
DFDL Introduction for Beginners

Lesson 4: Describing the Structure of the Data

Version Author Date Change

1 A Powell 2011 Created

2 S Hanson 2011-03-30 Updated

3 S Hanson 2013-09-03 Match latest spec

In lessons 1 to 3 we have learnt about the purpose and basic syntax of DFDL.
In this lesson we will learn how to describe the basic structure of the data. We
learn the most common ways to identify the elements and in later lessons we
will learn how to describe the physical format of the individual elements.

In lessons 1 to 3 we saw some examples of fixed length and delimited data
structures. We will build on those examples to introduce more details.

Modeling fixed length data

Example 1: Address with fixed length data elements

Data stream

000118Ridgewood Circle Rochester NY

DFDL schema

1 <xs:schema … xmlns:dfdl=“http://www.ogf.org/dfdl/dfdl-1.0/“>

2 <xs:annotation>

3 <xs:appinfo source=”http://www.ogf.org/dfdl/” >
4 <dfdl:format representation=”text”

 lengthKind="explicit"

 lengthUnits="bytes"

 encoding=”ASCII”

 initiator=”” terminator=”” />

5 </xs:appinfo>

6 </xs:annotation>

7 <xs:element name="address" dfdl:lengthKind="implicit">

8 <xs:complexType>

9 <xs:sequence dfdl:sequenceKind="ordered"

 dfdl:separator="">

10 <xs:element name="houseNumber" type="xs:string"

 dfdl:length="6" />

11 <xs:element name="street" type="xs:string"

 dfdl:length="20" />

12 <xs:element name="city" type="xs:string"

 dfdl:length="20" />

13 <xs:element name="state" type="xs:string"

 dfdl:length="2" />

14 </xs:sequence>

15 </xs:complexType>

16 </xs:element>

17 </xs:schema>

Infoset

 address

 houseNumber(string) '000118'

 street(string) 'Ridgewood Circle '

 city(string) 'Rochester '

 state(string) 'NY'

The simplest way to model fixed length data is to use a dfdl:lengthKind of
"explicit", dfdl:length to specify the length and dfdl:lengthUnits to specify the
units.

Since all the simple elements in the data are fixed length, in line 4 we have
set dfdl:lengthKind to a default of "explicit" to save it having to be specified on
each element. The actual length is specified by the dfdl:length property but as
this varies for each element it is specified on each locally on lines 10 to 13.
The dfdl:lengthUnits property specifies the units that the dfdl:length property
represents and can be either "bytes", "characters" or "bits". When "characters"
is specified then the element is a fixed number of characters in the encoding
given by the dfdl:encoding property. For single byte fixed length encodings
then "bytes" and "characters" lengths are the same. Lengths in bits are
described in a later lesson.

Notice that leading zeros and trailing spaces have not been trimmed from the
data. DFDL provides properties to control trimming and padding, which are
described in a later lesson.

On line 7 element address has dfdl:lengthKind "implicit" defined. For a
complex element dfdl:lengthKind "implicit" means that the length of the
element is the combined length of its children and so avoids the user having
manually add up all the child lengths.

A dfdl:lengthKind "implicit" can also be used to provide an implied length for
some simple elements depending on the physical representation; more details
are provided in a later lesson.

Modeling fixed length delimited data

Sometimes, even though an element is fixed length, it is part of a sequence
that uses separators.

Example 2: Address with fixed length, delimited data elements

Data stream
000118*Ridgewood Circle *Rochester *NY

DFDL schema

1 <xs:schema … xmlns:dfdl=“http://www.ogf.org/dfdl/dfdl-1.0/“>

2 <xs:annotation>

3 <xs:appinfo source=”http://www.ogf.org/dfdl/” >
4 <dfdl:format representation=”text”

 lengthKind="explicit"

 lengthUnits="bytes"

 encoding=”ASCII”

 initiator=”” terminator=”” />

5 </xs:appinfo>

6 </xs:annotation>

7 <xs:element name="address" dfdl:lengthKind="implicit">

8 <xs:complexType>

9 <xs:sequence dfdl:sequenceKind="ordered"

 dfdl:separator="*"

 dfdl:separatorPosition="infix"

 dfdl:separatorSuppressionPolicy=”never” >

10 <xs:element name="houseNumber" type="xs:string"

 dfdl:length="6" />

11 <xs:element name="street" type="xs:string"

 dfdl:length="20" />

12 <xs:element name="city" type="xs:string"

 dfdl:length="20" />

13 <xs:element name="state" type="xs:string"

 dfdl:length="2" />

14 </xs:sequence>

15 </xs:complexType>

16 </xs:element>

17 </xs:schema>

Infoset

 address

 houseNumber(string) '000118'

 street(string) 'Ridgewood Circle '

 city(string) 'Rochester '

 state(string) 'NY'

On line 9, the xs:sequence has a separator "*" defined which is used to
separate each of the children of the sequence. The DFDL separator
properties are explained in the next example. It is worth noting that when an

element is fixed length and has delimiters the length is still used to extract the
element content from the data stream, rather than scanning for a delimiter.

Modeling variable length delimited data

Example 3: Address with variable length delimited data elements:

Data stream

118*Ridgewood Circle*Rochester*NY

DFDL schema

1 <xs:schema … xmlns:dfdl=“http://www.ogf.org/dfdl/dfdl-1.0/“>

2 <xs:annotation>

3 <xs:appinfo source=”http://www.ogf.org/dfdl/” >
4 <dfdl:format representation=”text”

 lengthKind="delimited"

 encoding=”ASCII”

 initiator=”” terminator=”” />

5 </xs:appinfo>

6 </xs:annotation>

7 <xs:element name="address" dfdl:lengthKind="implicit">

8 <xs:complexType>

9 <xs:sequence dfdl:sequenceKind="ordered"

 dfdl:separator="*"

 dfdl:separatorPosition="infix"

 dfdl:separatorSuppressionPolicy=”never” >

10 <xs:element name="houseNumber" type="xs:string"

 />

11 <xs:element name="street" type="xs:string" />

12 <xs:element name="city" type="xs:string" />

13 <xs:element name="state" type="xs:string" />

14 </xs:sequence>

15 </xs:complexType>

16 </xs:element>

17 </xs:schema>

Infoset

 address

 houseNumber(string) '118'

 street(string) 'Ridgewood Circle'

 city(string) 'Rochester'

 state(string) 'NY'

Variable length data is usually modeled using dfdl:lengthKind "delimited"
which means that an element is terminated by:

• the element’s terminator (if specified)

• an enclosing element’s or sequence’s separator or terminator

• the end of an enclosing element of known length

• the end of the data stream

Here, the dfdl:length property is not specified, and the data stream is scanned
for all possible terminating delimiters in order to extract the element content.

Commonly, the element will be terminated by the dfdl:separator of the
enclosing xs:sequence; however the last element in the sequence may be
terminated by an enclosing element's terminator or the end of the data
stream.

Some formats will require a separator between each element in the sequence
which is modeled by dfdl:separatorPosition "infix". Other formats may require
an additional separator to be before the first element or after the last element
which is modeled by dfdl:separatorPosition "prefix" and "postfix", respectively.
The dfdl:separatorSuppressionPolicy property controls whether the separator
is expected when the content of the element is empty.

Modeling data with initiators and terminators

Example 4: Address with Initiated and terminated data elements

Data stream

[house:118*street:Ridgewood Circle*city:Rochester*state:N

Y]

DFDL schema

1 <xs:schema … xmlns:dfdl=“http://www.ogf.org/dfdl/dfdl-1.0/“>

2 <xs:annotation>

3 <xs:appinfo source=”http://www.ogf.org/dfdl/” >
4 <dfdl:format representation=”text”

 lengthKind="delimited"

 encoding=”ASCII”

 initiator=”” terminator=”” />

5 </xs:appinfo>

6 </xs:annotation>

7 <xs:element name="address" dfdl:lengthKind="implicit"

 dfdl:initiator="[" dfdl:terminator"]">

8 <xs:complexType>

9 <xs:sequence dfdl:sequenceKind="ordered"

 dfdl:separator="*"

 dfdl:separatorPosition="infix" >

10 <xs:element name="houseNumber" type="xs:string"

 dfdl:initiator="house:" />

11 <xs:element name="street" type="xs:string"

 dfdl:initiator="street:" />

12 <xs:element name="city" type="xs:string"

 dfdl:initiator="city:" />

13 <xs:element name="state" type="xs:string"

 dfdl:initiator="state:" />

14 </xs:sequence>

15 </xs:complexType>

16 </xs:element>

17 </xs:schema>

Infoset

 address

 houseNumber(string) '118'

 street(string) 'Ridgewood Circle'

 city(string) 'Rochester'

 state(string) 'NY'

Initiators (sometimes called ‘tags’) are often used to aid identification of an
element, particularly in text based standards. Terminators are used to
designate the end of an element, typically when there is no separator.
Initiators and terminators can be specified for simple or complex, fixed length
or delimited, elements.

In the example, the overall address data now starts with a “[“ and ends with a
“]”, and each element in the address is prefixed by its name followed by a
colon. Accordingly, on line 7 the ‘address’ element is complex and has a
dfdl:initiator "[" and a dfdl:terminator "]" defined. On line 11 the simple element
‘street’ has a dfdl:initiator "street:" defined. Though not shown here, initiators
and terminators can also be defined on sequences and choices such as the
xs:sequence on line 9.

If defined then the initiator and terminator must be present in the data stream
except perhaps when the element contains a special value such as the empty
string or nil as explained in a later lesson. Additionally the terminator may be
omitted from the very last element in a data stream if property
dfdl:documentFinalTerminatorCanBeMissing is "yes".

DFDL separators and terminators are similar in that they both indicate the end
of an element and in many formats either could be used to model a
terminating delimiter. In general a terminator should be used when the
delimiter is considered a fundamental part of the element and needs to be
present wherever the element declaration is reused in the schema. They
should also be used when the delimiter for each element in a sequence is
different. Separators should be used when the delimiter depends on the
context of where the element is used. For example the same element

declaration may be reused in multiple sequences that use different
separators.

Summary

In this lesson we have looked at the most common ways you can define the
structure of the data. We have seen how to define structures that contain fixed
length and variable length elements. We have seen how initiators can be used
to identify which elements are in the data stream which is useful, for example,
when there is an unknown number of a repeating element (described in a later
lesson).

In later lessons we will look at other types of data structures including
dynamic structures that determine the length of elements using other
elements within the data stream, or where the length immediately precedes
the element as a prefix, or elements that are described by regular expressions.

