and it is a
schema definition error if any are used in a DFDL regular expression:

Construct Meaning Notes

\N{UNICODE
CHARACTER
NAME}

Match the named character ICU only

\X Match a Grapheme Cluster ICU only

\Uhhhhhhhh Match the character with the hex value hhhhhhhh ICU only

(?# ...) Free-format comment ICU only

(?w-w) UREGEX_UWORD - Controls the behaviour of \b in a pattern ICU only

(?d-d) UNIX_LINES - Enables Unix lines mode Java 7
only

(?u-u) UNICODE_CASE - Enables Unicode-aware case folding Java 7
only (1)

(?U-U) UNICODE_CHARACTER_CLASS - Enables the Unicode
version of predefined character classes and POSIX character
classes

Java 7
only (2)

Table 35 Disallowed Regular Expression Constructs

Notes:

(1) Implementations using Java 7 must set flag UNICODE_CASE by default to match ICU.

(2) Implementations using Java 7 must set flag UNICODE_CHARACTER_CLASS by default to
match ICU.

Additionally, the behaviour of the word character construct (\w) is not consistent in ICU and Java
7. In Java 7 \w is [\p{Alpha}\p{gc=Mn}\p{gc=Me}\p{gc=Mc}\p{Digit}\p{gc=Pc}],
which is a larger set than ICU where \w is [\p{Ll}\p{Lu}\p{Lt}\p{Lo}\p{Nd}].

The use of \w is not recommended in DFDL regular expressions in conjunction with Unicode
encodings, and an implementation must issue a warning if such usage is detected.

Character properties are detailed by the Unicode Regular Expressions [UNICODERE].

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 219 of 235

25. Security Considerations

All locations must be properly initialized before writing so as to prevent accidental (or purposeful)
transmission of data in the unused parts of data formats. Even when a DFDL description does not
specify that data should be written to a particular part of the output representation, a defined
pattern should always be written.

When unparsing data it is a schema definition error if the representation properties that control
filling and padding are not defined by the DFDL schema. The DFDL processor must fail if they are
not defined so that it is certain no region of the output data has unspecified contents.

If regions within a DFDL-described data object are encrypted, then when decrypting them proper
means must be used to assure secure passage of passwords to the decrypting software. Such
means are beyond the scope of the DFDL language specification.

In addition, if encryption passwords/keys are stored in DFDL schema-described data, then proper
means must be used to assure that the decrypted form of these passwords is not revealed. Such
means are beyond the scope of the DFDL language specification.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 220 of 235

26. Authors and Contributors

Michael J. Beckerle, (corresponding author)

Tresys Technology

Columbia, MD

USA

Email: mbeckerle@tresys.com, mbeckerle.dfdl@gmail.com

Stephen M. Hanson, (corresponding author)

IBM Software Group,

Hursley,

Winchester, UK

Email: smh@uk.ibm.com

Alan W. Powell,

Email: apowell888@googlemail.com

We greatly acknowledge the contributions made to this document by the following and all the
other people who provided constructive and valuable input in the group discussions.

Tim Kimber, IBM Software Group, Hursley, UK

Suman Kalia, IBM Software Group, Markham, Ontario, Canada

Stephanie Fetzer, IBM Software Group, Charlotte, USA

Martin Westhead, Avaya, Milpitas, CA, USA

James Myers, NCSA, Urbana-Champaign, IL, USA

Tom Sugden, EPCC

Tara Talbot, PNNL, Richland, WA, USA

Robert McGrath, NCSA, Urbana-Champaign, IL, USA

Geoff Judd, IBM Software Group, Hursley, UK

Dewey M. Sasser, MA, USA

David A. Loose, IBM Software Group, Westborough, MA, USA

Eric S. Smith, IBM Software Group, Westborough, MA, USA

Kristoffer H. Rose, IBM Research, Hawthorne, NY, USA

Simon Parker, Polar Lake, UK

Peter A. Lambros, IBM Software Group, Hursley, UK

Dave Glick, USA

Steve Marting, Progeny, USA

Alejandro Rodriguez, NCSA, Urbana-Champaign, IL, USA

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 221 of 235

27. Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual property or other
rights that might be claimed to pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights might or might not be
available; neither does it represent that it has made any effort to identify any such rights. Copies
of claims of rights made available for publication and any assurances of licenses to be made
available, or the result of an attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this specification can be obtained from the
OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
practice this recommendation. Please address the information to the OGF Executive Director.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 222 of 235

28. Disclaimer

This document and the information contained herein is provided on an "As Is" basis and the OGF
disclaims all warranties, express or implied, including but not limited to any warranty that the use
of the information herein will not infringe any rights or any implied warranties of merchantability or
fitness for a particular purpose.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 223 of 235

29. Full Copyright Notice

Copyright (C) Open Grid Forum (2005-2013). Some Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published and distributed, in whole or in part, without restriction of any kind, provided that the
above copyright notice and this paragraph are included as references to the derived portions on
all such copies and derivative works. The published OGF document from which such works are
derived, however, may not be modified in any way, such as by removing the copyright notice or
references to the OGF or other organizations, except as needed for the purpose of developing
new or updated OGF documents in conformance with the procedures defined in the OGF
Document Process, or as required to translate it into languages other than English. OGF, with the
approval of its board, may remove this restriction for inclusion of OGF document content for the
purpose of producing standards in cooperation with other international standards bodies.

The limited permissions granted above are perpetual and will not be revoked by the OGF or its
successors or assignees.

ICU - Copyright (c) 1995-2013 International Business Machines Corporation and others

XPATH - Copyright © 2007 W3C
®
 (MIT, ERCIM, Keio), All Rights Reserved. W3C liability,

trademark and document use rules apply.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 224 of 235

30. References

[BFD] Binary Format Description (BFD) Language, http://collaboratory.emsl.pnl.gov/sam/bfd/

[CCSID] Coded Character Set Identifiers (CCSID) http://www-
01.ibm.com/software/globalization/ccsid/ccsid_registered.jsp

[IANA] IANA character set encoding names: (http://www.iana.org/assignments/character-sets)

[ICUCalForm] http://icu.sourceforge.net/apiref/icu4c/classSimpleDateFormat.html and
http://userguide.icu-project.org/formatparse/datetime

[ICUDecForm] http://icu.sourceforge.net/apiref/icu4c/classDecimalFormat.html#_details

[ICULOCALE] - http://userguide.icu-project.org/locale

[ICURE] - http://userguide.icu-project.org/strings/regexp

[JAVARE] Java regular expressions.
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

[OBSOLETE_DFDL] Michael J Beckerle, Steven M Hanson, Alan W Powell. GFD-P-R.172: Data
Format Description Language (DFDL) v1.0 Specification. Open Grid Forum. January 2011.
http://www.ogf.org/documents/GFD.174.pdf

[OLSON] http://www.iana.org/time-zones

[OMG] OMG "CAM" TD Model: Object Management Group (OMG) "UML Profile and Interchange
Models for Enterprise Application Integration (EAI) Specification" formal/04-03-26, March 2004.
Sectioin 7.3.2. Available at http://www.omg.org/cgi-bin/doc?formal/2004-03-26

[RDP] recursive descent parser. A "top-down" parser built from a set of mutually-recursive
procedures or a non-recursive equivalent where each such procedure usually implements one of
the productions of the grammar. Thus the structure of the resulting program closely mirrors that of
the grammar it recognises. ["Recursive Programming Techniques", W.H. Burge, 1975, ISBN 0-
201-14450-6].

[RFC 2119] IETF (Internet Engineering Task Force). RFC 2119: Key words for use in RFCs to
Indicate Requirement Levels. S. Bradner. 1997.

[SCD] W3C XML Schema Definition Language (XSD): Component Designators
http://www.w3.org/TR/xmlschema-ref/

[Unicode] Unicode - http://www.unicode.org/

[UnicodeCLDR] - Unicode Common Locale Data Repository (https://sites.google.com/site/cldr/).

[UNICODERE] - http://www.unicode.org/reports/tr18/

[UnicodeLDML] - UTS #35: Unicode Locale Data Markup Language (LDML)
(http://www.unicode.org/reports/tr35/)

[XML10] XML 1.0 http://www.w3.org/TR/REC-xml

[XML11] XML 1.1 http://www.w3.org/TR/xml11/

[XMLInfo] XML Information Set (Second Edition) http://www.w3.org/TR/xml-infoset

[XMLNS10] Namespaces in XML http://www.w3.org/TR/REC-xml-names/

[XMLSch] XML Schema: http://www.w3.org/XML/Schema

[XPath2] XML Path Language (XPath) 2.0 http://www.w3.org/TR/xpath20/

[XSIL] XSIL homepage, http://www.cacr.caltech.edu/SDA/xsil/

[XSDLV1] XML Schema Part 1: Structures http://www.w3.org/TR/xmlschema-1/ ,

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 225 of 235

 XML Schema Part 2: Datatypes http://www.w3.org/TR/xmlschema-2/

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 226 of 235

31. Appendix A:Escape Scheme Use Cases

31.1 Escape Character same as dfdl:escapeEscapeCharacter

dfdl:escapeKind='escapeCharacter', dfdl:escapeCharacter='/', dfdl:escapeEscapeCharacter='/',
dfdl:separator=';', dfdl:extraEscapeCharacters='?'

Logical Data Physical Data / Representation

…………….……………….. …………….………………..

……………/.……………….. ……………//.………………..

……………/.…/…………….. ……………//.…//……………..

……………//.……………….. ……………////.………………..

/…………….……………….. //…………….………………..

…………….………………../ …………….………………..//

/……………/.……………….. //……………//.………………..

……………./………………../ …………….//………………..//

…………….;……………….. ……………./;………………..

……………./;……………….. …………….///;………………..

;…………….……………….. /;…………….………………..

…………….?……………….. ……………./?………………..

31.2 Escape Character different from dfdl:escapeEscapeCharacter

dfdl:escapeKind='escapeCharacter', dfdl:escapeCharacter='/', dfdl:escapeEscapeCharacter='%',
dfdl:separator=';', dfdl:extraEscapeCharacters='?'

Logical Data Physical Data / Representation

…………….……………….. …………….………………..

……………/.……………….. ……………%/.………………..

……………/.…/…………….. ……………%/.…%/……………..

……………//.……………….. ……………%/%/.………………..

/…………….……………….. %/…………….………………..

…………….………………../ …………….………………..%/

/……………/.……………….. %/……………%/.………………..

……………./………………../ …………….%/………………..%/

…………….;……………….. ……………./;………………..

……………./;……………….. …………….%//;………………..

;…………….……………….. /;…………….………………..

…………….?……………….. ……………./?………………..

…………….%……………….. …………….%………………..

…………….%/……………….. …………….%%/………………..

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 227 of 235

……………./%……………….. …………….%/%………………..

dfdl:escapeKind='escapeCharacter', dfdl:escapeCharacter='/', dfdl:escapeEscapeCharacter='%',
dfdl:separator='sep', dfdl:extraEscapeCharacters='?'

Logical Data Physical Data / Representation

…………….sep……………….. ……………./sep………………..

……………./sep……………….. …………….%//sep………………..

sep…………….……………….. /sep…………….………………..

31.3 Escape block with different start and end characters

dfdl:escapeKind='escapeBlock', dfdl:escapeBlockStart='[', dfdl:escapeBlockEnd=']',
dfdl:escapeEscapeCharacter='%', dfdl:separator=';', dfdl:extraEscapeCharacters='?'

Logical Data Physical Data / Representation

…………….……………….. …………….………………..

[…………….……………….. [[…………….………………..]

]…………….………………..]…………….………………..

……………[.……………….. ……………[.………………..

……………].……………….. ……………].………………..

…………….………………..] …………….………………..]

[[…………….……………….. [[[…………….………………..]

…………….………………..]] …………….………………..]]

…………….[[……………….. …………….[[………………..

…………….]]……………….. …………….]]………………..

[…………….………………..] [[…………….………………..%]]

[…………….]……………….. [[…………….%]………………..]

…………….[………………..] …………….[………………..]

[……………[.………………..] [[……………[.………………..%]]

[…………….]………………..] [[…………….%]………………..%]]

[[…………….………………..] [[[…………….………………..%]]

[…………….………………..]] [[…………….………………..%]%]]

[[…………….………………..]] [[[…………….………………..%]%]]

…………….%……………….. …………….%………………..

…………….%%……………….. …………….%%………………..

…………….%[……………….. …………….%[………………..

…………….%]……………….. …………….%]………………..

%[…………….……………….. %[…………….………………..

…………….………………..%] …………….………………..%]

%[…………….………………..%] %[…………….………………..%]

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 228 of 235

[…………%….………………..] [[…………%….………………..%]]

[…………%]….………………..] [[…………%%]….………………..%]]

…………….;……………….. […………….;………………..]

…………….%;……………….. […………….%;………………..]

[…………….;………………..] [[…………….;………………..%]]

…………….?……………….. […………….?………………..]

31.4 Escape block with same start and end characters

dfdl:escapeKind='escapeBlock', dfdl:escapeBlockStart=' '', dfdl:escapeBlockEnd='
'', dfdl:escapeEscapeCharacter='%', dfdl:separator=';', dfdl:extraEscapeCharacters='?'

Logical Data Physical Data / Representation

…………….……………….. …………….………………..

'…………….……………….. '%'…………….………………..'

……………'.……………….. ……………'.………………..

…………….………………..' …………….………………..'

''…………….……………….. '%'%'…………….………………..'

…………….………………..'' …………….………………..''

…………….''……………….. …………….''………………..

'…………….………………..' '%'…………….………………..%''

'…………….'……………….. '%'…………….%'………………..'

…………….'………………..' …………….'………………..'

'……………'.………………..' '%'……………%'.………………..%''

''…………….………………..' '%'%'…………….………………..%''

'…………….………………..'' '%'…………….………………..%'%''

''…………….………………..'' '%'%'…………….………………..%'%''

…………….%……………….. …………….%………………..

…………….%%……………….. …………….%%………………..

…………….%'……………….. …………….%'………………..

%'…………….……………….. %'…………….………………..

…………….………………..%' …………….………………..%'

'…………….………………..%' '%'…………….………………..%%''

%'…………….………………..%' %'…………….………………..%'

'…………%….………………..' '%'…………%….………………..%''

'…………%'….………………..' '%'…………%%'….………………..%''

…………….;……………….. '…………….;………………..'

…………….%;……………….. '…………….%;………………..'

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 229 of 235

'…………….;………………..' '%'…………….;………………..%''

…………….?……………….. '…………….?………………..'

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 230 of 235

32. Appendix B: Encoding of delimiters different from encoding of data (eg, initiator and
terminator different to data)

Use <xs:sequence> to wrap the element and carry the delimiters, for example:

 <xs:sequence dfdl:encoding="ascii" dfdl:separator=":">

 <xs:sequence dfdl:encoding=" ebcdic-cp-us" dfdl:initiator="VAL"

 dfdl:terminator="END">

 <xs:element name="val" type="..." dfdl:encoding="ascii" />

 </xs:sequence>

 </xs:sequence>

The same technique can be used with dfdl:ignoreCase when the case-sensitivity of data is
different to that of surrounding delimiters.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 231 of 235

33. Appendix C: Rationale for Single-Assignment Variables

DFDL is intended to be a description language. That is, the capture of a data format should be as
descriptive/declarative as possible.

An additional quite critical goal for DFDL is that it allows very high performance implementations,
including use of parallel processing wherever possible.

DFDL contains an expression language with variables for use in creating parameterized DFDL
schemas.

However, the way variables can be used in DFDL is quite constrained. Specifically, the variables
are single-assignment.

Single-assignment variables solve a number of problems.

First, they keep the schema more declarative, because the name of a variable represents a
value, not a location. Before assignment, the value is not yet known, after the assignment the
value is known, but the consumer of the value need only know the name, and need not be aware
of the mechanism by which it gets its value or when.

Second, single-assignment variables avoid over-constraining the implementation, thereby
preserving the potential for high-performance and parallel processing.

Some digression is useful here: Any variable creates a data dependency in order of processing.
The part of the schema reading/using the variable's value depends upon the data value coming
from the part of the schema providing that value. This kind of data dependency is inherent and
inescapable. Values must be created before they can be used.

However, if you consider a variable to be a location that can be assigned repeatedly, then things
are more complex because you not only have data dependency on the value (one part of the
schema writes the location, another reads that location), but you have the dependency in the
other direction: you must read the location before it can be used again for the next value. This is
usually called anti-dependency. Anti-dependency is the enemy of high-performance and parallel
execution. It forces specific and artificial sequential ordering on things that is due to the way
variable names are allocated to storage locations.

If variables are single-assignment only, then only data-dependencies exist. Anti-dependencies
don't exist, and implementations are free to work in any way consistent with the (inescapable)
data dependencies.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 232 of 235

34. Appendix D: Processing of DFDL String literals

A DFDL String Literal describes characters or bytes that can appear in the data. The syntax of a
DFDL String Literal is described in Section 6.3. This appendix describes how a DFDL String
Literal must be processed by a DFDL processor.

34.1 Interpreting a DFDL String Literal

A DFDL String literal is a sequence of one or more string literal parts. Each string literal part
describes zero or more characters or exactly one byte. To process a DFDL string literal correctly
it is necessary to parse it into its string literal parts using the grammar in Table 2 of Section 6.3.1
DFDL String Literals.

34.2 Recognizing a DFDL String Literal

When parsing, a DFDL processor must be able to recognize a DFDL String Literal in the data.
The recognition algorithm is used whenever the DFDL processor needs to process a property of
type 'DFDL String Literal'.

The recognition algorithm is as follows:

for each DfdlStringLiteralPart

 if this DfdlStringLiteralPart is found in the data at the current offset

 advance the offset by the width of the characters matched

 else

 return false

 end if

return true

34.3 Recognizing DFDL String Literal Part

Each type of string literal part and of the DfdlESEntity is recognised as described in the table
below:

String Literal Part Recognition algorithm

LiteralString The literal string is specifying a sequence of Unicode characters. The string
part is recognized if the same Unicode characters are found in the data at
the current offset.

Implementation note: It is not necessary for either the LiteralString or the
data to be encoded using a Unicode encoding. The matching algorithm
must operate as if the LiteralString and the data were both converted to
Unicode before comparison.

DfdlCharEntity The entity is specifying a single Unicode character.

The recognition algorithm is the same as for a single-character LiteralString.

ByteValue The entity is specifying a single raw byte value.

The string part is recognized if the literal byte in the data at the current byte
offset matches the raw byte value.

This entity is specifying a raw byte value and not a character. It will not
always be safe to interpret the byte value as a character in the component's
encoding.

DfdlNLEntity The entity is specifying a newline character or character sequence.

The string part is recognized if one of the following newline character
sequences is found in the data at the current byte offset:

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 233 of 235

U+000A LF

U+000D CR

U+000D U+000A CRLF

U+0085 NEL

U+2028 LS

The recognition algorithm must be greedy. If the CR character is matched
then the DFDL processor must check to see whether it is followed by an LF
character and if so, consume that character also.

DfdlWSPEntity The entity is specifying a single white space character.

The string part if recognized if one of the following white space characters is
found in the data at the current byte offset:

U+0009-U+000D (Control characters)

U+0020 SPACE

U+0085 NEL

U+00A0 NBSP

U+1680 OGHAM SPACE MARK

U+180E MONGOLIAN VOWEL SEPARATOR

U+2000-U+200A (different sorts of spaces)

U+2028 LSP

U+2029 PSP

U+202F NARROW NBSP

U+205F MEDIUM MATHEMATICAL SPACE

U+3000 IDEOGRAPHIC SPACE

DfdlWSPStarEntity The entity is specifying zero or more white space characters.

The string part is recognized when the entire sequence of white space
characters starting at the current offset has been consumed.

The recognition of this entity cannot fail because it can match zero white
space characters.

The recognition algorithm must be greedy. All possible white space
characters must be consumed.

DfdlWSPPlusEntity The entity is specifying one or more white space characters.

The string part is recognized when the entire non-empty sequence of white
space characters starting at the current offset has been consumed.

The recognition algorithm must be greedy. All possible white space
characters must be consumed.

DfdlESEntity The entity is specifying an empty string.

The string part is recognized if the data available for matching is zero-
length.

This entity is only allowed in contexts where the available data will be
constrained by other DFDL properties.

GFD-P-R.207 September 2013

dfdl-wg@ogf.org Page 234 of 235

