
DFDL Introduction for Beginners

Lesson 6: Describing Optional and Repeating Data

Version Author Date Change

1 A Powell 2011 Created

2 S Hanson 2011-03-30 Updated

3 S Hanson 2013-09-17 Expand and match latest spec

In the previous lessons, all the elements had to occur exactly once in the data
stream; in this lesson we will learn how to model elements that occur
optionally and elements that occur repeatedly.

The permitted number of occurrences of an element in the data stream is
given by the element’s XML Schema minOccurs and maxOccurs properties.
Because these are XML Schema properties and not DFDL properties, either
can be omitted, and if so default to ‘1’.

An element that occurs exactly once is identified by both minOccurs and
maxOccurs having the value ‘1’ or defaulting to ‘1’.

Elements can be modeled to occur optionally. An optional element is identified
by setting minOccurs to ‘0’ and setting dfdl:occursCountKind to indicate how
to determine if the element is present.

Elements can also occur repeatedly and are referred to as arrays. An array
element is identified by setting maxOccurs to greater than ‘1’ or the special
value ‘unbounded’ (meaning there is no maximum number of occurrences)
and setting dfdl:occursCountKind to indicate how to determine how many
occurrences of the element are present. The number of occurrences in an
array can be fixed or can vary. A fixed array is identified by setting both
minOccurs and maxOccurs to the same value greater than ‘1’. If minOccurs is
set to ‘0’ then the element is both optional and an array.

The dfdl:occursCountKind property

This is an important property and must be set for all optional elements and
array elements. It determines how the number of occurrences is identified in
the data stream.

'fixed'
This should be used when the number of occurrences is always the same.
The number is provided by the XSD maxOccurs property. The minOccurs
property must be the same value.

'implicit'
This should be used when the number of occurrences varies and the parser
will determine the number automatically within the bounds given by XSD

minOccurs and maxOccurs. For example, occurrences are determined by
using an initiator or a separator.

'parsed'
This should be used when the number of occurrences varies and the parser
will determine the number automatically but not using any bounds. For
example, occurrences are determined by using an initiator or a separator.

'expression'
This should be used when the number of occurrences varies and the actual
number is provided earlier in the data stream. The dfdl:occursCount property
provides a DFDL expression which the parser evaluates to obtain the number.
Expressions are covered in a later lesson.

'stopValue'
This should be used when the end of the array is signalled by an occurrence
which has a special ‘stop value’. The dfdl:occursStopValue property provides
the list of special ‘stop values’ to use. The ‘stop value’ itself is not considered
to be an occurrence and is not added to the infoset.

Notice that XSD minOccurs and maxOccurs are only used to assist the parser
when dfdl:occursCountKind is ‘fixed’ and ‘implicit’. However, if validation is
switched on, the parser checks that the number of occurrences in the infoset
is within the bounds specified by minOccurs and maxOccurs, whatever the
setting of dfdl:occursCountKind.

Modeling optional data

We extend the variable length Address example to model an optional ‘country’
element.

Example 1: Address with optional delimited data elements

Data stream

[house:118*street:Ridgewood Circle*city:Rochester*state:N

Y]

OR

[house:118*street:Ridgewood Circle*city:Rochester*state:N

Y*country:USA]

DFDL schema

1 <xs:schema … xmlns:dfdl=“http://www.ogf.org/dfdl/dfdl-1.0/“>

2 <xs:annotation>

3 <xs:appinfo source=”http://www.ogf.org/dfdl/” >
4 <dfdl:format representation=”text”

 lengthKind="delimited"

 encoding=”ASCII” />

5 </xs:appinfo>

6 </xs:annotation>

7 <xs:element name="address" dfdl:lengthKind="implicit"

 dfdl:initiator="[" dfdl:terminator"]">

8 <xs:complexType>

9 <xs:sequence dfdl:sequenceKind="ordered"

 dfdl:separator="*"

 dfdl:separatorPosition="infix" >

10 <xs:element name="houseNumber" type="xs:string"

 dfdl:initiator="house:" />

11 <xs:element name="street" type="xs:string"

 dfdl:initiator="street:" />

12 <xs:element name="city" type="xs:string"

 dfdl:initiator="city:" />

13 <xs:element name="state" type="xs:string"

 dfdl:initiator="state:" />

14 <xs:element name="country" type="xs:string"

 dfdl:initiator="country:"

 minOccurs=”0” maxOccurs=”1”

 dfdl:occursCountKind="parsed" />

15 </xs:sequence>

16 </xs:complexType>

17 </xs:element>

18</xs:schema>

Infoset:

 address

 houseNumber(string) '118'

 street(string) 'Ridgewood Circle'

 city(string) 'Rochester'

 state(string) 'NY'

OR

 address

 houseNumber(string) '118'

 street(string) 'Ridgewood Circle'

 city(string) 'Rochester'

 state(string) 'NY'

 country(string) 'USA'

The optional ‘country’ element on line 14 is indicated by XSD minOccurs=‘0’.

The parser needs to be able to find out if the element is present in the data
stream. For initiated elements like the example above it can be done easily by
looking for the initiator so the dfdl:occursCountKind should be set to ‘parsed’
or ‘implicit’.

Text elements without an initiator are often not optional, or if they are then
there is something in the data stream which can indicate the absence of the
optional element, such as a delimiter or perhaps another element earlier in the
data stream (dfdl:occursCountKind ‘expression’).

Fixed length binary fields are usually not optional, but if they are can use the
same techniques as text elements.

Modeling fixed arrays

This is typical of fixed length data where there are no initiators, so all
elements are identified by their position in the data stream. We extend the
fixed length Address example to model the ‘street’ element repeating a fixed
number of times.

Example 2: Address with repeating fixed length data elements

Data stream

000118Ridgewood Circle Main Street Rochester

 NYUSA

DFDL schema

1 <xs:schema … xmlns:dfdl=“http://www.ogf.org/dfdl/dfdl-1.0/“>

2 <xs:annotation>
3 <xs:appinfo source=”http://www.ogf.org/dfdl/” >
4 <dfdl:format representation=”text”
 lengthKind="explicit"
 lengthUnits="bytes"
 encoding=”ASCII” />
5 </xs:appinfo>
6 </xs:annotation>

7 <xs:element name="address" dfdl:lengthKind="implicit">
8 <xs:complexType>
9 <xs:sequence dfdl:sequenceKind="ordered">
10 <xs:element name="houseNumber" type="xs:string"
 dfdl:length="6" />
11 <xs:element name="street" type="xs:string"

 dfdl:length="20"

 minOccurs=”2” maxOccurs=”2”

 dfdl:occursCountKind="fixed"/>

12 <xs:element name="city" type="xs:string"

 dfdl:length="20" />

13 <xs:element name="state" type="xs:string"

 dfdl:length="2" />

14 <xs:element name="country" type="xs:string"

 dfdl:length="20" />

15 </xs:sequence>

16 </xs:complexType>

17 </xs:element>

18</xs:schema>

Infoset

 address

 houseNumber(string) '000118'

 street(string) 'Ridgewood Circle '

 street(string) 'Main Street '

 city(string) 'Rochester '

 state(string) 'NY'

 country(string) 'USA '

On line 11 element ‘street’ occurs exactly twice so XSD minOccurs and
maxOccurs are both set to ‘2’ and dfdl:occursCountKind is ‘fixed’.

Modeling variable arrays

This is typical of data where there are initiators. We extend the variable length
Address example to model the ‘street’ element repeating a variable number of
times.

Example 3: Address with repeating delimited data elements

Data stream

[house:118*street:Ridgewood Circle*street:Main Street*cit

y:Rochester*state:NY*country:USA]

DFDL schema

1 <xs:schema … xmlns:dfdl=“http://www.ogf.org/dfdl/dfdl-1.0/“>

2 <xs:annotation>

3 <xs:appinfo source=”http://www.ogf.org/dfdl/” >
4 <dfdl:format representation=”text”

 lengthKind="delimited"

 encoding=”ASCII” />

5 </xs:appinfo>

6 </xs:annotation>

7 <xs:element name="address" dfdl:lengthKind="implicit"

 dfdl:initiator="[" dfdl:terminator"]">

8 <xs:complexType>

9 <xs:sequence dfdl:sequenceKind="ordered"

 dfdl:separator="*"

 dfdl:separatorPosition="infix" >

10 <xs:element name="houseNumber" type="xs:string"

 dfdl:initiator="house:" />

11 <xs:element name="street" type="xs:string"

 dfdl:initiator="street:"

 minOccurs=”1” maxOccurs=”2”

 dfdl:occursCountKind="parsed" />

12 <xs:element name="city" type="xs:string"

 dfdl:initiator="city:" />

13 <xs:element name="state" type="xs:string"

 dfdl:initiator="state:" />

14 <xs:element name="country" type="xs:string"

 dfdl:initiator="country:"

 xs:minOccurs=”0” xs:maxOccurs=”1”

 dfdl:occursCountKind="parsed" />

15 </xs:sequence>

16 </xs:complexType>

17 </xs:element>

18</xs:schema>

Infoset

 address

 houseNumber(string) '118'

 street(string) 'Ridgewood Circle'

 street(string) 'Main Street'

 city(string) 'Rochester'

 state(string) 'NY'

 country(string) 'USA'

On line 11 the element ‘street’ occurs 1 or 2 times so XSD minOccurs is set to
‘1’ and xs:maxOccurs is set to ‘2’'. The element has an initiator ‘street:’ and
can be easily identified in the data stream, so dfdl:occursCountKind is ‘parsed’
or ‘implicit’.

Notice that when an array element has an initiator, every occurrence in the
data must have the initiator. What happens if only the first occurrence in the
data has the initiator, so the initiator is really identifying the array as a whole?
This is best modeled by wrapping the array element in a complex element
which carries the initiator, and removing the initiator from the array element.

A commonly used technique is the use of a different separator between the
occurrences, as it enables the occurrences of the array element to be
distinguished from the following element, especially useful when there are no
initiators. Again, this is best modeled by wrapping the array element in a
complex element, the xs:sequence of which carries the different separator.

We extend the example to show both of these, the ‘street’ element losing its
initiator and being wrapped by an element called ‘streets’ with initiator
‘streets:’ and with an xs:sequence with different separator ‘~’.

Example 4: Address with repeating delimited data elements (delimiters for the array as
a whole)

Data stream

[house:118*streets:Ridgewood Circle~Main Street*cit

y:Rochester*state:NY*country:USA]

DFDL schema

1 <xs:schema … xmlns:dfdl=“http://www.ogf.org/dfdl/dfdl-1.0/“>

2 <xs:annotation>

3 <xs:appinfo source=”http://www.ogf.org/dfdl/” >
4 <dfdl:format representation=”text”

 lengthKind="delimited"

 encoding=”ASCII” />

5 </xs:appinfo>

6 </xs:annotation>

7 <xs:element name="address" dfdl:lengthKind="implicit"

 dfdl:initiator="[" dfdl:terminator"]">

8 <xs:complexType>

9 <xs:sequence dfdl:sequenceKind="ordered"

 dfdl:separator="*"

 dfdl:separatorPosition="infix" >

10 <xs:element name="houseNumber" type="xs:string"

 dfdl:initiator="house:" />

11a <xs:element name="streets"

 dfdl:initiator=”streets:”

 dfdl:lengthKind="implicit">

11b <xs:complexType>

11c <xs:sequence dfdl:sequenceKind="ordered"

 dfdl:separator="~"

 dfdl:separatorPosition="infix" >

11d <xs:element name="street" type="xs:string"

 minOccurs=”1” maxOccurs=”2”

 dfdl:OccursCountKind="parsed" />

11e </xs:sequence>

11f </xs:complexType>

11g </xs:element>

12 <xs:element name="city" type="xs:string"

 dfdl:initiator="city:" />

13 <xs:element name="state" type="xs:string"

 dfdl:initiator="state:" />

14 <xs:element name="country" type="xs:string"

 xs:minOccurs=0 xs:maxOccurs=1

 dfdl:OccursCountKind="parsed"

 dfdl:initiator="country:" />

15 </xs:sequence>

16 </xs:complexType>

17 </xs:element>

18</xs:schema>

Infoset

 address

 houseNumber(string) '118'

 streets

 street(string) 'Ridgewood Circle'

 street(string) 'Main Street'

 city(string) 'Rochester'

 state(string) 'NY'

 country(string) 'USA'

Summary

In this lesson we have looked at how you can define optional and repeating
elements. We have seen that there is more than one way in DFDL to
determine the number of occurrences of an element in the data stream,
controlled by the dfdl:occursCountKind property, and shown some examples.

We have only shown simple elements but the same principles apply to
complex elements, allowing the modeling of optional and repeating structures.

